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Preface

A huge amount of data is collected every day in the form of sequences. These sequential data are valu-
able sources of information not only to search for a particular value or event at a specific time, but also 
to analyze the frequency of certain events or sets of events related by particular temporal/sequential 
relationship. For example, DNA sequences encode the genetic makeup of humans and all other species, 
and protein sequences describe the amino acid composition of proteins and encode the structure and 
function of proteins. Moreover, sequences can be used to capture how individual humans behave through 
various temporal activity histories such as weblog histories and customer purchase patterns. In general 
there are various methods to extract information and patterns from databases, such as time series ap-
proaches, association rule mining, and data mining techniques.

The objective of this book is to provide a concise state-of-the-art in the field of sequence data min-
ing along with applications. The book consists of 14 chapters divided into 3 sections. The first section 
provides review of state-of-art in the field of sequence data mining. Section 2 presents relatively new 
techniques for sequence data mining. Finally, in section 3, various application areas of sequence data 
mining have been explored.

Chapter 1, Approaches for Pattern Discovery Using Sequential Data Mining, by Manish Gupta and 
Jiawei Han of University of Illinois at Urbana-Champaign, IL, USA, discusses different approaches for 
mining of patterns from sequence data. Apriori based methods and the pattern growth methods are the 
earliest and the most influential methods for sequential pattern mining. There is also a vertical format 
based method which works on a dual representation of the sequence database. Work has also been done 
for mining patterns with constraints, mining closed patterns, mining patterns from multi-dimensional 
databases, mining closed repetitive gapped subsequences, and other forms of sequential pattern mining. 
Some works also focus on mining incremental patterns and mining from stream data. In this chapter, 
the authors have presented at least one method of each of these types and discussed advantages and 
disadvantages.

Chapter 2, A Review of Kernel Methods Based Approaches to Classification and Clustering of 
Sequential Patterns, Part I: Sequences of Continuous Feature Vectors, was authored by Dileep A. D., 
Veena T., and C. Chandra Sekhar of Department of Computer Science and Engineering, Indian Institute 
of Technology Madras, India. They present a brief description of kernel methods for pattern classifica-
tion and clustering. They also describe dynamic kernels for sequences of continuous feature vectors. 
The chapter also presents a review of approaches to sequential pattern classification and clustering using 
dynamic kernels.
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Chapter 3 is A Review of Kernel Methods Based Approaches to Classification and Clustering of 
Sequential Patterns, Part II: Sequences of Discrete Symbols by Veena T., Dileep A. D., and C. Chandra 
Sekhar of Department of Computer Science and Engineering, Indian Institute of Technology Madras, 
India. The authors review methods to design dynamic kernels for sequences of discrete symbols. In their 
chapter they have also presented a review of approaches to classification and clustering of sequences of 
discrete symbols using the dynamic kernel based methods.

Chapter 4 is titled, Mining Statistically Significant Substrings Based on the Chi-Square Measure, 
contributed by Sourav Dutta of IBM Research India along with Arnab Bhattacharya Dept. of Computer 
Science and Engineering, Indian Institute of Technology, Kanpur, India. This chapter highlights the chal-
lenge of efficient mining of large string databases in the domains of intrusion detection systems, player 
statistics, texts, proteins, et cetera, and how these issues have emerged as challenges of practical nature. 
Searching for an unusual pattern within long strings of data is one of the foremost requirements for 
many diverse applications. The authors first present the current state-of-art in this area and then analyze 
the different statistical measures available to meet this end. Next, they argue that the most appropriate 
metric is the chi-square measure. Finally, they discuss different approaches and algorithms proposed for 
retrieving the top-k substrings with the largest chi-square measure. The local-maxima based algorithms 
maintain high quality while outperforming others with respect to the running time.

Chapter 5 is Unbalanced Sequential Data Classification Using Extreme Outlier Elimination and 
Sampling Techniques, by T. Maruthi Padmaja along with Raju S. Bapi from University of Hyderabad, 
Hyderabad, India and P. Radha Krishna, Infosys Lab, Infosys Technologies Ltd, Hyderabad, India. This 
chapter focuses on problem of predicting minority class sequence patterns from the noisy and unbal-
anced sequential datasets. To solve this problem, the atuhors proposed a new approach called extreme 
outlier elimination and hybrid sampling technique.

Chapter 6 is Quantization Based Sequence Generation and Subsequence Pruning for Data Mining 
Applications by T. Ravindra Babu and S. V. Subrahmanya of E-Comm. Research Lab, Education and 
Research, Infosys Technologies Limited, Bangalore, India, along with M. Narasimha Murty, Dept. of 
Computer Science and Automation, Indian Institute of Science, Bangalore, India. This chapter has high-
lighted the problem of combining data mining algorithms with data compaction used for data compression. 
Such combined techniques lead to superior performance. Approaches to deal with large data include 
working with a representative sample instead of the entire data. The representatives should preferably 
be generated with minimal data scans, methods like random projection, et cetera.

Chapter 7 is Classification of Biological Sequences by Pratibha Rani and Vikram Pudi of International 
Institute of Information Technology, Hyderabad, India, and it discusses the problem of classifying a newly 
discovered sequence like a protein or DNA sequence based on their important features and functions, 
using the collection of available sequences. In this chapter, the authors study this problem and present 
two techniques Bayesian classifiers: RBNBC and REBMEC. The algorithms used in these classifiers 
incorporate repeated occurrences of subsequences within each sequence. Specifically, RBNBC (Repeat 
Based Naive Bayes Classifier) uses a novel formulation of Naive Bayes, and the second classifier, 
REBMEC (Repeat Based Maximum Entropy Classifier) uses a novel framework based on the classical 
Generalized Iterative Scaling (GIS) algorithm.

Chapter 8, Applications of Pattern Discovery Using Sequential Data Mining, by Manish Gupta and 
Jiawei Han of University of Illinois at Urbana-Champaign, IL, USA, presents a comprehensive review 
of applications of sequence data mining algorithms in a variety of domains like healthcare, education, 
Web usage mining, text mining, bioinformatics, telecommunications, intrusion detection, et cetera.
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Chapter 9, Analysis of Kinase Inhibitors and Druggability of Kinase-Targets Using Machine Learn-
ing Techniques, by S. Prashanthi, S. Durga Bhavani, T. Sobha Rani, and Raju S. Bapi of Department 
of Computer & Information Sciences, University of Hyderabad, Hyderabad, India, focuses on human 
kinase drug target sequences since kinases are known to be potential drug targets. The authors have also 
presented a preliminary analysis of kinase inhibitors in order to study the problem in the protein-ligand 
space in future. The identification of druggable kinases is treated as a classification problem in which 
druggable kinases are taken as positive data set and non-druggable kinases are chosen as negative data set.

Chapter 10, Identification of Genomic Islands by Pattern Discovery, by Nita Parekh of International 
Institute of Information Technology, Hyderabad, India addresses a pattern recognition problem at the 
genomic level involving identifying horizontally transferred regions, called genomic islands. A horizon-
tally transferred event is defined as the movement of genetic material between phylogenetically unrelated 
organisms by mechanisms other than parent to progeny inheritance. Increasing evidence suggests the 
importance of horizontal transfer events in the evolution of bacteria, influencing traits such as antibiotic 
resistance, symbiosis and fitness, virulence, and adaptation in general. Considerable effort is being made 
in their identification and analysis, and in this chapter, a brief summary of various approaches used in 
the identification and validation of horizontally acquired regions is discussed.

Chapter 11, Video Stream Mining for On-Road Traffic Density Analytics, by Rudra Narayan Hota of 
Frankfurt Institute for Advanced Studies, Frankfurt, Germany along with Kishore Jonna and P. Radha 
Krishna, Infosys Lab, Infosys Technologies Limited, India, addresses the problem of estimating computer 
vision based traffic density using video stream mining. The authors present an efficient approach for 
traffic density estimation using texture analysis along with Support Vector Machine (SVM) classifier, and 
describe analyzing traffic density for on-road traffic congestion control with better flow management.

Chapter 12, Discovering Patterns in Order to Detect Weak Signals and Define New Strategies, by 
Anass El Haddadi of Université de Toulouse, IRIT UMR France Bernard Dousset, Ilham Berrada of 
Ensias, AL BIRONI team, Mohamed V University – Souissi, Rabat, Morocco presents four methods 
for discovering patterns in the competitive intelligence process: “correspondence analysis,” “multiple 
correspondence analysis,” “evolutionary graph,” and “multi-term method.” Competitive intelligence 
activities rely on collecting and analyzing data in order to discover patterns from data using sequence 
data mining. The discovered patterns are used to help decision-makers considering innovation and de-
fining business strategy.

Chapter 13, Discovering Patterns for Architecture Simulation by Using Sequence Mining, by Pınar 
Senkul (Middle East Technical University, Computer Engineering Dept., Ankara, Turkey) along with 
Nilufer Onder (Michigan Technological University, Computer Science Dept., Michigan, USA), Soner 
Onder (Michigan Technological University, Computer Science Dept., Michigan, USA), Engin Maden 
(Middle East Technical University, Computer Engineering Dept., Ankara, Turkey) and Hui Meen Nyew 
(Michigan Technological University, Computer Science Dept., Michigan, USA), discusses the problem 
of designing and building high performance systems that make effective use of resources such as space 
and power. The design process typically involves a detailed simulation of the proposed architecture fol-
lowed by corrections and improvements based on the simulation results. Both simulator development 
and result analysis are very challenging tasks due to the inherent complexity of the underlying systems. 
They present a tool called Episode Mining Tool (EMT), which includes three temporal sequence mining 
algorithms, a preprocessor, and a visual analyzer.

Chapter 14 is called Sequence Pattern Mining for Web Logs by Pradeep Kumar, Indian Institute of 
Management, Lucknow, India, Raju S. Bapi, University of Hyderabad, India and P. Radha Krishna, 
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Infosys Lab, Infosys Technologies Limited, India. In their work, the authors utilize a variation to the 
AprioriALL Algorithm, which is commonly used for the sequence pattern mining. The proposed varia-
tion adds up the measure Interest during every step of candidate generation to reduce the number of 
candidates thus resulting in reduced time and space cost.

This book can be useful to academic researchers and graduate students interested in data mining 
in general and in sequence data mining in particular, and to scientists and engineers working in fields 
where sequence data mining is involved, such as bioinformatics, genomics, Web services, security, and 
financial data analysis.

Sequence data mining is still a fairly young research field. Much more remains to be discovered in 
this exciting research domain in the aspects related to general concepts, techniques, and applications. 
Our fond wish is that this collection sparks fervent activity in sequence data mining, and we hope this 
is not the last word!

Pradeep Kumar 
Indian Institute of Management Lucknow, India

P. Radha Krishna 
Infosys Lab, Infosys Limited, India

S. Bapi Raju 
University of Hyderabad, India
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Chapter  1

DOI: 10.4018/978-1-61350-056-9.ch001

HEALTHCARE

Patterns in healthcare domain include the common 
patterns in paths followed by patients in hospitals, 
patterns observed in symptoms of a particular 
disease, patterns in daily activity and health data. 
Works related to these applications are discussed 
in this sub-section.

Patterns in patient paths: The purpose of the 
French Diagnosis Related Group’s information 
system is to describe hospital activity by focusing 
on hospital stays. (Nicolas, Herengt & Albuisson, 
2004) propose usage of sequential pattern mining 
for patient path analysis across multiple healthcare 
institutions. The objective is to discover, to classify 
and to visualize frequent patterns among patient 
path. They view a patient path as a sequence of 

Manish Gupta
University of Illinois at Urbana-Champaign, USA

Jiawei Han
University of Illinois at Urbana-Champaign, USA

Applications of Pattern 
Discovery Using Sequential 

Data Mining

ABSTRACT

Sequential pattern mining methods have been found to be applicable in a large number of domains. 
Sequential data is omnipresent. Sequential pattern mining methods have been used to analyze this data 
and identify patterns. Such patterns have been used to implement efficient systems that can recommend 
based on previously observed patterns, help in making predictions, improve usability of systems, de-
tect events, and in general help in making strategic product decisions. In this chapter, we discuss the 
applications of sequential data mining in a variety of domains like healthcare, education, Web usage 
mining, text mining, bioinformatics, telecommunications, intrusion detection, et cetera. We conclude 
with a summary of the work.
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sets. Each set in the sequence is a hospitaliza-
tion instance. Each element in a hospitalization 
can be any symbolic data gathered by the PMSI 
(medical data source). They used the SLPMiner 
system (Seno & Karypis, 2002) for mining the 
patient path database in order to find frequent 
sequential patterns among the patient path. They 
tested the model on the 2002 year of PMSI data at 
the Nancy University Hospital and also propose 
an interactive tool to perform inter-institutional 
patient path analysis.

Patterns in dyspepsia symptoms: Consider 
a domain expert, who is an epidemiologist and 
is interested in finding relationships between 
symptoms of dyspepsia within and across time 
points. This can be done by first mining patterns 
from symptom data and then using patterns to 
define association rules. Rules could look like 
ANOREX2=0 VOMIT2=0 NAUSEA3=0 AN-
OREX3=0 VOMIT3=0 ⇒ DYSPH2=0 where 
each symptom is represented as <symptom>N=V 
(time=N and value=V). ANOREX (anorexia), 
VOMIT (vomiting), DYSPH (dysphagia) and 
NAUSEA (nausea) are the different symptoms. 
However, a better way of handling this is to de-
fine subgroups as a set of symptoms at a single 
time point. (Lau, Ong, Mahidadia, Hoffmann, 
Westbrook, & Zrimec, 2003) solve the problem 
of identifying symptom patterns by implement-
ing a framework for constraint based association 
rule mining across subgroups. Their framework, 
Apriori with Subgroup and Constraint (ASC), is 
built on top of the existing Apriori framework. 
They have identified four different types of phase-
wise constraints for subgroups: constraint across 
subgroups, constraint on subgroup, constraint on 
pattern content and constraint on rule. A constraint 
across subgroups specifies the order of subgroups 
in which they are to be mined. A constraint on 
subgroup describes the intra-subgroup criteria 
of the association rules. It describes a minimum 
support for subgroups and a set of constraints for 
each subgroup. A constraint on pattern content 
outlines the inter-subgroup criteria on association 

rules. It describes the criteria on the relationships 
between subgroups. A constraint on rule outlines 
the composition of an association rule; it describes 
the attributes that form the antecedents and the 
consequents, and calculates the confidence of an 
association rule. It also specifies the minimum 
support for a rule and prunes away item-sets that do 
not meet this support at the end of each subgroup-
merging step. A typical user constraint can look 
like [1,2,3][1, a=A1&n<=2][2, a=B1&n<=2][3, 
v=1][rule, (s1 s2) ⇒s3]. This can be interpreted 
as: looking at subgroups 1, 2 and 3, from subgroup 
1, extract patterns that contain the attribute A1 
(a=A1) and contain no more than 2 attributes 
(n<=2); from subgroup 2, extract patterns that 
contain the attribute B1 (a=B1) and contain no 
more than 2 attributes (n<=2); then from subgroup 
3, extract patterns with at least one attribute that 
has a value of 1 (v=1). Attributes from subgroups 
1 and 2 form the antecedents in a rule, and at-
tributes from subgroup 3 form the consequents 
([rule, (s1 s2) ⇒ s3]). Such constraints are easily 
incorporated into the Apriori process by pruning 
away more candidates based on these constraints.

They experimented on a dataset with records 
of 303 patients treated for dyspepsia. Each record 
represented a patient, the absence or presence of 
10 dyspepsia symptoms at three time points (initial 
presentation to a general practitioner, 18 months 
after endoscopy screening, and 8–9 years after 
endoscopy) and the endoscopic diagnosis for the 
patient. Each of these symptoms can have one 
of the following three values: symptom present, 
symptom absent, missing (unknown). At each of 
the three time points, a symptom can take any of 
these three possible values. They show that their 
approach leads to interesting symptom pattern 
discovery.

Patterns in daily activity data: There are also 
works, which investigate techniques for using 
agent-based smart home technologies to provide 
at-home automated assistance and health moni-
toring. These systems first learn patterns from 
at-home health and activity data. Further, for any 
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new test cases, they identify behaviors that do not 
conform to normal behavior and report them as 
predicted anomalous health problems.

EDUCATION

In the education domain, work has been done 
to extract patterns from source code and student 
teamwork data.

Patterns in source code: A coding pattern is 
a frequent sequence of method calls and control 
statements to implement a particular behavior. 
Coding patterns include copy-and-pasted code, 
crosscutting concerns (parts of a program which 
rely on or must affect many other parts of the 
system) and implementation idioms. Dupli-
cated code fragments and crosscutting concerns 
that spread across modules are problematic in 
software maintenance. (Ishio, Date, Miyake, & 
Inoue, 2008) propose a sequential pattern min-
ing approach to capture coding patterns in Java 
programs. They define a set of rules to translate 
Java source code into a sequence database for 
pattern mining, and apply PrefixSpan algorithm 
to the sequence database. They define constraints 
for mining source code patterns. A constraint for 
control statements could be: If a pattern includes 
a LOOP/IF element, the pattern must include its 
corresponding element generated from the same 
control statement. They classify sub-patterns into 
pattern groups. As a case study, they applied their 
tool to six open-source programs and manually 
investigated the resultant patterns.

They identify about 17 pattern groups which 
they classify into 5 categories:

1.  A boolean method to insert an additional 
action: <Boolean method>, <IF>, <action-
method>, <END-IF>

2.  A boolean method to change the behavior 
of multiple methods: <Boolean method>, 
<IF>, <action-method>, <END-IF>

3.  A pair of set-up and clean-up: <set-up 
method>, <misc action>, …, <clean-up 
method>

4.  Exception Handling: Every instance is in-
cluded in a try-catch statement.

5.  Other patterns.

They have made this technique available as 
a tool: Fung(http://sel.ist.osaka-u.ac.jp/~ishio/
fung/)

Patterns in student team-work data: (Kay, 
Maisonneuve, Yacef, & Zaïane, 2006) describe 
data mining of student group interaction data to 
identify significant sequences of activity. The goal 
is to build tools that can flag interaction sequences 
indicative of problems, so that they can be used 
to assist student teams in early recognition of 
problems. They also want tools that can identify 
patterns that are markers of success so that these 
might indicate improvements during the learning 
process. They obtain their data using TRAC which 
is an open source tool designed for use in software 
development projects. Students collaborate by 
sharing tasks via the TRAC system. These tasks 
are managed by a “Ticket” system; source code 
writing tasks are managed by a version control 
system called “SVN”; students communicate by 
means of collaborative web page writing called 
“Wiki”. Data consist of events where each event 
is represented as Event = {EventType, Resour-
ceId, Author, Time} where: EventType is one of 
T (for Ticket), S (for SVN), W (for Wiki). One 
such sequence is generated for each of the group 
of students.

The original sequence obtained for each group 
was 285 to 1287 long. These event sequences 
were then broken down into several “sequences” 
of events using a per session approach or a per 
resource approach. In breakdown per session ap-
proach, date and the resourceId are omitted and 
a sequence is of form: (iXj) which captures the 
number of i consecutive times a medium X was 
used by j different authors, e.g., <(2T1), (5W3), 
(2S1),(1W1)>. In breakdown per resource ap-
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proach, sequence is of form <iXj, t> which captures 
the number of i different events of type X, the 
number j of authors, and the number of days over 
which t the resource was modified, e.g., <10W5, 
2>. In a follow-up paper (Perera, Kay, Yacef, & 
Koprinska, 2007), they have a third approach, 
breakdown by task where every sequence is of 
the form (i,X,A) which captures the number of 
consecutive events (i) occurring on a particular 
TRAC medium (X), and the role of the author (A).

Patterns observed in group sessions: Better 
groups had many alternations of SVN and Wiki 
events, and SVN and Ticket events whereas 
weaker groups had almost none. The best group 
also had the highest proportion of author ses-
sions containing many consecutive ticket events 
(matching their high use of ticketing) and SVN 
events (suggesting they committed their work to 
the group repository more often).

A more detailed analysis of these patterns 
revealed that the best group used the Ticket 
more than the Wiki, whereas the weakest group 
displayed the opposite pattern. The data sug-
gested group leaders in good groups were much 
less involved in technical work, suggesting work 
was being delegated properly and the leader was 
leading rather than simply doing all the work. In 
contrast, the leaders of the poorer groups either 
seemed to use the Wiki (a less focused medium) 
more than the tickets, or be involved in too much 
technical work.

Patterns observed in task sequences: The two 
best groups had the greatest percentage support 
for the pattern (1,t,L)(1,t,b), which were most 
likely tickets initiated by the leader and accepted 
by another team member. The fact this occurred 
more often than (1,t,L)(2,t,b), suggests that the 
better groups were distinguished by tasks being 
performed on the Wiki or SVN files before the 
ticket was closed by the second member. Notably, 
the weakest group had higher support for this latter 
pattern than the former. The best group was one of 
the only two to display the patterns (1,t,b)(1,s,b) 
and (1,s,b)(1,t,b) – the first likely being a ticket 

being accepted by a team member and then SVN 
work relating to that task being completed and the 
second likely being work being done followed 
by the ticket being closed. The close coupling of 
task-related SVN and Wiki activity and Ticket 
events for this group was also shown by relatively 
high support for the patterns (1,t,b)(1,t,b)(1,t,b), 
(1,t,b)(1,s,b)(1,t,b) and (1,t,b)(1,w,b)(1,t,b). The 
poorest group displayed the highest support for 
the last pattern, but no support for the former, 
again indicating their lack of SVN use in tasks.

Patterns observed in resource sequences: The 
best group had very high support for patterns 
where the leader interacted with group members 
on tickets, such as (L,1,t)(b,1,t)(L,1,t). The poorest 
group in contrast lacked these interaction patterns, 
and had more tickets which were created by the 
Tracker rather than the Leader, suggestive of 
weaker leadership. The best group displayed the 
highest support for patterns such as (b,3,t) and 
(b,4,t), suggestive of group members making at 
least one update on tickets before closing them. 
In contrast, the weaker groups showed support 
mainly for the pattern (b,2,t), most likely indicative 
of group members accepting and closing tickets 
with no update events in between.

Web Usage Mining

The complexity of tasks such as Web site design, 
Web server design, and of simply navigating 
through a Web site has been increasing continu-
ously. An important input to these design tasks 
is the analysis of how a Web site is being used. 
Usage analysis includes straightforward statistics, 
such as page access frequency, as well as more 
sophisticated forms of analysis, such as finding 
the common traversal paths through a Web site. 
Web Usage Mining is the application of pattern 
mining techniques to usage logs of large Web 
data repositories in order to produce results that 
can be used in the design tasks mentioned above. 
However, there are several preprocessing tasks that 
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must be performed prior to applying data mining 
algorithms to the data collected from server logs.

Transaction identification from web usage data: 
(Cooley, Mobasher, & Srivastava, 1999) present 
several data preparation techniques in order to 
identify unique users and user sessions. Also, a 
method to divide user sessions into semantically 
meaningful transactions is defined. Each user 
session in a user session file can be thought of in 
two ways; either as a single transaction of many 
page references, or a set of many transactions each 
consisting of a single page reference. The goal of 
transaction identification is to create meaningful 
clusters of references for each user. Therefore, 
the task of identifying transactions is one of 
either dividing a large transaction into multiple 
smaller ones or merging small transactions into 
fewer larger ones. This process can be extended 
into multiple steps of merge or divide in order to 
create transactions appropriate for a given data 
mining task. Both types of approaches take a 
transaction list and possibly some parameters as 
input, and output a transaction list that has been 
operated on by the function in the approach in 
the same format as the input. They consider three 
different ways of identifying transactions based 
on: Reference Length (time spent when visiting a 
page), Maximal Forward Reference (set of pages 
in the path from the first page in a user session up 
to the page before a backward reference is made) 
and Time Window.

By analyzing this information, a Web Usage 
Mining system can determine temporal relation-
ships among data items such as the following 
Olympics Web site examples:

• 9.81% of the site visitors accessed the 
Atlanta home page followed by the 
Sneakpeek main page.

• 0.42% of the site visitors accessed 
the Sports main page followed by the 
Schedules main page.

Patterns for customer acquisition: (Buchner & 
Mulvenna, 1998) propose an environment that al-
lows the discovery of patterns from trading related 
web sites, which can be harnessed for electronic 
commerce activities, such as personalization, 
adaptation, customization, profiling, and recom-
mendation.

The two essential parts of customer attraction 
are the selection of new prospective customers and 
the acquisition of the selected potential candidates. 
One marketing strategy to perform this exercise, 
among others, is to find common characteristics in 
already existing visitors’ information and behavior 
for the classes of profitable and non-profitable 
customers. The authors discover these sequences 
by extending GSP so it can handle duplicates in 
sequences, which is relevant to discover naviga-
tional behavior.

A found sequence looks as the  

  following: 

{ecom.infm.ulst.ac.uk/, ecom.infm.

ulst.ac.uk/News_Resources.html, ecom.

infm.ulst.ac.uk/Journals.html, ecom.

infm.ulst.ac.uk/, ecom.infm.ulst.

ac.uk/search.htm} Support = 3.8%; 

Confidence = 31.0% 

The discovered sequence can then be used 
to display special offers dynamically to keep a 
customer interested in the site, after a certain 
page sequence with a threshold support and/or 
confidence value has been visited.

Patterns to Improve Web Site Design

For the analysis of visitor navigation behavior 
in web sites integrating multiple information 
systems (multiple underlying database servers 
or archives), (Berendt, 2000) proposed the web 
usage miner (WUM), which discovers naviga-
tion patterns subject to advanced statistical and 
structural constraints. Experiments with a real web 
site that integrates data from multiple databases, 
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the German SchulWeb (a database of German-
language school magazines), demonstrate the ap-
propriateness of WUM in discovering navigation 
patterns and show how those discoveries can help 
in assessing and improving the quality of the site 
design i.e. conformance of the web site’s structure 
to the intuition of each group of visitors accessing 
the site. The intuition of the visitors is indirectly 
reflected in their navigation behavior, as repre-
sented in their browsing patterns. By comparing 
the typical patterns with the site usage expected 
by the site designer, one can examine the quality 
of the site and give concrete suggestions for its 
improvement. For instance, repeated refinements 
of a query may indicate a search environment that 
is not intuitive for some users. Also, long lists 
of results may signal that sufficiently selective 
search options are lacking, or that they are not 
understood by everyone.

A session is a directed list of page accesses 
performed by a user during her/his visit in a site. 
Pages of a session are mapped onto elements 
of a sequence, whereby each element is a pair 
comprised of the page and a positive integer. This 
integer is the occurrence of the page in the session, 
taking the fact into account that a user may visit the 
same page more than once during a single session. 
Further, they also define generalized sequences 
which are sequences with length constraints on 
gaps. These constraints are expressed in a mining 
language MINT.

The patterns that they observe are as follows. 
Searches reaching a ‘school’ entry are a dominant 
sub-pattern. ‘State’ lists of schools are the most 
popular lists. Schools are rarely reached in short 
searches.

Pattern Discovery for 
Web Personalization

Pattern discovery from usage data can also be used 
for Web personalization. (Mobasher, Dai, Luo, & 
Nakagawa, 2002) find that more restrictive pat-
terns, such as contiguous sequential patterns (e.g., 

frequent navigational paths) are more suitable for 
predictive tasks, such as Web pre-fetching, which 
involve predicting which item is accessed next by 
a user), while less constrained patterns, such as 
frequent item-sets or general sequential patterns 
are more effective alternatives in the context of 
Web personalization and recommender systems.

Web usage preprocessing ultimately results 
in a set of n page-views, P = {p1, p2... pn}, and a 
set of m user transactions, T = {t1, t2... tm}. Each 
transaction t is defined as an l-length sequence of 
ordered pairs: t = <(pt

1, w(pt
1)), (pt

2, w(pt
2)),...,(pt

l, 
w(pt

l))> where w(pt
i) is the weight associated with 

page-view pt
i. Contiguous sequential patterns 

(CSPs -- patterns in which the items appearing 
in the sequence must be adjacent with respect 
to the underlying ordering) are used to capture 
frequent navigational paths among user trails. 
General sequential patterns are used to represent 
more general navigational patterns within the site.

To build a recommendation algorithm using 
sequential patterns, the authors focus on frequent 
sequences of size |w| + 1 whose prefix contains an 
active user session w. The candidate page-views 
to be recommended are the last items in all such 
sequences. The recommendation values are based 
on the confidence of the patterns. A simple trie 
structure is used to store both the sequential and 
contiguous sequential patterns discovered during 
the pattern discovery phase. The recommendation 
algorithm is extended to generate all kth order 
recommendations as follows. First, the recom-
mendation engine uses the largest possible active 
session window as an input for recommendation 
engine. If the engine cannot generate any recom-
mendations, the size of active session window is 
iteratively decreased until a recommendation is 
generated or the window size becomes 0.

The CSP model can do better in terms of pre-
cision, but the coverage levels, in general, may 
be too low when the goal is to generate as many 
good recommendations as possible. On the other 
hand, when dealing with applications such as 
Web pre-fetching in which the primary goal is to 
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predict the user’s immediate next actions (rather 
than providing a broader set of recommendations), 
the CSP model provides the best choice. This is 
particularly true in sites with many dynamically 
generated pages, where often a contiguous navi-
gational path represents a semantically meaningful 
sequence of user actions each depending on the 
previous actions.

TEXT MINING

Pattern mining has been used for text databases to 
discover trends, for text categorization, for docu-
ment classification and authorship identification. 
We discuss these works below.

Trends in Text Databases

(Lent, Agrawal, & Srikant, 1997) describe a 
system for identifying trends in text documents 
collected over a period of time. Trends can be 
used, for example, to discover that a company 
is shifting interests from one domain to another. 
Their system mines these trends and also provides 
a method to visualize them.

The unit of text is a word and a phrase is a list 
of words. Associated with each phrase is a history 
of the frequency of occurrence of the phrase, ob-
tained by partitioning the documents based upon 
their timestamps. The frequency of occurrence in 
a particular time period is the number of docu-
ments that contain the phrase. A trend is a specific 
subsequence of the history of a phrase that satisfies 
the users’ query over the histories. For example, 
the user may specify a shape query like a spike 
query to find those phrases whose frequency of 
occurrence increased and then decreased. In this 
trend analysis, sequential pattern mining is used 
for phrase identification.

A transaction ID is assigned to each word of 
every document treating the words as items in the 
data mining algorithms. This transformed data is 
then mined for dominant words and phrases, and 

the results saved. The user’s query is translated 
into a shape query and this query is then executed 
over the mined data yielding the desired trends. 
The results of the mining are a set of phrases that 
occur frequently in the underlying documents and 
that match a query supplied by the user. Thus, the 
system has three major steps: Identifying frequent 
phrases using sequential patterns mining, generat-
ing histories of phrases and finding phrases that 
satisfy a specified trend.

1-phrase is a list of elements where each ele-
ment is a phrase. k-phrase is an iterated list of 
phrases with k levels of nesting. <<(IBM)><(data 
mining)>> is a 1-phrase, which can mean that 
IBM and “data mining” should occur in the same 
paragraph, with “data mining” being contiguous 
words in the paragraph.

A word in a text field is mapped to an item in 
a data-sequence or sequential pattern and a phrase 
to a sequential pattern that has just one item in 
each element. Each element of a data sequence 
in the sequential pattern problem has some as-
sociated timestamp relative to the other elements 
in the sequence thereby defining an ordering of 
the elements of a sequence. Sequential pattern 
algorithms can now be applied to the transaction 
ID labeled words to identify simple phrases from 
the document collection.

User may be interested in phrases that are 
contained in individual sentences only. Alterna-
tively, the words comprising a phrase may come 
from sequential sentences so that a phrase spans 
a paragraph. This generalization can be accom-
modated by the use of distance constraints that 
specify a minimum and/or maximum gap between 
adjacent words of a phrase. For example, the first 
variation described above would be constrained 
by specifying a minimum gap of one word and a 
maximum gap of one sentence. The second varia-
tion would have a minimum gap of one sentence 
and a maximum gap of one paragraph. For this 
latter example, one could further generalize the 
notion from a single word from each sentence 
to a set of words from each sentence by using a 
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sliding transaction time window within sentences. 
The generalizations made in the GSP algorithm 
for mining sequential patterns allow a one-to-one 
mapping of the minimum gap, maximum gap, 
and transaction window to the parameters of the 
algorithm.

Basic mapping of phrases to sequential patterns 
is extended by providing a hierarchical mapping 
over sentences, paragraphs, or even sections of a 
text document. This extended mapping helps in 
taking advantage of the structure of a document 
to obtain a richer set of phrases. Where a docu-
ment has completely separate sections, phrases 
that span multiple sections can also be mined, 
thereby discovering a new set of relationships. 
This enhancement of the GSP algorithm can be 
implemented by changing the Apriori-like candi-
date generation algorithm, to consider both phrases 
and words as individual elements when generating 
candidate k-phrases. The manner in which these 
candidates are counted would similarly change.

Patterns for Text Categorization

(Jaillet, Laurent, & Teisseire, 2006) propose us-
age of sequential patterns in the SPaC method 
(Sequential Patterns for Classification) for text 
categorization. Text categorization is the task of 
assigning a boolean value to each pair (document, 
category) where the value is true if the document 
belongs to the particular category. SPaC method 
consists of two steps. In the first step, sequential 
patterns are built from texts. In the second step, 
sequential patterns are used to classify texts.

The text consists of a set of sentences. Each 
sentence is associated with a timestamp (its posi-
tion in the text). Finally the set of words contained 
in a sentence corresponds to the set of items pur-
chased by the client in the market basket analysis 
framework. This representation is coupled with a 
stemming step and a stop-list. Sequential patterns 
are extracted using a different support applied for 
each category Ci. The support of a frequent pattern 
is the number of texts containing the sequence of 

words. E.g., the sequential pattern < (data) (infor-
mation) (machine)> means that some texts contain 
words ‘data’ then ‘information’ then ‘machine’ in 
three different sentences. Once sequential patterns 
have been extracted for each category, the goal is 
to derive a categorizer from the obtained patterns. 
This is done by computing, for each category, the 
confidence of each associated sequential pattern. 
To solve this problem, a rule R is generated in the 
following way:

R:<s1... sp> ⇒ Ci; confidence(R)=(#texts from Ci 
matching <s1... sp>)/(#texts matching <s1... sp>).

Rules are sorted depending on their confidence 
level and the size of the associated sequence. 
When considering a new text to be classified, 
a simple categorization policy is applied: the K 
rules having the best confidence level and being 
supported are applied. The text is then assigned 
to the class mainly obtained within the K rules.

Patterns for XML Document 
Classification

(Garboni, Masseglia, & Trousse, 2005) present 
a supervised classification technique for XML 
documents which is based on structure only. Each 
XML document is viewed as an ordered labeled 
tree, represented by its tags only. After a cleaning 
step, each predefined cluster is characterized in 
terms of frequent structural subsequences. Then 
the XML documents are classified based on the 
mined patterns of each cluster.

Documents are characterized using frequent 
sub-trees which are common to at least x% (the 
minimum support) documents of the collection. 
The system is provided a set of training docu-
ments each of which is associated with a category. 
Frequently occurring tags common to all clusters 
are removed. In order to transform an XML docu-
ment to a sequence, the nodes of the XML tree 
are mapped into identifiers. Then each identifier 
is associated with its depth in the tree. Finally 
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a depth-first exploration of the tree gives the 
corresponding sequence. An example sequential 
pattern looks like <(0 movie), (1 title), (1 url), 
(1 CountryOfProduction), (2 item), (2 item), (1 
filmography), (3 name)>. Once the whole set of 
sequences (corresponding to the XML documents 
of a collection) is obtained, a traditional sequential 
pattern extraction algorithm is used to extract 
the frequent sequences. Those sequences, once 
mapped back into trees, will give the frequent 
sub-trees embedded in the collection.

They tested several measures in order to decide 
which class each test document belongs to. The two 
best measures are based on the longest common 
subsequence. The first one computes the average 
matching between the test document and the set 
of sequential patterns and the second measure is a 
modified measure, which incorporates the actual 
length of the pattern compared to the maximum 
length of a sequential pattern in the cluster.

Patterns to Identify Authors 
of Documents

(Tsuboi, 2002) aims at identifying the authors 
of mailing list messages using a machine learn-
ing technique (Support Vector Machines). In 
addition, the classifier trained on the mailing 
list data is applied to identify the author of Web 
documents in order to investigate performance in 
authorship identification for more heterogeneous 
documents. Experimental results show better 
identification performance when features of not 
only conventional word N-gram information but 
also of frequent sequential patterns extracted by 
a data mining technique (PrefixSpan) are used.

They applied PrefixSpan to extract sequential 
word patterns from each sentence and used them 
as author’s style markers in documents. The 
sequential word patterns are sequential patterns 
where item and sequence correspond to word and 
sentence, respectively.

Sequential pattern is <w1*w2*...*wl> where wi 
is a word and l is the length of pattern. * is any 

sequence of words including empty sequence. 
These sequential word patterns were introduced 
for authorship identification based on the fol-
lowing assumption. Because people usually 
generate words from the beginning to the end of 
a sentence, how one orders words in a sentence 
can be an indicator of author’s writing style. As 
word order in Japanese (they study a Japanese 
corpus) is relatively free, rigid word segments 
and non-contiguous word sequences may be a 
particularly important indicator of the writing 
style of authors.

While N-grams (consecutive word sequences) 
fail to account for non-contiguous patterns, se-
quential pattern mining methods can do so quite 
naturally.

BIOINFORMATICS

Pattern mining is useful in the bioinformatics 
domain for predicting rules for organization of 
certain elements in genes, for protein function pre-
diction, for gene expression analysis, for protein 
fold recognition and for motif discovery in DNA 
sequences. We study these applications below.

Pattern Mining for Bio-Sequences

Bio-sequences typically have a small alphabet, 
a long length, and patterns containing gaps (i.e., 
“don’t care”) of arbitrary size. A long sequence 
(especially, with a small alphabet) often contains 
long patterns. Mining frequent patterns in such 
sequences faces a different type of explosion 
than in transaction sequences primarily moti-
vated in market-basket analysis. (Wang, Xu, & 
Yu, 2004) study how this explosion affects the 
classic sequential pattern mining, and present a 
scalable two-phase algorithm to deal with this 
new explosion.

Biosequence patterns have the form of X1 
*...* Xn spanning over a long region, where each 
Xi is a short region of consecutive items, called 
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a segment, and * denotes a variable length gap 
corresponding to a region not conserved in the 
evolution. The presence of * implies that pattern 
matching is more permissible and involves the 
whole range in a sequence. The support of a pattern 
is the percentage of the sequences in the database 
that contain the pattern. Given a minimum segment 
length min_len and a minimum support min_sup, 
a pattern X1 *...* Xn is frequent if |Xi|>=min_len 
for 1<=i<=n and the support of the pattern is at 
least min_sup. The problem of mining sequence 
patterns is to find all frequent patterns.

The Segment Phase first searches short patterns 
containing no gaps (Xi), called segments. This 
phase is efficient. This phase finds all frequent 
segments and builds an auxiliary structure for 
answering position queries. GST (generalized 
suffix tree) is used to find: (1) The frequent seg-
ments of length min_len, Bi, called base segments, 
and the position lists for each Bi, s:p1, p2... where 
pj<pj+1 and each <s, pj> is a start position of Bi. 
(2) All frequent segments of length>min_len. Note 
that position lists for such frequent segments are 
not extracted. This information about the base 
segments and their positions is then stored in an 
index, Segment to Position Index.

The Pattern Phase searches for long patterns 
(X1 *...* Xn) containing multiple segments sepa-
rated by variable length gaps. This phase grows 
rapidly one segment at a time, as opposed to one 
item at a time. This phase is time consuming. The 
purpose of two phases is to exploit the information 
obtained from the first phase to speed up the pat-
tern growth and matching and to prune the search 
space in the second phase.

Two types of pruning techniques are used. 
Consider a pattern P’, which is a super-pattern of P:

• Pattern Generation Pruning: If P*X fails 
to be a frequent pattern, so does P’*X. So, 
we can prune P’*X.

• Pattern Matching Pruning: If P*X fails 
to occur before position i in sequence s, so 
does P’*X. So, we only need to examine 

the positions after i when matching P’*X 
against s.

Further to deal with the huge size of the 
sequences, they introduce compression based 
querying. In this method, all positions in a 
non-coding region are compressed into a new 
item ε that matches no existing item except *. A 
non-coding region contains no part of a frequent 
segment. Each original sequence is scanned once, 
each consecutive region not overlapping with any 
frequent segment is identified and collapsed into 
the new item ε. For a long sequence and large 
min_len and min_sup, a compressed sequence is 
typically much shorter than the original sequence.

On real life datasets like DNA and protein 
sequences submitted from 2002/12, 2003/02, they 
show the superiority of their method compared 
to PrefixSpan with respect to execution time and 
the space required.

Patterns in Genes for Predicting 
Gene Organization Rules

In eukaryotes, rules regarding organization of cis-
regulatory elements are complex. They sometimes 
govern multiple kinds of elements and positional 
restrictions on elements. (Terai & Takagi, 2004) 
propose a method for detecting rules, by which the 
order of elements is restricted. The order restric-
tion is expressed as element patterns. They extract 
all the element patterns that occur in promoter 
regions of at least the specified number of genes. 
Then, significant patterns are found based on 
the expression similarity of genes with promoter 
regions containing each of the extracted patterns. 
By applying the method to Saccharomyces cerevi-
siae, they detected significant patterns overlooked 
by previous methods, thus demonstrating the 
utility of sequential pattern mining for analysis 
of eukaryotic gene regulation. Several types of 
element organization exist, those in which (1) 
only the order of elements is important, (2) order 
and distance both are important and (3) only the 
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combination of elements is important. In this case, 
pattern support is the number of genes containing 
the pattern in their promoter region. Minimum 
length of the patterns may vary with the species. 
They use Apriori algorithm to perform mining.

Each element typically has a length of 10–20 
base pairs. Therefore, two elements sometimes 
overlap one another. In this study, any two ele-
ments overlapping each other are not considered 
to be ordered elements, because they use elements 
defined by computational prediction. Most of 
these overlapping sites may have no biological 
meaning; they may simply be false-positive hits 
during computational prediction of elements. 
The decision of how to treat such overlapping 
elements is reflected in the count stage −if a 
pattern consisting of element A followed by and 
overlapping with B should not be considered as 
<A,B>, we can exclude genes containing such 
elements when counting the support of <A,B>. 
This is an interesting tweak in counting support, 
specific to this problem.

Patterns for Predicting Protein 
Sequence Function

(Wang, Shang, & Li, 2008) present a novel method 
of protein sequence function prediction based on 
sequential pattern mining. First, known function 
sequence dataset is mined to get frequent patterns. 
Then, a classifier is built using the patterns gen-
erated to predict function of protein sequences. 
They propose the usage of joined frequent pat-
terns based and joined closed frequent patterns 
based sequential pattern mining algorithms for 
mining this data. First, the joined frequent pattern 
segments are generated. Then, longer frequent 
patters can be obtained by combining the above 
segments. They generate closed patterns only. 
The purpose of producing closed patterns is to use 
them to construct a classifier for protein function 
prediction. So using non-redundant patterns can 
improve the accuracy of classification.

Patterns for Analysis of 
Gene Expression Data

(Icev, 2003) introduces a sequential pattern mining 
based technique for the analysis of gene expres-
sion. Gene expression is the effective production 
of the protein that a gene encodes. They focus on 
the characterization of the expression patterns of 
genes based on their promoter regions. The pro-
moter region of a gene contains short sequences 
called motifs to which gene regulatory proteins 
may bind, thereby controlling when and in which 
cell types the gene is expressed. Their approach 
addresses two important aspects of gene expres-
sion analysis: (1) Binding of proteins at more than 
one motif is usually required, and several different 
types of proteins may need to bind several differ-
ent types of motifs in order to confer transcrip-
tional specificity. (2) Since proteins controlling 
transcription may need to interact physically, the 
order and spacing in which motifs occur can affect 
expression. They use association rules to address 
the combinatorial aspect. The association rules 
have the ability to involve multiple motifs and 
to predict expression in multiple cell types. To 
address the second aspect, association rules are 
enhanced with information about the distances 
among the motifs, or items that are present in 
the rule. Rules of interest are those whose set of 
motifs deviates properly, i.e. set of motifs whose 
pair-wise distances are highly conserved in the 
promoter regions where these motifs occur.

They define the cvd of a pair of motifs with 
respect to a collection (or item-set) I of motifs as 
the ratio between the standard deviation and the 
mean of the distances between the motifs in those 
promoter regions that contain all the motifs in I.

Given a dataset of instances D, a minimum 
support min_sup, a minimum confidence min_
conf, and a maximum coefficient of variation of 
distances (max-cvd), they find all distance-based 
association rules from D whose support and confi-
dence are >= the min_sup and min_conf thresholds 
and such that the cvd’s of all the pairs of items 
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in the rule are <= the maximum cvd threshold. 
Their algorithm to mine distance-based associa-
tion rules from a dataset of instances extends the 
Apriori algorithm.

In order to obtain distance-based association 
rules, one could use the Apriori algorithm to 
mine all association rules whose supports and 
confidences satisfy the thresholds, and then an-
notate those rules with the cvd’s of all the pair of 
items present in the rule. Only those rules whose 
cvd’s satisfy the max-cvd threshold are returned. 
They call this algorithm to mine distance-based 
association rules, Naïve distance-Apriori.

Distance-based Association Rule Mining 
(DARM) algorithm first generates all the frequent 
item-sets that satisfy the max-cvd constraint (cvd-
frequent item-sets), and then generates all associa-
tion rules with the required confidence from those 
item-sets. Note that the max-cvd constraint is a 
non-monotonic property. An item-set that does not 
satisfy this constraint may have supersets that do. 
However, they define the following procedure that 
keeps under consideration only frequent item-sets 
that deviate properly in an interesting manner.

Let n be the number of promoter regions (in-
stances) in the dataset. Let I be a frequent item-
set, and let S be the set of promoter regions that 
contain I. I is then said to deviate properly if either:

1.  I is cvd-frequent. That is, the cvd over S of 
each pair of motifs in I is <= max-cvd, or

2.  For each pair of motifs P∈I, there is a subset 
S’ of S with cardinality >= ⌈min_sup*n⌉ such 
that the cvd over S’ of P is <= max-cvd.

The k-level of item-sets kept by the DARM 
algorithm is the collection of frequent item-sets of 
cardinality k that deviate properly. Those item-sets 
are used to generate the (k+1)-level. Once, all the 
frequent item-sets that deviate properly have been 
generated, distance-based association rules are 
constructed from those item-sets that satisfy the 
max-cvd constraint. As is the case with the Apriori 
algorithm, each possible split of such an item-set 

into two parts, one for the antecedent and one for 
the consequent of the rule, is considered. If the 
rule so formed satisfies the min_conf constraint, 
then the rule is added to the output. These rules are 
then used for building a classification/predictive 
model for gene expression.

Patterns for Protein 
Fold Recognition

Protein data contain discriminative patterns that 
can be used in many beneficial applications if 
they are defined correctly. (Exarchos, Papaloukas, 
Lampros, & Fotiadis, 2008) use sequential pat-
tern mining for sequence-based fold recognition. 
Protein classification in terms of fold recognition 
plays an important role in computational protein 
analysis, since it can contribute to the determina-
tion of the function of a protein whose structure is 
unknown. Fold means 3D structure of a protein. 
They use cSPADE (Zaki, Sequence mining in 
categorical domains: incorporating constraints, 
2000), for the analysis of protein sequence. Se-
quential patterns were generated for each category 
(fold) separately. A patterni extracted from foldi, 
indicates an implication (rule) of the form patterni 
⇒foldi. A maximum gap constraint is also used.

When classifying an unknown protein to one of 
the folds, all the extracted sequential patterns from 
all folds are examined to find which of them are 
contained in the protein. For a pattern contained 
in a protein, the score of this protein with respect 
to this fold is increased by: scorea

i=(length of the 
patterna

i-k) /(number of patterns in foldi) where ‘i’ 
represents a fold, ‘a’ represents a pattern of a fold. 
Here, the length is the size of the pattern with gaps. 
Patterna

i is the ath pattern of the ith fold and k is a 
value employed to assign the minimum score, to 
the minimal pattern. It should be mentioned that 
if a pattern is contained in a protein sequence 
more than once, it receives the same score as if 
it was contained only once. The scores for each 
fold are summed and the new protein is assigned 
to the fold exhibiting the highest sum.
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The score of a protein with respect to a fold 
is calculated based on the number of sequential 
patterns of this fold contained in the protein. The 
higher the number of patterns of a fold contained 
in a protein, the higher the score of the protein 
for this fold.

A classifier uses the extracted sequential pat-
terns to classify proteins in the appropriate fold 
category. For training and evaluating the proposed 
method they used the protein sequences from 
the Protein Data Bank and the annotation of the 
SCOP database. The method exhibited an overall 
accuracy of 25% (random would be 2.8%) in a 
classification problem with 36 candidate catego-
ries. The classification performance reaches up to 
56% when the five most probable protein folds 
are considered.

Patterns for Protein Family Detection

In another work on protein family detection (pro-
tein classification), (Ferreira & Azevedo, 2005) 
use the number and average length of the relevant 
subsequences shared with each of the protein 
families, as features to train a Bayes classifier. 
Priors for the classes are set using the number of 
patterns and average length of the patterns in the 
corresponding class.

They Identify Two Types of Patterns

Rigid Gap Patterns (only contain gaps with a 
fixed length) and Flexible Gap Patterns (allow a 
variable number of gaps between symbols of the 
sequence). Frequent patterns are mined with the 
constraint of minimum length. Apart from this, 
they also support item constraints (restricts set of 
other symbols that can occur in the pattern), gap 
constraints (minGap and maxGap), duration or 
window constraints which defines the maximum 
distance (window) between the first and the last 
event of the sequence patterns.

Protein sequences of the same family typically 
share common subsequences, also called motifs. 

These subsequences are possibly implied in a 
structural or biological function of the family and 
have been preserved through the protein evolution. 
Thus, if a sequence shares patterns with other 
sequences it is expected that the sequences are 
biologically related. Considering the two types 
of patterns, rigid gap patterns reveal better con-
served regions of similarity. On the other hand, 
flexible gap patterns have a greater probability 
of occur by chance, having a smaller biological 
significance. Since the protein alphabet is small, 
many small patterns that express trivial local 
similarity may arise. Therefore, longer patterns 
are expected to express greater confidence in the 
sequences similarity.

Patterns in DNA Sequences

Large collections of genomic information have 
been accumulated in recent years, and embedded 
in them is potentially significant knowledge for 
exploitation in medicine and in the pharmaceutical 
industry. (Guan, Liu, & Bell, 2004) detect strings 
in DNA sequences which appear frequently, either 
within a given sequence (e.g., for a particular 
patient) or across sequences (e.g., from different 
patients sharing a particular medical diagnosis). 
Motifs are strings that occur very frequently. 
Having discovered such motifs, they show how to 
mine association rules by an existing rough-sets 
based technique.

TELECOMMUNICATIONS

Pattern mining can be used in the field of tele-
communications for mining of group patterns 
from mobile user movement data, for customer 
behavior prediction, for predicting future location 
of a mobile user for location based services and 
for mining patterns useful for mobile commerce. 
We discuss these works briefly in this sub-section.
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Patterns in Mobile User 
Movement Data

(Wang, Lim, & Hwang, 2006) present a new ap-
proach to derive groupings of mobile users based 
on their movement data. User movement data are 
collected by logging location data emitted from 
mobile devices tracking users. This data is of 
the form D = (D1, D2... DM), where Di is a time 
series of tuples (t, (x, y, z)) denoting the x, y and 
z coordinates of user ui at time t. A set of consecu-
tive time points [ta, tb] is called a valid segment 
of G (where G is a set of users) if all the pair of 
users are within dist max_dis for time [ta,tb], at 
least one pair of users has distance greater than 
max_dis before time ta, at least one pair of users 
has distance greater than max_dis after time tb and 
tb-ta+1 >=min_dur. Given a set of users G, thresh-
olds max_dis and min_dur, these form a group 
pattern, denoted by P = <G,max_dis,min_dur>, if 
G has a valid segment. Thus, a group pattern is a 
group of users that are within a distance threshold 
from one another for at least a minimum duration.

In a movement database, a group pattern may 
have multiple valid segments. The combined 
length of these valid segments is called the weight-
count of the pattern. Thus the significance of the 
pattern is measured by comparing its weight-count 
with the overall time duration.

Since weight represents the proportion of the 
time points a group of users stay close together, 
the larger the weight is, the more significant (or 
interesting) the group pattern is. Furthermore, if 
the weight of a group pattern exceeds a threshold 
min_wei, it is called a valid group pattern, and 
the corresponding group of users a valid group.

To mine group patterns, they first propose two 
algorithms, namely AGP (based on Apriori) and 
VG-growth (based on FP-growth). They show that 
when both the number of users and logging dura-
tion are large, AGP and VG-growth are inefficient 
for the mining group patterns of size two. There-
fore, they propose a framework that summarizes 
user movement data before group pattern mining. 

In the second series of experiments, they show 
that the methods using location summarization 
reduce the mining overheads for group patterns 
of size two significantly.

Patterns for Customer 
Behavior Prediction

Predicting the behavior of customers is challeng-
ing, but important for service oriented businesses. 
Data mining techniques are used to make such 
predictions, typically using only recent static data. 
(Eichinger, Nauck, & Klawonn) propose the usage 
of sequence mining with decision tree analysis for 
this task. The combined classifier is applied to real 
customer data and produces promising results.

They Use Two Sequence 
Mining Parameters

maxGap, the maximum number of allowed ex-
tra events in between a sequence and maxSkip, 
the maximum number of events at the end of a 
sequence before the occurrence of the event to 
be predicted.

They use an Apriori algorithm to detect fre-
quent patterns from a Sequence tree and hash 
table based data structure. This avoids multiple 
database scans, which are otherwise necessary 
after every generation of candidate sequences in 
Apriori based algorithms.

The frequent sequences are combined with 
decision tree based classification to predict cus-
tomer behavior.

Patterns for Future Location 
Prediction of Mobile Users

Future location prediction of mobile users can 
provide location-based services (LBSs) with ex-
tended resources, mainly time, to improve system 
reliability which in turn increases the users’ confi-
dence and the demand for LBSs. (Vu, Ryu, & Park, 
2009) propose a movement rule-based Location 
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Prediction method (RLP), to guess the user’s future 
location for LBSs. They define moving sequences 
and frequent patterns in trajectory data. Further, 
they find out all frequent spatiotemporal move-
ment patterns using an algorithm based on GSP 
algorithm. The candidate generating mechanism 
of the technique is based on that of GSP algorithm 
with an additional temporal join operation and 
a different method for pruning candidates. In 
addition, they employ the clustering method to 
control the dense regions of the patterns. With 
the frequent movement patterns obtained from 
the preceding subsection, the movement rules are 
generated easily.

Patterns for Mobile Commerce

To better reflect the customer usage patterns in 
the mobile commerce environment, (Yun & Chen, 
2007) propose an innovative mining model, called 
mining mobile sequential patterns, which takes 
both the moving patterns and purchase patterns 
of customers into consideration. How to strike a 
compromise among the use of various knowledge 
to solve the mining on mobile sequential patterns, 
is a challenging issue. They devise three algorithms 
for determining the frequent sequential patterns 
from the mobile transaction sequences.

INTRUSION DETECTION

Sequential pattern mining has been used for in-
trusion detection to study patterns of misuse in 
network attack data and thereby detect sequential 
intrusion behaviors and for discovering multistage 
attack strategies.

Patterns in Network Attack Data

(Wuu, Hung, & Chen, 2007) have implemented 
an intrusion pattern discovery module in Snort 
network intrusion detection system which applies 
data mining technique to extract single intrusion 

patterns and sequential intrusion patterns from a 
collection of attack packets, and then converts the 
patterns to Snort detection rules for on-line intru-
sion detection. Patterns are extracted both from 
packet headers and the packet payload. A typical 
pattern is of the form “A packet with DA port as 
139, DgmLen field in header set to 48 and with 
content as 11 11”. Intrusion behavior detection 
engine creates an alert when a series of incom-
ing packets match the signatures representing 
sequential intrusion scenarios.

Patterns for Discovering Multi-
Stage Attack Strategies

In monitoring anomalous network activities, 
intrusion detection systems tend to generate a 
large amount of alerts, which greatly increase the 
workload of post-detection analysis and decision-
making. A system to detect the ongoing attacks 
and predict the upcoming next step of a multistage 
attack in alert streams by using known attack 
patterns can effectively solve this problem. The 
complete, correct and up to date pattern rule of 
various network attack activities plays an impor-
tant role in such a system. An approach based on 
sequential pattern mining technique to discover 
multistage attack activity patterns is efficient to 
reduce the labor to construct pattern rules. But 
in a dynamic network environment where novel 
attack strategies appear continuously, the novel 
approach proposed by (Li, Zhang, Li, & Wang, 
2007) to use incremental mining algorithm shows 
better capability to detect recently appeared attack. 
They remove the unexpected results from mining 
by computing probabilistic score between suc-
cessive steps in a multistage attack pattern. They 
use GSP to discover multistage attack behavior 
patterns. All the alerts stored in database can be 
viewed as a global sequence of alerts sorted by 
ascending DetectTime timestamp. Sequences of 
alerts describe the behavior and actions of attack-
ers. Multistage attack strategies can be found by 
analyzing this alert sequence. A sequential pattern 
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is a collection of alerts that occur relatively close 
to each other in a given order frequently. Once 
such patterns are known, the rules can be produced 
for describing or predicting the behavior of the 
sequence of network attack.

OTHER APPLICATIONS

Apart from the different domains mentioned 
above, sequential pattern mining has been found 
useful in a variety of other domains. We briefly 
mention works in some of such areas in this sub-
section. Besides the works mentioned below, there 
are some applications that may need to classify 
sequence data, such as based on sequence patterns. 
An overview on research in sequence classification 
can be found in (Xing, Pei & Keogh).

Patterns in Earth Science Data

The earth science data consists of time series mea-
surements for various Earth science and climate 
variables (e.g. soil moisture, temperature, and 
precipitation), along with additional data from 
existing ecosystem models (e.g. Net Primary 
Production). The ecological patterns of interest 
include associations, clusters, predictive models, 
and trends. (Potter, Klooster, Torregrosa, Tan, 
Steinbach, & Kumar) discuss some of the chal-
lenges involved in preprocessing and analyzing 
the data, and also consider techniques for handling 
some of the spatio-temporal issues. Earth Science 
data has strong seasonal components that need 
to be removed prior to pattern analysis, as Earth 
scientists are primarily interested in patterns 
that represent deviations from normal seasonal 
variation such as anomalous climate events (e.g., 
El Nino) or trends (e.g., global warming). They 
de-seasonalize the data and then compute variety 
of spatio-temporal patterns. Rules learned from 
the patterns look like (WP-Hi) ⇒ (Solar-Hi) ⇒ 
(NINO34-Lo) ⇒ (Temp-Hi) ⇒ (NPP-Lo) where 

WP, Solar etc are different earth science parameters 
with values Hi (High) or Lo (Low).

Patterns for Computer 
Systems Management

Predictive algorithms play a crucial role in sys-
tems management by alerting the user to potential 
failures. (Vilalta, Apte, Hellerstein, Ma, & Weiss, 
2002) focus on three case studies dealing with the 
prediction of failures in computer systems: (1) 
long-term prediction of performance variables 
(e.g., disk utilization), (2) short-term prediction 
of abnormal behavior (e.g., threshold violations), 
and (3) short-term prediction of system events 
(e.g., router failure). Empirical results show 
that predictive algorithms based on mining of 
sequential patterns can be successfully employed 
in the estimation of performance variables and the 
prediction of critical events.

Patterns to Detect Plan Failures

(Zaki, Lesh, & Mitsunori, 1999) present an al-
gorithm to extract patterns of events that predict 
failures in databases of plan executions: Plan-
Mine. Analyzing execution traces is appropriate 
for planning domains that contain uncertainty, 
such as incomplete knowledge of the world or 
actions with probabilistic effects. They extract 
causes of plan failures and feed the discovered 
patterns back into the planner. They label each 
plan as “good” or “bad” depending on whether 
it achieved its goal or it failed to do so. The goal 
is to find “interesting” sequences that have a high 
confidence of predicting plan failure. They use 
SPADE to mine such patterns.

TRIPS is an integrated system in which a 
person collaborates with a computer to develop a 
high quality plan to evacuate people from a small 
island. During the process of building the plan, 
the system simulates the plan repeatedly based 
on a probabilistic model of the domain, includ-
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ing predicted weather patterns and their effect on 
vehicle performance.

The system returns an estimate of the plan’s 
success. Additionally, TRIPS invokes PlanMine 
on the execution traces produced by simulation, 
in order to analyze why the plan failed when it 
did. The system runs PlanMine on the execution 
traces of the given plan to pinpoint defects in the 
plan that most often lead to plan failure. It then 
applies qualitative reasoning and plan adaptation 
algorithms to modify the plan to correct the defects 
detected by PlanMine.

Patterns in Automotive 
Warranty Data

When a product fails within a certain time period, 
the warranty is a manufacturer’s assurance to a 
buyer that the product will be repaired without 
a cost to the customer. In a service environment 
where dealers are more likely to replace than to 
repair, the cost of component failure during the 
warranty period can easily equal three to ten times 
the supplier’s unit price. Consequently, companies 
invest significant amounts of time and resources 
to monitor, document, and analyze product war-
ranty data. (Buddhakulsomsiri & Zakarian, 2009) 
present a sequential pattern mining algorithm that 
allows product and quality engineers to extract 
hidden knowledge from a large automotive war-
ranty database. The algorithm uses the elementary 
set concept and database manipulation techniques 
to search for patterns or relationships among 
occurrences of warranty claims over time. The 
sequential patterns are represented in a form of 
IF–THEN association rules, where the IF portion 
of the rule includes quality/warranty problems, 
represented as labor codes, that occurred in an 
earlier time, and the THEN portion includes 
labor codes that occurred at a later time. Once a 
set of unique sequential patterns is generated, the 
algorithm applies a set of thresholds to evaluate 
the significance of the rules and the rules that 
pass these thresholds are reported in the solution. 

Significant patterns provide knowledge of one or 
more product failures that lead to future product 
fault(s). The effectiveness of the algorithm is il-
lustrated with the warranty data mining application 
from the automotive industry.

Patterns in Alarm Data

Increasingly powerful fault management systems 
are required to ensure robustness and quality of 
service in today’s networks. In this context, event 
correlation is of prime importance to extract 
meaningful information from the wealth of alarm 
data generated by the network. Existing sequen-
tial data mining techniques address the task of 
identifying possible correlations in sequences of 
alarms. The output sequence sets, however, may 
contain sequences which are not plausible from 
the point of view of network topology constraints. 
(Devitt, Duffin, & Moloney, 2005) presents the 
Topographical Proximity (TP) approach which 
exploits topographical information embedded in 
alarm data in order to address this lack of plausibil-
ity in mined sequences. Their approach is based 
on an Apriori approach and introduces a novel 
criterion for sequence selection which evaluates 
sequence plausibility and coherence in the context 
of network topology. Connections are inferred at 
run-time between pairs of alarm generating nodes 
in the data and a Topographical Proximity (TP) 
measure is assigned based on the strength of the 
inferred connection. The TP measure is used to 
reject or promote candidate sequences on the basis 
of their plausibility, i.e. the strength of their con-
nection, thereby reducing the candidate sequence 
set and optimizing the space and time constraints 
of the data mining process.

Patterns for Personalized 
Recommendation System

(Romero, Ventura, Delgado, & Bra, 2007) describe 
a personalized recommender system that uses web 
mining techniques for recommending a student 
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which (next) links to visit within an adaptable 
educational hypermedia system. They present a 
specific mining tool and a recommender engine 
that helps the teacher to carry out the whole web 
mining process. The overall process of Web per-
sonalization based on Web usage mining generally 
consists of three phases: data preparation, pattern 
discovery and recommendation. The first two 
phases are performed off-line and the last phase 
on-line. To make recommendations to a student, 
the system first, classifies the new students in one 
of the groups of students (clusters). Then, it only 
uses the sequential patterns of the correspond-
ing group to personalize the recommendations 
based on other similar students and his current 
navigation. Grouping of students is done using 
k-means. They use GSP to get frequent sequences 
for each of the clusters. They mine rules of the 
form readme⇒install, welcome⇒install which are 
intuitively quite common patterns for websites.

Patterns in Atmospheric 
Aerosol Data

EDAM (Exploratory Data Analysis and Man-
agement) is a joint project between researchers 
in Atmospheric Chemistry and Computer Sci-
ence at Carleton College and the University of 
Wisconsin-Madison that aims to develop data 
mining techniques for advancing the state of the 
art in analyzing atmospheric aerosol datasets.

The traditional approach for particle measure-
ment, which is the collection of bulk samples of 
particulates on filters, is not adequate for studying 
particle dynamics and real-time correlations. This 
has led to the development of a new generation 
of real-time instruments that provide continuous 
or semi-continuous streams of data about certain 
aerosol properties. However, these instruments 
have added a significant level of complexity to at-
mospheric aerosol data, and dramatically increased 
the amounts of data to be collected, managed, and 
analyzed. (Ramakrishnan, et al., 2005) experiment 

with a dataset consisting of samples from aerosol 
time-of-flight mass spectrometer (ATOFMS).

A mass spectrum is a plot of signal intensity 
(often normalized to the largest peak in the spec-
trum) versus the mass-to-charge (m/z) ratio of 
the detected ions. Thus, the presence of a peak 
indicates the presence of one or more ions con-
taining the m/z value indicated, within the ion 
cloud generated upon the interaction between 
the particle and the laser beam. In many cases, 
the ATOFMS generates elemental ions. Thus, the 
presence of certain peaks indicates that elements 
such as Na+ (m/z = +23) or Fe+ (m/z = +56) or 
O- (m/z = -16) ions are present. In other cases, 
cluster ions are formed, and thus the m/z observed 
represents that of a sum of the atomic weights of 
various elements.

For many kinds of analysis, what is significant 
in each particle’s mass spectrum is the composi-
tion of the particle, i.e., the ions identified by the 
peak labels (and, ideally, their proportions in the 
particle, and our confidence in having correctly 
identified them). While this representation is 
less detailed than the labeled spectrum itself, it 
allows us to think of the ATOFMS data stream as 
a time-series of observations, one per observed 
particle, where each observation is a set of ions 
(possibly labeled with some additional details). 
This is precisely the market-basket abstraction 
used in e-commerce: a time-series of customer 
transactions, each recording the items purchased 
by a customer on a single visit to a store. This 
analogy opens the door to applying a wide range 
of association rule and sequential pattern algo-
rithms to the analysis of mass spectrometry data. 
Once these patterns are mined, they can be used to 
extrapolate to periods where filter-based samples 
were not collected.

Patterns in Individuals’ Time Diaries

Identifying patterns of activities within indi-
viduals’ time diaries and studying similarities and 
deviations between individuals in a population 
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is of interest in time use research. So far, activ-
ity patterns in a population have mostly been 
studied either by visual inspection, searching for 
occurrences of specific activity sequences and 
studying their distribution in the population, or 
statistical methods such as time series analysis 
in order to analyze daily behavior. (Vrotsou, El-
legård, & Cooper) describe a new approach for 
extracting activity patterns from time diaries that 
uses sequential data mining techniques. They 
have implemented an algorithm that searches the 
time diaries and automatically extracts all activ-
ity patterns meeting user-defined criteria of what 
constitutes a valid pattern of interest. Amongst the 
many criteria which can be applied are: a time 
window containing the pattern, and minimum 
and maximum number of people that perform the 
pattern. The extracted activity patterns can then 
be interactively filtered, visualized and analyzed 
to reveal interesting insights using the VISUAL-
TimePAcTS application. To demonstrate the value 
of this approach they consider and discuss sequen-
tial activity patterns at a population level, from a 
single day perspective, with focus on the activity 
“paid work” and some activities surrounding it.

An activity pattern in this paper is defined as a 
sequence of activities performed by an individual 
which by itself or together with other activities, 
aims at accomplishing a more general goal/proj-
ect. When analyzing a single day of diary data, 
activity patterns identified in a single individual 
(referred to as an individual activity pattern) are 
unlikely to be significant but those found amongst 
a group or population (a collective activity pat-
tern) are of greater interest. Seven categories of 
activities that they consider are: care for oneself, 
care for others, household care, recreation/reflec-
tion, travel, prepare/procure food, work/school. 
{“cook dinner”; “eat dinner”; “wash dishes”} is 
a typical pattern. They also incorporate a variety 
of constraints like min and max pattern duration, 
min and max gap between activities, min and 
max number of occurrences of the pattern and 
min and max number of people (or a percentage 

of the population) that should be performing the 
pattern. The sequential mining algorithm that 
they have used for the activity pattern extraction 
is an “AprioriAll” algorithm which is adapted to 
the time diary data.

Two stage classification using patterns: (Ex-
archos, Tsipouras, Papaloukas, & Fotiadis, 2008) 
present a methodology for sequence classification, 
which employs sequential pattern mining and 
optimization, in a two-stage process. In the first 
stage, a sequence classification model is defined, 
based on a set of sequential patterns and two sets 
of weights are introduced, one for the patterns and 
one for classes. In the second stage, an optimiza-
tion technique is employed to estimate the weight 
values and achieve optimal classification accuracy. 
Extensive evaluation of the methodology is car-
ried out, by varying the number of sequences, the 
number of patterns and the number of classes and 
it is compared with similar sequence classifica-
tion approaches.

CONCLUSION

We presented selected applications of the se-
quential pattern mining methods in the fields of 
healthcare, education, web usage mining, text 
mining, bioinformatics, telecommunications, 
intrusion detection, etc. We envision that the 
power of sequential mining methods has not yet 
been fully exploited. We hope to see many more 
strong applications of these methods in a variety 
of domains in the years to come.
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INTRODUCTION TO SEQUENTIAL 
PATTERN ANALYSIS USING KERNEL 
METHODS

Classification and clustering of patterns extracted 
from sequential data are important for pattern 
discovery using sequence data mining. Pattern 
discovery from bio-sequences involves classifica-
tion and clustering of discrete symbol sequences. 
Pattern discovery from multimedia data such as 
audio, speech and video data involves classifica-
tion and clustering of continuous valued feature 
vector sequences. Classification and clustering of 
sequential patterns of varying length have been 
challenging tasks in pattern recognition. Con-
ventional methods for classification of sequential 
patterns use discrete hidden Markov models 
(HMMs) for discrete sequences, and continuous 
density HMMs for continuous feature vector se-
quences. Conventional methods for clustering of 
sequential patterns use distance measures such as 
edit distance for discrete sequences and dynamic 
time warping based distance for continuous feature 
vector sequences. During the past 15 years, kernel 
methods based approaches such as support vector 
machines and kernel K-means clustering have been 
explored for classification and clustering of static 
patterns and sequential patterns. Kernel methods 
have been shown to give a good generalization 
performance. This Chapter presents a review of 
kernel methods based approaches to classification 
and clustering of sequential patterns.

Kernel methods for pattern analysis involve 
performing a nonlinear transformation from the 
input feature space to a higher dimensional feature 
space induced by a Mercer kernel function, and 
then constructing an optimal linear solution in the 
kernel feature space. Support vector machine for 
two class pattern classification constructs an op-
timal hyperplane corresponding to the maximum 
margin separating hyperplane in the kernel feature 
space (Burges, 1998). Kernel K-means clustering 
gives an optimal nonlinear separation of clusters 
in the input feature space by minimizing the trace 

of the within-cluster scatter matrix for the clusters 
formed in the kernel feature space (Girolami, 2002; 
Satish, 2005). The choice of the kernel function 
used in the kernel methods is important for their 
performance. Several kernel functions have been 
proposed for static patterns. Kernel methods for 
sequential pattern analysis adopt one of the fol-
lowing two strategies: (1) Convert a sequential 
pattern into a static pattern and then use a kernel 
function defined for static patterns, and (2) Design 
and use a kernel function for sequential patterns. 
Kernel functions designed for sequential data are 
referred to as dynamic kernels or sequence kernels 
(Wan & Renals, 2002). Examples of dynamic 
kernels for continuous feature vector sequences 
are Gaussian mixture model (GMM) supervector 
kernel (Campbell et al., 2006b) and intermedi-
ate matching kernel (Boughorbel et al., 2005). 
Fisher kernel (Jaakkola et al,. 2000) is used for 
both the discrete observation symbol sequences 
and sequences of continuous feature vectors. This 
Chapter discusses the issues in designing dynamic 
kernels for continuous feature vector sequences 
and then presents a review of dynamic kernels 
proposed in the literature.

Dynamic kernels for continuous feature vec-
tor sequences belong to the following two main 
categories: (1) Kernels such as Fisher kernels that 
capture the sequence information in the feature 
vector sequences, and (2) Kernels such as GMM 
supervector kernels and intermediate matching 
kernels that consider the feature vector sequences 
as sets of feature vectors. The kernels belonging 
to the first category have been explored for clas-
sification of units of speech such as phonemes, 
syllables and words in speech recognition. The 
kernels belonging to the second category have 
been explored for tasks such as speaker identifica-
tion and verification, speech emotion recognition 
and image classification. This chapter presents a 
review of dynamic kernels based approaches to 
classification and clustering of sequential patterns.

The organization of the rest of the chapter is 
as follows: The next section describes the kernel 
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methods for pattern analysis. The SVM based ap-
proach to pattern classification and kernel based 
approaches to pattern clustering are presented in 
this section. Then the design of dynamic kernels 
for sequential patterns is presented in the third 
section. This section also describes the dynamic 
kernels for continuous feature vector sequences. 
Finally, we present a review of kernel methods 
based approaches to sequential pattern analysis.

KERNEL METHODS FOR 
PATTERN ANALYSIS

In this section we describe different approaches 
using kernel methods for patterns analysis. We first 
describe the support vector machines (SVMs) for 
pattern classification, and then present the kernel 
K-means clustering and support vector clustering 
methods for pattern clustering.

Support Vector Machines for 
Pattern Classification

The SVM (Burges, 1998; Cristianini & Shawe-
Taylor, 2000; Sekhar et al., 2003) is a linear two-
class classifier. An SVM constructs the maximum 
margin hyperplane (optimal hyperplane) as a 
decision surface to separate the data points of two 
classes. The margin of a hyperplane is defined as 
the minimum distance of training points from the 
hyperplane. We first discuss the construction of an 
optimal hyperplane for linearly separable classes. 
Then we discuss the construction of an optimal 
hyperplane for linearly nonseparable classes, i.e., 
some training examples of the classes cannot be 
classified correctly. Finally, we discuss building 
an SVM for nonlinearly separable classes by con-
structing an optimal hyperplane in a high dimen-
sional feature space corresponding to a nonlinear 
transformation induced by a kernel function.

Optimal Hyperplane for Linearly 
Separable Classes

Suppose the training data set consists of L ex-

amples, x
i i i

L
y,{ }

=1
, xi ∈ Rd and yi ∈ {+1, −1}, 

where xi is ith training example and yi is the cor-
responding class label. Figure 1 illustrates the 
construction of an optimal separating hyperplane 
for linearly separable classes in the two-dimen-
sional input space of x.

A hyperplane is specified as wtx + b = 0, where 
w is the parameter vector and b is the bias. A 
separating hyperplane that separates the data points 
of two linearly separable classes satisfies the fol-
lowing constraints:

yi(w
txi + b) > 0 for i = 1, 2,…, L (1)

The distance between the nearest example and 
the separating hyperplane, called the margin, is 
given by 1/||w||. The problem of finding the op-
timal separating hyperplane that maximizes the 
margin is the same as the problem of minimizing 
the Euclidean norm of the parameter vector w. For 
reducing the search space of w, the constraints that 
the optimal separating hyperplane must satisfy are 
specified as follows:

Figure 1. Illustration of constructing the optimal 
hyperplane for linearly separable classes
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yi(w
txi + b) ≥ 1 for i = 1, 2,…, L (2)

The learning problem of finding the optimal 
separating hyperplane is a constrained optimiza-
tion problem stated as follows: Given the training 
data set, find the values of w and b such that they 
satisfy the constraints in (2) and the parameter 
vector w minimizes the following cost function:

J( )w w=
1
2

2
 (3)

The constrained optimization problem is solved 
using the method of Lagrangian multipliers. The 
primal form of the Lagrangian objective function 
is given by

L
p i i

t
i

i

L

b y b( , , )w w w xα = − +( )−





=
∑1

2
1

2

1

α
 

(4)

where the non-negative variables αi are called 
Lagrange multipliers. The saddle point of the 
Lagrangian objective function provides the solu-
tion for the optimization problem. The solution 
is determined by first minimizing the Lagrang-
ian objective function with respect to w and b, 
and then maximizing with respect to α. The two 
conditions of optimality due to minimization are

∂

∂
=

L
p
b( , , )w

w
0

α  (5)

∂

∂
=

L
p
b

b

( , , )w α
0  (6)

Application of optimality conditions gives

w x=
=
∑αi i i
i

L

y
1

 (7)

α
i i

i

L

y
=
∑ =

1

0  (8)

Substituting the expression for w from (7) in 
(4) and using the condition in (8), the dual form of 
Lagrangian objective function can be derived as a 
function of Lagrangian multipliers α, as follows:

L
d i

i

L

i j i
j

L

i

L

j i
t
j

y y( )α = −
= ==
∑ ∑∑α α α

1 11

1
2

x x  (9)

The optimum values of Lagrangian multipli-
ers are determined by maximizing the objective 
function Ld(α) subject to the following constraints:

α
i i

i

L

y
=
∑ =

1

0  (10)

αi ≥ 0 for i = 1, 2, …, L (11)

This optimization problem is solved using 
quadratic programming methods (Kaufman, 
1999). The data points for which the values of the 
optimum Lagrange multipliers are not zero are 
the support vectors. For these data points the 
distance to the optimal hyperplane is minimum. 
Hence, the support vectors are the training data 
points that lie on the margin, as illustrated in 
Figure 1. For the optimum Lagrange multipliers

α
j j

Ls*{ }
=1

, the optimum parameter vector w∗ is 

given by

w x* =
=
∑αj j j
j

L

y
s

*

1

 (12)

where Ls is the number of support vectors. The 
discriminant function of the optimal hyperplane 
in terms of support vectors is given by
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D b y bt
j j

t
j

j

Ls

(x) w x x x= + = +
=
∑* * * *α

1

 (13)

where b∗ is the optimum bias.
However, the data for most of the real world 

tasks are not linearly separable. Next we present 
a method to construct an optimal hyperplane for 
linearly non-separable classes.

Optimal Hyperplane for Linearly 
Non-Separable Classes

The training data points of the linearly non-
separable classes cannot be separated by a hyper-
plane without classification error. In such cases, 
it is desirable to find an optimal hyperplane that 
minimizes the probability of classification error 
for the training data set. A data point is non-
separable when it does not satisfy the constraint 
in (2). This corresponds to a data point that falls 
either within margin or on the wrong side of the 
separating hyperplane as illustrated in Figure 2.

For linearly non-separable classes, the con-
straints in (2) are modified by introducing the 
nonnegative slack variables ξi as follows:

yi(w
txi + b) ≥ 1- ξi for i = 1, 2,…, L (14)

The slack variable ξi is a measure of the devia-
tion of a data point xi from the ideal condition of 
separability. For 0 ≤ ξi ≤ 1, the data point falls 
inside the region of separation, but on the correct 
side of the separating hyperplane. For ξi > 1, the 
data point falls on the wrong side of the separat-
ing hyperplane. The support vectors are those 
particular data points that satisfy the constraint 
in (14) with equality sign. The cost function for 
linearly non-separable classes is given as

J C
i

i

L

( )w, wξ = +
=
∑1

2

2

1

ξ  (15)

where C is a user-specified positive parameter that 
controls the trade-off between the complexity of 
the classifier and the number of non-separable data 
points. Using the method of Lagrange multipliers 
to solve the constrained optimization problem as 
in the case of linearly separable classes, the dual 
form of the Lagrangian objective function can be 
obtained as follows (Haykin, 1999):

L
d i

i

L

i j i
j

L

i

L

j i
t
j

y y( )α = −
= ==
∑ ∑∑α α α

1 11

1
2

x x  (16)

subject to the constraints:

α
i i

i

L

y
=
∑ =

1

0  (17)

0 ≤ αi ≤ C for i = 1, 2, …, L (18)

It may be noted that the maximum value that 
the Lagrangian multipliers αi can take is C for the 
linearly non-separable classes. For the optimum 

Lagrange multipliers α
j j

Ls*{ }
=1

, the optimum pa-

rameter vector w∗ is given by

w x* =
=
∑αj j j
j

L

y
s

*

1

 (19)

Figure 2. Illustration of constructing the optimal 
hyperplane for linearly nonseparable classes



29

A Review of Kernel Methods Based Approaches, Part I

where Ls is the number of support vectors. The 
discriminant function of the optimal hyperplane 
for an input vector x is given by

D b y bt
j j

t
j

j

Ls

(x) w x x x= + = +
=
∑* * * *α

1

 (20)

where b∗ is the optimum bias.

Support Vector Machine for 
Nonlinearly Separable Classes

For nonlinearly separable classes, an SVM is built 
by mapping the input vector xi, i = 1, 2, …, L into 
a high dimensional feature vector Φ(xi) using a 
nonlinear transformation Φ, and constructing an 
optimal hyperplane defined by wtΦ(x) + b = 0 to 
separate the examples of two classes in the feature 
space Φ(x). This is based on Cover’s theorem 
which states that an input space where the patterns 
are nonlinearly separable may be transformed into 
a feature space where the patterns are linearly 
separable with a high probability, provided two 
conditions are satisfied (Haykin, 1999). The first 
condition is that the transformation is nonlinear 
and the second condition is that the dimensional-
ity of the feature space is high enough. The con-
cept of support vector machine for pattern classi-
fication is illustrated in Figure 3. It is seen that the 
nonlinearly separable data points xi = [xi1, xi2]

t, i = 
1, 2, …, L in a two-dimensional input space are 

mapped onto three-dimensional feature vectors 
Φ(xi) =[x x x x

i i i i1
2

2
2

1 2
2, , ]t, i = 1, 2, …, L where 

they are linearly separable.
For the construction of the optimal hyperplane 

in the high dimensional feature space Φ(x), the 
dual form of the Lagrangian objective function 
in (16) takes the following form:

L
d i

i

L

i j i
j

L

i

L

j i
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j
y y( )α Φ Φ= −
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(21)

subject to the constraints:

α
i i

i

L

y
=
∑ =

1

0  (22)

0 ≤ αi ≤ C for i = 1, 2, …, L (23)

For the optimal α∗, the optimal parameter vec-
tor w∗ is given by

w x* =
=
∑αj j j
j

L

y
s

* )Φ(
1

 (24)

where Ls is the number of support vectors. The 
discriminant function of the optimal hyperplane 
for an input vector x is defined as

Figure 3. Illustration of nonlinear transformation used in building an SVM for nonlinearly separable 
classes
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D b y bt
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Ls
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=
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1  
(25)

Solving (21) involves computation of the in-
nerproduct operation Φ(xi)

tΦ(xj). Evaluation of 
innerproducts in a high dimensional feature space 
is avoided by using an innerproduct kernel, K(xi, 
xj), defined as K(xi, xj) = Φ(xi)

tΦ(xj) (Scholkopf 
et al., 1999). A valid innerproduct kernel K(xi, xj) 
for two pattern vectors xi and xj is a symmetric 
function for which the following Mercer’s condi-
tion holds good:

K g g d d
i j i j i j

( , ) ( ) ( )x x x x x x∫ ≥ 0  (26)

for all g(xi) such that

g d
i i

2( )x x∫ <∞  (27)

The objective function in (21) and the discrimi-
nant function of the optimal hyperplane in (25) 
can now be specified using the kernel function 
as follows:

L y y K
d i
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L

i j i
j

L
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j i j
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= ==
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The architecture of a support vector machine 
for two-class pattern classification that implements 
the discriminant function of the hyperplane in (29) 
is given in Figure 4. The number of hidden nodes 
corresponding to the number of support vectors, 
and the training examples corresponding to the 
support vectors are determined by maximizing the 
objective function in (28) using a given training 
data set and for a chosen kernel function.

Some commonly used innerproduct kernel 
functions are as follows:

Polynomial kernel: K(xi, xj) = (axi
txj + c)p

Sigmoidal kernel: K(xi, xj) = tanh(axi
txj + c)

Gaussian kernel: K(xi, xj) = exp(−δ||xi − xj||
2)

Here, xi and xj are vectors in the d-dimensional 
input pattern space, a and c are constants, p is the 

Figure 4. Architecture of a support vector machine for two-class pattern classification. The class of 
the input pattern x is given by the sign of the discriminant function D(x). The number of hidden nodes 
corresponds to the number of support vectors Ls. Each hidden node computes the innerproduct kernel 
function K(x, xi) on the input pattern x and a support vector xi.
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degree of the polynomial and δ is a nonnegative 
constant used for numerical stability in Gaussian 
kernel function. The dimensionality of the feature 
space is (p+d)!/(p! d!) for the polynomial kernel 
(Cristianini & Shawe-Taylor, 2000). The feature 
spaces for the sigmoidal and Gaussian kernels 
are of infinite dimension. The kernel functions 
involve computations in the d-dimensional input 
space and avoid the innerproduct operations in 
the high dimensional feature space.

The best choice of the kernel function for a 
given pattern classification problem is still a re-
search issue (Burges, 1998). The suitable kernel 
function and its parameters are chosen empirically. 
The complexity of a two-class support vector 
machine is a function of the number of support 
vectors (Ls) determined during its training. Multi-
class pattern classification problems are generally 
solved using a combination of two-class SVMs. 
Therefore, the complexity of a multiclass pattern 
classification system depends on the number of 
SVMs and the complexity of each SVM used. In 
the next subsection, we present the commonly 
used approaches to multiclass pattern classifica-
tion using SVMs.

Multiclass Pattern Classification 
Using SVMs

Support vector machines are originally designed 
for two-class pattern classification. Multiclass 
pattern classification problems are commonly 
solved using a combination of two-class SVMs 
and a decision strategy to decide the class of the 
input pattern (Allwein et al., 2001). Each SVM has 
the architecture given in Figure 4 and is trained 
independently. Now we present the two approaches 
to decomposition of the learning problem in mul-
ticlass pattern classification into several two-class 
learning problems so that a combination of SVMs 
can be used. The training data set {(xi, ci)} consists 
of L examples belonging to T classes. The class 
label ci ∈ {1, 2,..., T}. For the sake of simplicity, 

we assume that the number of examples for each 
class is the same, i.e., Lt = L/T.

One-Against-the-Rest Approach

In this approach, an SVM is constructed for each 
class by discriminating that class against the re-
maining (T-1) classes. The classification system 
based on this approach consists of T SVMs. All 
the L training examples are used in constructing 
an SVM for each class. In constructing the SVM 
for the class t the desired output yi for a training 
example xi is specified as follows:
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The examples with the desired output yi = +1 
are called positive examples. The examples with 
the desired output yi = −1 are called negative 
examples. An optimal hyperplane is constructed 
to separate Lt positive examples from L(T-1)/T 
negative examples. The much larger number of 
negative examples leads to an imbalance, resulting 
in the dominance of negative examples in deter-
mining the decision boundary (Kressel & Ulrich, 
1999). The extent of imbalance increases with the 
number of classes and is significantly high when 
the number of classes is large. A test pattern x is 
classified by using the winner-takes-all strategy 
that uses the following decision rule:

Class label for x = argt max Dt (x) (31)

where Dt(x) is the discriminant function of the 
SVM constructed for the class t.

One-Against-One Approach

In this approach, an SVM is constructed for ev-
ery pair of classes by training it to discriminate 
the two classes. The number of SVMs used in 
this approach is T(T-1)/2. An SVM for a pair of 
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classes s and t is constructed using 2Lt training 
examples belonging to the two classes only. The 
desired output yi for a training example xi is speci-
fied as follows:
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The small size of the set of training examples 
and the balance between the number of positive 
and negative examples lead to a simple optimi-
zation problem to be solved in constructing an 
SVM for a pair of classes. When the number of 
classes is large, the proliferation of SVMs leads 
to a complex classification system.

The maxwins strategy is commonly used to 
determine the class of a test pattern x in this ap-
proach. In this strategy, a majority voting scheme 
is used. If Dst(x), the value of the discriminant 
function of the SVM for the pair of classes s and t, 
is positive, then the class s wins a vote. Otherwise, 
the class t wins a vote. Outputs of SVMs are used 
to determine the number of votes won by each 
class. The class with the maximum number of 
votes is assigned to the test pattern. When there are 
multiple classes with the same maximum number 
of votes, the class with the maximum value of the 
total magnitude of discriminant functions (TMDF) 
is assigned. The total magnitude of discriminant 
functions for the class s is defined as follows:

TMDF =∑ Dst
t

( )x  (33)

where the summation is over all t with which the 
class s is paired. The maxwins strategy needs 
evaluation of discriminant functions of all the 
SVMs in deciding the class of a test pattern.

The SVM based classifiers have been suc-
cessfully used in various applications like image 
categorization, object categorization, text clas-
sification, handwritten character recognition, 
speech recognition (Sekhar et al., 2003), speaker 

recognition and verification, and speech emotion 
recognition.

Kernel Methods for 
Pattern Clustering

In this subsection we the describe kernel K-means 
clustering and support vector clustering methods 
for clustering in the kernel feature space.

Kernel K-means Clustering

The commonly used K-means clustering method 
gives a linear separation of data, as illustrated 
in Figure 5, and is not suitable for separation of 
nonlinearly separable data. In this subsection, 
the criterion for partitioning the data into clusters 
in the input space using the K-means clustering 
algorithm is first presented. Clustering in the 
kernel feature space is then realised using the 
K-means clustering algorithm (Girolami, 2002; 
Satish, 2005).

Consider a set of L data points in the input 

space, x
i i

L{ }
=1

, xi ∈ Rd. Let the number of clusters 
to be formed is Q. The criterion used by the K-
means clustering method in the input space for 
grouping the data into Q clusters is to minimize 
the trace of the within-cluster scatter matrix, Sw, 
defined as follows (Girolami, 2002):

S x x
w qi i q i q

t

i

L

q

Q

L
z= − −

==
∑∑1

11

( )( )µ µ  (34)

where μq is the center of the qth cluster, Cq, and 
zqi is the membership of data point xi to the cluster 
Cq. The membership value zqi = 1, if xi ∈Cq and 0 
otherwise. The number of points in the qth cluster 
is given as Lq defined by

L z
q qi

i

L

=
=
∑
1

 (35)
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The center of the cluster Cq is given as μq 
defined by

µ
q

q
qi i

i

L

L
z x=

=
∑1
1

 (36)

The optimal clustering of the data points in-
volves determining the Q × L indicator matrix, 
Z, with the elements as zqi, that minimizes the 
trace of the matrix Sw. This method is used in the 
K-means clustering algorithm for linear separation 
of the clusters. For nonlinear separation of clusters 
of data points, the input space is transformed into 
a high dimensional feature space using a smooth 
and continuous nonlinear mapping, Φ, and the 
clusters are formed in the feature space. The 
optimal partitioning in the feature space is based 
on the criterion of minimizing the trace of the 
within-cluster scatter matrix in the feature space, 
S
w
Φ . The feature space scatter matrix is given by

S
L

z x x
w qi i q i q

t

i

L

q

Q
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11
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where µ
q
Φ , the center of the qth cluster in the 

feature space, is given by

µ
q

q
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The trace of the scatter matrix S
w
Φ  can be 

computed using the innerproduct operations as 
given below:

Tr S
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i q
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When the feature space is explicitly repre-
sented, as in the case of mapping using polyno-
mial kernels, the K-means clustering algorithm 
can be used to minimise the trace given in the 
above equation. However, for Mercer kernels such 
as Gaussian kernels with implicit mapping used 
for transformation, it is necessary to express the 
trace in terms of kernel function. The Mercer 
kernel function in the input space corresponds to 
the inner-product operation in the feature space, 

Figure 5. Illustration of K-means clustering in input space. (a) Scatter plot of the data in clusters sepa-
rable by a circular shaped curve in a 2-dimensional space. Inner cluster belongs to cluster 1 and the 
outer cluster belongs to cluster 2. (b) Linear separation of data obtained using K-means clustering in 
the input space.
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i.e., Ki j = K(xi, xj) = Φ(xi)
tΦ(xj). The trace of S

w
Φ  

can be rewritten as
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where

D K
L

z K
qi ii

q
qj ij

j

L

= −
=
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1

 (41)

The term Dqi is the penalty associated with 
assigning xi to the qth cluster in the feature space. 
For explicit mapping kernels such as the polyno-
mial kernel function, the feature space represen-
tation is explicitly known. Polynomial kernel is 
given by K(x, xi) = (axtxi + c)p, where a and c are 
constants, and p is the degree of polynomial ker-
nel. The vector Φ(x) in the feature space of the 
polynomial kernel corresponding to the input 
space vector x includes the monomials upto order 
p of elements in x. For a polynomial kernel, Dqi 
may take a negative value because the magnitude 
of Kq j can be greater than that of Kii. To avoid Dqi 
taking negative values, Ki j, in the equation for Dqi 
is replaced with the normalized value K̂

ij
 defined 

as

K̂
K

K K
ij

ij

ii jj

=  (42)

From Cauchy-Schwarz  inequal i ty, 
K K K
ij ii jj
≤ . It follows that for the polyno-

mial kernel K̂
ii
= 1  and ˆ ˆK K

ij ii
≤ , and Dqi is 

defined as:
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For implicit mapping kernels such as the 
Gaussian kernel function, the explicit feature 
space representation is not known. A Gaussian 
kernel is defined as K(x, xi) = exp(−δ||x − xi||

2), 
where δ is the kernel width parameter. For Gauss-
ian kernel, Dq j takes a nonnegative value because 
Kii =1 and Ki j ≤ Kii.

In the kernel K-means clustering, the optimiza-
tion problem is to determine the indicator matrix

Z∗ such that

Z Tr S
Z

w
* arg min ( )=    Φ  (44)

An iterative method for solving this optimiza-
tion problem is given in (Girolami, 2002). The 
clusters obtained for the ring data using the kernel 
K-means clustering method are shown in Figure 6.

Figure 6. Nonlinear separation of data obtained 
using the kernel K-means clustering method for 
the ring data plotted in Figure 5(a).
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Support Vector Clustering

Support vector clustering (Ben-Hur et al., 2001) is 
a clustering method that follows the support vec-
tor data description technique. Here, data points 
are mapped by means of a Gaussian kernel to a 
high dimensional feature space, where a search 
for the minimal enclosing sphere is performed. 
This sphere, when mapped back to data space, can 
form several contours, each enclosing a separate 
cluster of points.

Consider a set of L data points in the input 

space, x
i i

L{ }
=1

, xi ∈ Rd. Using a nonlinear trans-
formation Φ from the input space to a high di-
mensional feature space, the smallest enclosing 
sphere of radius R is found in the feature space. 
This is described by the constraints as given below:

|| Φ(xi) - a||2 ≤ R2, for i = 1, 2, …, L (45)

where a is the center of the sphere. Soft constraints 
are incorporated by adding slack variables ζi as 
follows:

|| Φ(xi) - a||2 ≤ R2 + ζi, for i = 1, 2, …, L (46)

with ζi ≥ 0. This constrained optimization problem 
is solved using the method of Lagrangian multipli-
ers. The primal form of the Lagrangian objective 
function is given by
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where αi ≥ 0 and βi ≥ 0 are the Lagrange multipli-

ers, C is a constant, and C
i

i

L

ζ
=
∑
1

 is a penalty term. 

Setting to zero the derivative of Lp with respect 
to R, a and ζi, respectively, leads to

α
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=
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1

 (48)
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αi = C - βi (50)

Using these relations, the variables R, a and 
ζi may be eliminated from the Lagrangian objec-
tive function giving rise to the Wolf dual, that is 
expressed solely in terms of αi, as follows:
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subject to the following constraints:

α
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L

=
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1  (52)

0 ≤ αi ≤ C for i = 1, 2, …, L (53)

The objective function in (51) can now be 
specified using the kernel function as follows:

L K x x K x x
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(54)

This optimization problem is solved using 
a quadratic programming method to determine 
the optimum center of the sphere a in the feature 
space. Like in SVM, the set of points whose cor-
responding Lagrange multipliers are non-zero 
become support vectors. Further, the support 
vectors whose Lagrange multipliers are at C 
are called bounded support vectors and the rest 
of them are called unbounded support vectors. 
Geometrically, the unbounded support vectors 
lie on the surface of the sphere, bounded support 
vectors lie outside the sphere and the remaining 
points lie inside the sphere.
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Let Z(x) be the distance of Φ(x) to the center 
of the sphere a is given by

Z2(x) = || Φ(x) - a||2 (55)

From equations (55) and (49) we have,

Z x K x x K x x K x x
i i i j i j
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===
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Then, the radius of the sphere R can be deter-
mined by computing Z(xi), where xi is a unbounded 
support vector.

The sphere in the feature space when mapped 
back to the input space leads to the formation of 
a set of contours which are interpreted as cluster 
boundaries. To identify the points that belong to 
different clusters, a geometric approach involv-
ing Z(x) and based on the following observation 
is used: Given a pair of data points that belong to 
different clusters, any path that connects them must 
exit from the sphere in feature space. Therefore, 
such a path contains a segment of points v such 
that Z(v) > R. This leads to the following definition 
of the adjacency Ai j between a pairs of points xi 
and xj with Φ(xi) and Φ(xj) being present in or 
on the sphere in feature space shown in Box 1.

Clusters are now defined as the connected 
components of the graph induced by the adja-
cency matrix A. Bounded support vectors are 
unclassified by this procedure since their feature 
space images lie outside the enclosing sphere. One 
may decide either to leave them unclassified, or to 
assign them to the cluster that they are closest.

In this section, we presented the kernel meth-
ods for classification and clustering of patterns. 

Though the methods are described for static pat-
terns with each example represented as a vector 
in d-dimensional input space, these methods 
can also be used for patterns with each example 
represented as a non-vectorial type structure. 
However, it is necessary to design a Mercer 
kernel function for patterns represented using 
a non-vectorial type structure so that the kernel 
methods can be used for analysis of such pat-
terns. Kernel functions have been proposed for 
different types of structured data such as strings, 
sets, texts, graphs, images and time series data. 
In the next section, we present dynamic kernels 
for sequential patterns represented as sequences 
of continuous feature vectors.

DESIGN OF DYNAMIC 
KERNELS FOR CONTINUOUS 
FEATURE VECTOR

Sequences

Continuous sequence data is represented in the 
form of a sequence of continuous feature vectors. 
Examples of continuous sequence data are speech 
data, handwritten character data, video data and 
time series data such as weather forecasting data, 
financial data, stock market data and network 
traffic data. Short-time spectral analysis of the 
speech signal of an utterance gives a sequence of 
continuous feature vectors. Short-time analysis 
of speech signal involves performing spectral 
analysis on each frame of about 20 milliseconds 
duration and representing each frame by a real 
valued feature vector. These feature vectors corre-
spond to the observations. The speech signal of an 

Box 1.
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utterance with M number of frames is represented 
as X = x1x2... xm... xM, where xm is a vector of real 
valued observations for frame m. The duration 
of utterances belonging to a class varies from 
one utterance to another. Hence, the number of 
frames also differs from one utterance to another. 
This makes the number of observations to vary. In 
the tasks such as speech recognition, duration of 
the data is short and there is a need to model the 
temporal dynamics and correlations among the 
features. This requires the sequence information 
present in the data to be preserved. In such cases, 
a speech utterance is represented as a sequence 
of feature vectors. On the other hand, in the tasks 
such as speaker identification, spoken language 
identification, and speech emotion recognition, 
the duration of the data is long and preserving 
sequence information is not critical. In such cases, 
a speech signal is represented as a set of feature 
vectors. In the handwritten character data also, 
each character is represented as a sequence of 
feature vectors. In the video data, each video clip 
is considered as a sequence of frames and a frame 
may be considered as an image. Each image can be 
represented by a feature vector. Since the sequence 
information present among the adjacent frames is 
to be preserved, a video clip data is represented as 
a sequence of feature vectors. An image can also 
be represented as a set of local feature vectors.

The main issue in designing a kernel for se-
quences of continuous feature vectors is to handle 
the varying length nature of sequences. Dynamic 
kernels for sequences of continuous feature vectors 
are designed in three ways. In the first approach, 
a sequence of feature vectors is mapped onto a 
vector in a fixed dimension feature space and a 
kernel is defined in that space (Campbell et al., 
2006a; Lee et al., 2007). The second approach 
involves in kernelizing a suitable distance measure 
used to compare two sequences of feature vectors 
(Campbell et al., 2006b; Jing et al., 2003; Moreno 
et al., 2004; You et al., 2009a). In the third ap-
proach, matching based technique is considered 

for designing the kernel between two sequences of 
feature vectors (Boughorbel et al., 2005; Grauman 
& Darrell, 2007). In this Section, we describe dif-
ferent dynamic kernels such as generalized linear 
discriminant sequence kernel (Campbell et al., 
2006a), the probabilistic sequence kernel (Lee 
et al., 2007), Kullback-Leibler divergence based 
kernel (Moreno et al., 2004), GMM supervector 
kernel (Campbell et al., 2006b), Bhattacharyya 
distance based kernel (You et al., 2009a), earth 
mover’s distance kernel (Jing et al,. 2003), inter-
mediate matching kernel (Boughorbel et al., 2005), 
and pyramid match kernel (Grauman & Darrell, 
2007) used for sequences or sets of continuous 
feature vectors.

Generalized Linear Discriminant 
Sequence Kernel

Generalized linear discriminant sequence 
(GLDS) kernel (Campbell et al., 2006a) uses 
an explicit expansion into a kernel feature space 
defined by the polynomials of degree p. Let X 
= x1x2... xm... xM, where xm ∈ Rd be a set of M 
feature vectors. The GLDS kernel is derived by 
considering polynomials as the generalized linear 
discriminant functions (Campbell et al., 2002). 
A feature vector xm is represented in a higher 
dimensional space Ψ as a polynomial expansion 
Ψ (xm) =[ψ1(xm), ψ2(xm),..., ψr(xm)]t. The expansion 
Ψ(xm) includes all monomials of elements of xm 
upto and including degree p. The set of feature 
vectors X is represented as a fixed dimensional 
vector Φ(X) which is obtained as follows:

Φ ΨGLDS
m

m

M

X
M

x( ) ( )=
=
∑1

1

 (58)

The GLDS kernel between two examples X = 
x1x2... xM and Y = y1y2..., yN is given as
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Let L be the total number of examples in the 
training data set which includes the data belong-
ing to two classes. The correlation matrix S is 
defined as follows:

S
L
R Rt=

1  (60)

where R is the matrix whose rows are the poly-
nomial expansions of the feature vectors in the 
training set. When the correlation matrix S is a 
diagonal matrix, the GLDS kernel is given as
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When the identity matrix is considered for S, 
the GLDS kernel in (61) turns out to be
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where k(xm, yn) is the polynomial kernel function 
of degree p between xm and yn.

Probabilistic Sequence Kernel

Probabilistic sequence kernel (PSK) (Lee et al. 
2007) maps a set of feature vectors onto a proba-
bilistic feature vector obtained using generative 
models like Gaussian mixture models (GMMs). 
The GMM is a linear superposition of Q Gauss-
ian components, used to obtain the parameterized 
density estimation of the given data. The set of 

parameters, θ = {πq, μq, Σq}, q = 1, 2,..., Q is es-
timated from the training data using maximum 
likelihood (ML) method. The models for each 
class are trained independently. The universal 
background model (UBM) is a large GMM trained 
using the training data of all the classes to rep-
resent the class independent distribution of data. 
A class-specific GMM is obtained by adapting 
the UBM to the data of that class. Maximum a 
posteriori (MAP) method is commonly used for 
the adaptation.

The PSK uses the UBM with Q mixtures 
(Reynolds et al., 2000) and the class-specific GMM 
obtained by adapting UBM. The likelihood of a 
feature vector x being generated by the 2Q-mixture 
GMM that includes the UBM and class-specific 
GMM is given as

p x p x q P q
q

Q

( ) ( ) ( )=
=
∑

1

2

 (63)

where P(q) denotes the mixture weight and p(x|q) 
= N(x|μq, Σq). The normalized Gaussian basis 
function for the qth component is defined as
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A feature vector x is represented in a higher di-
mensional space as a vector of normalized Gaussian 
basis functions, Ψ (x) = [ψ1(x), ψ2(x),..., ψ2Q(x)]t. 
Since the element ψq(x) indicates the probabilis-
tic alignment of x to the qth component, Ψ(x) is 
called as the probabilistic alignment vector. A set 
of feature vectors X = x1x2... xM is represented as 
a fixed dimensional vector Φ(X) in the higher 
dimensional space, as given by

Φ ΨPSK
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The PSK between two examples X = x1x2... 
xM and Y = y1y2..., yN is given as
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where S is the correlation matrix as in (60), except 
that it is obtained using the probabilistic align-
ment vectors.

Kullback-Leibler Divergence 
Based Kernel

A kernel function computes a measure of similarity 
between a pair of examples. One way of designing 
a kernel is to first find a suitable distance metric 
for the pair of examples, and then kernelize that 
distance metric. Deriving a suitable distance metric 
for two varying length sequences is a non-trivial 
task. Kullback-Leibler (KL) divergence (Kullback 
& Leibler, 1951) can be used to compare two 
distributions p(x) and g(x) defined over the space 
of x as follows,

D p x g x p x
p x
g x
dxKL ( ) ( ) ( ) log

( )
( )

( ) = ∫    

(67)

This KL divergence is not symmetric. A sym-
metric version of KL divergence between two 
distributions is given by

D p x g x

p x
p x
g x
dx g x

g x
p x
dx

KL ( ) ( )

( ) log
( )
( )

( ) log
( )
( )

( ) =
+∫ ∫    

 

(68)

The KL divergence based kernel (Moreno et 
al., 2004) between the two sequences X and Y 
whose elements are in the space of x is obtained 
by exponentiating the symmetric KL divergence 
as follows:

K X Y eKLD D p x p xKL
X Y( , )

( ( ) ( ))= −δ   (69)

where δ is a constant used for numerical stability. 
The KL divergence between two Gaussian dis-
tributions (Moreno et al., 2004), pX(x) = N(x|μX, 
ΣX) and pY(x) = N(x|μY, ΣY), is given by Equation 
70 in Box 2.

There is no closed form expression for the KL 
divergence between two GMMs. In (Moreno et 
al., 2004), the Monte Carlo method is used to 
compute the KL divergence between two GMMs.

The KLD kernel does not satisfy the Mercer 
property. However, in (Campbell et al., 2006b) 
a GMM supervector kernel that uses KL diver-
gence to compare the GMM supervectors of two 
sequences of feature vectors is introduced. The 
GMM supervector kernel is explained in the next 
subsection.

GMM Supervector Kernel

The GMM supervector (GMMSV) kernel (Camp-
bell et al., 2006b) performs a mapping of a set of 
feature vectors onto a higher dimensional vector 
corresponding to a GMM supervector. An UBM 
is built using the training examples of all the 
classes. An example-specific GMM is built for 
each example by adapting only the means of the 
UBM using the data of that example. An example 
is represented by a supervector obtained by 
stacking the mean vectors of the components of 

Box 2.

D p x p x tr tr d trKL
X Y X Y Y X X Y X
( ) ( ) ( ) ( ) ( )( -- - - -( ) = + − + +Σ Σ Σ Σ Σ Σ1 1 1 12 µ µµ µ µ

Y X Y
t)( - )( )           (70)
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the example-specific GMM. A GMM supervec-
tor kernel is designed using a distance measure 
between the supervectors of two examples. In 
(Campbell et al., 2006b), the distance measure 
between the GMM supervectors is obtained by 
the approximation to KL divergence between the 
two GMMs.

Let p x N x
q q q

q

Q

( ) ( )=
=
∑ π µ Σ

1

 be the probabil-

ity density function represented by the UBM with 

Q components. Let p x N x
X q q

X
q

q

Q

( ) ( )( )=
=
∑ π µ Σ

1

 

and p x N x
Y q q

Y
q

q

Q

( ) ( )( )=
=
∑ π µ Σ

1

 be the example-

specific GMMs obtained by adapting only the 
means of the UBM to the examples X = x1x2... xM 
and Y = y1y2..., yN respectively. The examples X 
and Y are now represented by the suprevector of 
adapted mean vectors of the components as 

Ψ( ) , , ... ,( ) ( ) ( )X X X
Q
X
t

= 

µ µ µ

1 2
   a n d 

Ψ( ) , , ... ,( ) ( ) ( )Y Y Y
Q
Y
t

= 

µ µ µ

1 2
   respectively. When 

only mean vector adaptation is considered, an 
approximation for the distance between two 
GMMs is considered by bounding the KL diver-
gence with the log-sum inequality as seen in 
Equation 71 in Box 3.

For diagonal covariance matrices, the closed 
form expression for the distance between two 
example-specific GMMs is given by

D X Y
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 (72)

The distance in (72) is symmetric and can 
be used for kernel computation. The resulting 
GMMSV kernel is given as

K X YGMMSV
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X
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It is seen that the GMMSV kernel is linear in 
the GMM supervectors. The feature space of the 
GMMSV kernel represents a diagonal scaling 
using π

q q
Σ  of the GMM supervector, i.e., 

Φ Σ( ) ( )X
q q q

X

q

Q

=
−

=
∑ π µ

1
2

1

. Hence the resulting 

kernel satisfies the Mercer property.In (Campbell 
et al. 2006b), only the adapted means are consid-
ered in forming a supervector. However, signifi-
cant information is present in the covariance terms. 
In (Campbell, 2008), the covariance terms are 
also considered to compute the kernel. An exam-
ple-specific GMM is built for each example by 
adapting both the means and covariance matrices 
of the UBM using the data of that example. Here 
the symmetric KL divergence is used as the dis-
tance measure between the two GMMs. The su-
pervector kernel for the two sets of feature vectors 
X and Y is given by Equation 75 in Box 4 where 
Σq is the diagonal covariance matrix of qth com-
ponent of UBM, Σ

q
X( )  and Σ

q
Y( ) are the diagonal 

covariance matrices of qth adapted components 
corresponding to X and Y.

Box 3.

D p x p x D N x N xKL
X Y q
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q q
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One way of obtaining the kernel function is 
exponentiating a distance metric (Shawe-Taylor 
& Cristianini, 2004). In (Dehak et al., 2007), a 
nonlinear GMM supervector kernel is introduced. 
It is seen that the distance in (72) is symmetric 
and satisfies the Mercer property. The nonlinear 
GMM supervector (NLGMMSV) kernel is ob-
tained as

K X Y eNLGMMSV D X Y( , ) ( ( ), ( ))= −δ  Ψ Ψ  (76)

where δ is a constant used for numerical stability.

Bhattacharyya Distance 
Based Kernel

An alternative measure of similarity between 
two distributions is the Bhattacharyya affinity 
measure (Bhattacharyya, 1943; Kailath, 1967). 
The Bhattacharyya distance between two prob-
ability distributions p(x) and g(x) defined over x 
is given by

B p x g x p x g x dx( ) ( ) ( ) ( )( ) = ∫   (77)

L e t  p x N x p p( ) ( , )( ) ( )= µ Σ a n d 

g x N x g g( ) ( , )( ) ( )= µ Σ  be two Gaussian distribu-

tions. The closed form expression for Bhattacha-
ryya distance (You et al., 2009b) between p(x) 
and g(x) is given by Equation 78 in Box 5.

This can be extended to compare two distri-
bu t ions  r ep resen ted  as  GMMs.  Le t 
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 be the GMMs 

for the examples X = x1x2... xM and Y = y1y2..., yN 
respectively. The closed form expression for 
Bhattacharyya distance between pX(x) and pY (x) 
is given using the log-sum inequality as shown 
in Equation 79 in Box 6.

The Bhattacharyya distance measure is sym-
metric and the corresponding kernel gram matrix 
is shown to be positive semidefinite in (Kondor 
& Jebara, 2003). Hence it can be used as a kernel 
function.

In (You et al. 2009b), the Bhattacharyya mean 
distance is used to represent the similarity between 

two GMMs. Let p x N x
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be the GMM 

obtained by adapting the UBM to the example X. 
The GMM-UBM mean interval (GUMI) vector 
Φq(X) is obtained from the approximation of 
Bhattacharyya mean distance between the qth 
component of the adapted GMM pX(x) and the 
corresponding qth component of the UBM p(x) 
as follows:

Φ
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The GUMI supervector is obtained by con-
catenating the GUMI vectors of different com-
ponents as

Φ Φ Φ ΦGUMI t t
Q

t
t

X X X X( ) ( ) , ( ) , ... , ( )= 

1 2

   
(81)

The GUMI kernel is defined as the innerproduct 
of the GUMI supervectors of a pair of examples, 
and is given by

K X Y X YGUMI GUMI t GUMI( , ) ( ) ( )= Φ Φ  (82)

In the GUMI kernel, the supervector is obtained 
from the Bhattacharyya mean distance between a 

GMM and an UBM. However, significant informa-
tion is present in covariance terms. In (You et al., 
2009a), the covariance terms are also considered to 
obtain the GUMI supervector. It is shown in (You 
et al., 2009a) that a GUMI vector is obtained by 
concatenating the mean vector and the variance 
vector. The GUMI vector using the covariance 
terms for the qth component is given by
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The supervector is obtained by concatenating 
the GUMI vectors using the covariance terms of 
the different components as

Φ Φ Φ ΦCOVGUMI COV t COV t
Q
COV t

t
X X X X( ) ( ) , ( ) , ... , ( )= 


1 2

   
(84)

Now the modified Bhattacharyya distance 
based kernel is obtained as

K X Y X YCOVGUMI COVGUMI t COVGUMI( , ) ( ) ( )= Φ Φ  
(85)
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Earth Mover’s Distance Kernel

Earth mover’s distance (EMD) (Rubner et al., 
2000) is a distance metric that computes a 
similarity measure between two multidimen-
sional distributions. The EMD is computed based 
on the transportation problem (Hitchcock, 1941). 
Let X = x1x2... xM and Y = y1y2..., yN be the two 
sets of feature vectors. In (Rubner et al., 2000), 
feature vectors of each of the examples are clus-
tered into a fixed number of clusters. Let the 
example X be represented using S clusters as 
P p w p w p w
X p p S pS
= {( , ),( , ), ... ,( , )}

1 21 2
   and the 

example Y be represented with T number of clus-
ters as R r w r w r w

Y r r T rT
= {( , ),( , ), ... ,( , )}

1 21 2
  . 

Here ps and rt are the cluster representatives, and 
w
ps

and w
rt

are the corresponding cluster weights. 

The EMD metric between the two examples is 
based on considering one set of clusters as piles 
of earth and another set of clusters as holes in the 
ground, and then finding the least work necessary 
to fill the holes with the earth in the piles. The 
EMD between the two sets of clusters P and R is 
defined as
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where dground(.) denotes a ground distance metric 
quantifying the distance between the two clusters 
and fst ≥ 0 are selected so as to minimize the nu-
merator in (86) subject to the following constraints:
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This formulation is solved using a linear pro-
gramming technique to obtain the EMD between 
the two sets of clusters PX and RY. In (Jing et al., 
2003), a valid kernel is obtained by exponentiating 
the EMD. The EMD kernel for two sequences X 
and Y is defined as

K X Y eEMD D P REMD
X Y( , ) ( , )= −δ   (88)

where δ is a constant used for numerical stability.

Intermediate Matching Kernel

The intermediate matching kernel (IMK) 
(Boughorbel et al., 2005) is used for the examples 
represented as sets of local feature vectors. The 
core of the IMK is the set of virtual feature vec-
tors. The two sets of local feature vectors are 
matched using an intermediate set of virtual fea-
ture vectors. The role of every virtual feature 
vector is to select a local feature vector each from 
the pair of examples to be matched. A kernel is 
then computed on the selected pairs of local fea-
ture vectors. An IMK is computed by adding the 
kernels obtained from the pair of local feature 
vectors selected using each virtual feature vector. 
Consider a pair of examples X = x1x2... xM and Y 
= y1y2..., yN that need to be matched. Let V = {v1, 
v2,..., vQ} be the set of virtual feature vectors 
extracted from the training data of all the classes. 
The feature vectors in X and Y that are closest to 
vq are selected for matching. The measure of 
closeness is given by Euclidean distance. The 
feature vectors x

q
*  and y

q
*  in X and Y that are 

closest to vq are obtained as follows:

x x v and y y v
q

x X
q q

y Y
q

* *arg min - arg min -= =
∈ ∈
            

(89)

A basic kernel K x y x y
q q q q

( , ) exp -* * * *= −






δ

2
 

is computed for each of the Q pairs of selected 
local feature vectors. Here δ is a constant scaling 
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term used for numerical stability. An IMK is 
computed as the sum of all the Q basic kernel 
values and is given as

K X Y K x yIMK
q q

q

Q

( , ) ( , )* *=
=
∑

1

 (90)

In (Boughorbel et al., 2005), the set of the 
centers of clusters formed from the training data 
of all classes is considered as the set of virtual 
feature vectors. It is intuitive that the cluster 
centers indicate the centers of highly informa-
tive regions. The pairs of local feature vectors 
from a pair of examples that are closest to these 
centers are selected for building the IMK. A better 
representation for the set of virtual feature vec-
tors can be provided by considering additional 
information. In (Dileep & Sekhar, 2011), the set 
of components of the UBM is used as the set of 
virtual feature vectors.

Set of Components of UBM as 
Set of Virtual Feature Vectors:

In this approach, the set of components of the 
UBM built using the training data of all the classes 
is used as the set of virtual feature vectors. This 
representation for the set of virtual feature vectors 
makes use of the mean vector, covariance matrix, 
and the mixture coefficient for each component. 
The UBM is a large GMM of Q components 
built using the training data of all the classes. 
The feature vectors from the pair of examples 
X and Y that are closest to the component q are 
selected for matching. The responsibility term is 
considered as a measure of closeness of a feature 
vector to the component q. The responsibility of 
the component q of UBM for the feature vector 
x, γq(x), is given by

γ
π µ

π µ
q

q q q

j j j
j

Q
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N x
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=
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∑
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where πq is the mixture coefficient of the component 
q, N(x|μq, Σq) is the normal density for the compo-
nent q with mean μq and covariance Σq. The feature 
vectors x

q
*  and y

q
*  in X and Y that are closest to 

the component q of UBM are given by

x x and y y
q

x X
q q

y Y
q

* *arg max ( ) arg max ( )= =
∈ ∈
           γ γ  

(92)

A basic kernel K x y x y
q q q q

( , ) exp -* * * *= −






δ

2
 is 

computed between every pair of selected feature 
vectors. An intermediate matching kernel (IMK) 
is computed as the sum of all the Q basic kernel 
values as in (90).

Pyramid Match Kernel

In certain cases as in images, the range of values 
for each of the features is uniformly the same. Let 
the range be 0 to D. In such cases, each example 
can be represented by a histogram. For example, 
pixels in a colour image consist of three colour 
components, where each colour component has 
a fixed range 0 to 255. An image can be consid-
ered as a set of 3-dimensional feature vectors and 
represented by colour histogram formed using 
3-dimensional bins. In pyramid match kernel 
(PMK) (Grauman & Darrell, 2007) a set of feature 
vectors is mapped onto a multiresolution histo-
gram that is also called as a histogram pyramid. 
The histogram pyramids are then compared by 
computing a weighted histogram intersection that 
defines an implicit correspondence between the 
multiresolution histograms.

In PMK, the feature representation is based on 
a multiresolution histogram or pyramid, which is 
computed by binning the feature vector of an ex-
ample into discrete regions of increasingly larger 
size. The set of feature vectors X = x1x2..., xm,... xM, 
xm ∈ Rd, is represented as a vector of concatenated 
histograms, Ψ(X) = [H0(X)t, H1(X)t,..., HJ−1(X)t]t. 
The number of levels, J is log

2
1D



 +  and the 

resolution of histogram at each level is different. 
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Hj(X) is the jth histogram vector formed using 
d-dimensional bins of side 2j, and Hj(X) has the 

dimension r D
j j

d

=








2

.

Let X = x1x2... xM and Y = y1y2..., yN be the 
two sets of feature vectors. The similarity between 
X and Y is defined as the weighted sum of the 
number of matches found at each level of pyramids 
formed by Ψ (X) and Ψ (Y). Let H

j
i( )( )X and 

H
j
i( )( )Y be the number of feature vectors in the 

ith bin of the histograms Hj(X) and Hj(Y) respec-
tively. The number of matches in the ith bin of 
the histogram at the level j is obtained as

S H H
j
i

j
i

j
i( ) ( ) ( )( ), ( )= ( )min X Y  (93)

The total number of matches at level j is 
obtained as

S S
j j

i

i

rj

=
=
∑ ( )

1

 (94)

The number of new matches, Aj at the level j is 
calculated by computing the difference between 
the number of matches at levels j and j-1 as follows:

Aj = S j − S j−1 (95)

The number of new matches found at each 
level in the pyramid is weighted according to the 
size of that histogram bin. The weight at the 

level j is given by w
dj j

=
1

2
. Thus, the PMK for 

X and Y is defined as

K w A
j j

j

J
PMK ,( )X Y =

=

−

∑
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 (96)

The normalized PMK for two sequences X 
and Y is obtained as

ˆ ( )
( )

( ) ( )
K

K

K K

PMK
PMK

PMK PMK
,

,

, ,
X Y X Y

X X Y Y
=  

(97)

In this section, we presented the different meth-
ods for designing dynamic kernels for sequences of 
continuous feature vectors. The generalized linear 
discriminant sequence kernel for a pair of patterns 
is defined by computing the average of polynomial 
expansions of feature vectors in each pattern as an 
explicit mapping of that pattern, and then comput-
ing the innerproduct between the explicit mappings 
of two patterns. This method is computationally 
intensive when the lengths of pattern are high. 
Methods for designing the probabilistic sequence 
kernel, Kullback-Leibler divergence kernel, GMM 
supervector kernel, Bhattacharyya distance based 
kernel, and earth movers distance kernel involve 
building a probabilistic model for each of the se-
quential patterns. These methods are suitable for 
long patterns considered as sets of feature vectors. 
The intermediate matching kernel is designed by 
matching the feature vectors in two patterns with 
elements of a set of virtual feature vectors. The 
choice of a suitable set of virtual feature vector is 
important in the design of intermediate matching 
kernel. The pyramid matching kernel is designed 
by computing the multiresolution histogram rep-
resentations of two patterns and then matching 
the histograms at different levels.

In the next section we present a review of 
kernel method based approaches to sequential 
pattern analysis.

REVIEW OF KERNEL METHOD 
BASED APPROACHES TO 
CLASSIFICATION AND CLUSTERING 
OF CONTINUOUS FEATURE 
VECTOR SEQUENCES

A speech utterance, an image, an audio clip, a 
video clip or time series data such as handwritten 
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character data, sensor recordings in a chemical 
plant, stock market data, and network traffic data 
are all represented as sequences of continuous 
feature vectors. In this section, we present pattern 
analysis tasks such as classification and clustering 
of sequence of continuous feature vectors using 
dynamic kernels.

Sequential pattern analysis tasks such as 
speaker recognition, speech emotion recogni-
tion and spoken language identification involve 
dynamic kernels on sequences of continuous fea-
ture vectors corresponding to speech utterances. 
Every such continuous feature vector corresponds 
to features obtained by the spectral analysis of a 
frame of the speech signal. For all these tasks an 
example is represented as a set of feature vectors. 
The task of speaker recognition corresponds to 
either speaker identification or speaker verification 
(Campbell et al., 2006a). Speaker identification 
involves identifying a speaker among a known 
set of speakers based on the speech utterance 
produced by the speaker. Speaker verification 
involves whether to accept or reject the claim 
of a speaker based on a speech utterance and is 
used in a voice based authentication system. The 
GLDS kernel is used for speaker recognition in 
(Campbell, 2002; Campbell et al., 2006a). The 
KL-divergence based kernel is used for speaker 
verification in (Dehak & Chollet, 2006). The 
GMM supervector kernel was used for speaker 
verification in (Campbell et al., 2006c,b). Here 
the distance between the two GMM supervec-
tors is computed as the KL divergence between 
the respective GMMs. Bhattacharyya distance is 
an alternative measure of distance between two 
distributions. The Bhattacharyya distance based 
kernel is used for speaker recognition in (You et 
al., 2009b). The continuous feature vectors are 
transformed using the kernel Fisher discriminant 
analysis and the Bhattacharyya distance based 
kernel is used for speaker recognition in (Chao 
et al., 2005). An approach for speaker verifica-
tion based on the probabilistic sequence kernel is 
proposed in (Lee et al., 2007). Dileep and Sekhar 

(2011) used the intermediate matching kernel 
for speaker identification task. Spoken language 
recognition involves determining the language 
of an utterance from a set of known languages. 
Here an utterance is represented as a set of fea-
ture vectors. The GLDS kernel (Campbell et al., 
2006a) and covariance kernel (Campbell, 2008) 
are used for language recognition using SVMs. 
Speech emotion recognition involves identifying 
the emotion with which a given speech utterance 
is produced among a set of predefined emotions. 
The GMM supervector kernel (Campbell et al., 
2006c) was used for speech emotion recognition 
in (Hu et al., 2007). Kernel based clustering was 
used by Satish (2005) in order to discritize the 
continuous feature vectors so as to make use of 
discrete HMMs in the kernel feature space for 
speech recognition tasks involving the recognition 
of confusable classes of subword units. A similar 
approach was also used for a task in handwritten 
character recognition (Satish, 2005).

Local feature vectors extracted from an image 
used to represent an image as a set of feature vec-
tors and dynamic kernels are used for tasks such 
as image retrieval and object detection. In content-
based image retrieval (CBIR) all the images in 
the database that are relevant to a user’s query 
are retrieved. Understanding the user’s intention 
is an issue to be addressed in a CBIR system. In 
order to address this issue, CBIR systems use the 
relevance feedback mechanism where the user’s 
intention is understood iteratively based on the 
feedback provided by the user. Dynamic kernels 
can be used for matching the query image and the 
set of images in a database. In the relevance feed-
back based CBIR system, dynamic kernel based 
SVMs are used for identifying the relevant and 
irrelevant images for the query. For example, the 
EMD kernel based SVM was used in (Jing et al., 
2003) for the relevance feedback approach based 
CBIR. Object recognition is required in a CBIR 
system in order to obtain a better understanding 
of the content of an image. Object recognition 
involves categorizing a given object image or a 
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region in an image to one of the priorly known 
object categories. An object image or a region in an 
image is represented using a set of local features. 
In (Boughorbel et al., 2005), the IMK was used for 
SVM based object recognition. Multiple resolu-
tion features are considered for object recognition 
using the pyramid match kernel in (Grauman & 
Darrell, 2005; 2007).

We presented the dynamic kernel based 
approaches for sequential pattern analysis of 
speech and image data. The dynamic kernels for 
sequences of continuous feature vectors presented 
in this chapter can also be used for variable length 
multimedia sequence data. The term multimedia 
refers to the diversity of modalities (for example 
images, video, text, music, speech) and also to the 
complex, compound (multimodal) data sets (for 
example a video with an accompanying sound 
track and closed caption) (Hanjalic et al., 2008). 
The KL divergence based kernel was used for 
SVM based classification of multimedia data in 
(Moreno et al., 2004).

SUMMARY

In this chapter, we presented a review of ap-
proaches to sequential pattern classification and 
clustering using kernel methods. The focus is 
on design of suitable kernel functions for differ-
ent types of sequential patterns. We presented 
the methods for design of dynamic kernels for 
sequences of continuous valued feature vec-
tors. Three categories of methods for designing 
dynamic kernels are as follows: (1) Construct a 
higher-dimensional representation using an ex-
plicit mapping for each of the sequential patterns 
and then compute an inner product between the 
higher-dimensional representations, (2) Construct 
a probabilistic model for distribution of the data of 
each of the sequential patterns and then compute 
a kernel function using a measure of similarity 
between the distributions, (3) Match the sequen-

tial patterns of the different lengths using a fixed 
size set of virtual feature vectors and construct a 
kernel using the matching parts of patterns. The 
generalized linear discriminant sequence kernel 
and probabilistic sequence kernel for sequences 
of continuous feature vectors belong to the first 
category. The GMM supervector kernel, Bhat-
tacharyya distance based kernel and earth mover’s 
distance kernel belong to the second category. 
The intermediate matching kernel belongs to the 
third category. Pyramid match kernel matches 
the multiresolution histograms of sequential 
patterns. It may be noted that all these dynamic 
kernels for continuous feature patterns consider 
a pattern as a set of feature vectors rather than 
as a sequence of feature vectors. In other words, 
the sequence information in the patterns is not 
considered in the method used for design of the 
dynamic kernel. Fisher kernel for discrete symbol 
sequences uses the sequence information in the 
patterns. The score-space kernel (Smith & Gales, 
2002) extends the Fisher kernel for sequences of 
continuous feature vectors. Dynamic kernels for 
sequences of continuous valued feature vectors 
have been explored for several tasks speech and 
audio processing, image processing and video 
processing. Kernel methods using dynamic kernels 
have been shown to be effective for sequential 
patterns analysis in these tasks.
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Classification and Clustering 
of Sequential Patterns, Part II:

Sequences of Discrete Symbols

ABSTRACT

Pattern analysis tasks on sequences of discrete symbols are important for pattern discovery in bioinfor-
matics, text analysis, speech processing, and handwritten character recognition. Discrete symbols may 
correspond to amino acids or nucleotides in biological sequence analysis, characters in text analysis, 
and codebook indices in processing of speech and handwritten character data. The main issues in kernel 
methods based approaches to pattern analysis tasks on discrete symbol sequences are related to defining 
a measure of similarity between sequences of discrete symbols, and handling the varying length nature of 
sequences. We present a review of methods to design dynamic kernels for sequences of discrete symbols. 
We then present a review of approaches to classification and clustering of sequences of discrete symbols 
using the dynamic kernel based methods.
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INTRODUCTION

Kernel methods for pattern classification and 
clustering were presented in the previous chapter. 
We also explained the design of dynamic kernels 
for sequences of continuous feature vectors. In 
this chapter, we present a review on the design of 
dynamic kernels for discrete symbol sequences.

A discrete symbol sequence comprises of a 
sequence of symbols, belonging to an alphabet 
∑, observed or recorded during a process. For 
example, in coin tossing experiment, the observa-
tions being either head (H) or tail (T) may result 
in a discrete observation sequence HHTHTTH. 
Here the alphabet ∑ is a set of two symbols {H, 
T} and the length of the observation sequence 
is seven. The discrete observation sequence ob-
tained in another coin tossing experiment may be 
THHHTTHHT resulting in a sequence of different 
length. One major issue in handling discrete sym-
bol sequences is that the observation sequences 
are of varying length in nature. This applies to 
any sequence data. A major source of discrete 
symbol sequences is the biological sequences 
such as protein sequences, DNA sequences and 
RNA sequences. The DNA sequences are strings 
over four nucleotides, represented by the alphabet 
∑={A,C,G,T}. The RNA sequences are strings 
over the alphabet ∑={A,C,G,U}. The symbols in 
the alphabet for DNA and RNA correspond to the 
following nucleotides: A(adenine), C(cytosine), 
G(guanine), T(thymine), and U(uracil). The posi-
tions of occurrence of these nucleotides in the chain 
molecule of DNA or RNA signify the functioning 
of that DNA or RNA. An example DNA sequence 
of length 50 is ATAATAAAAAATAAAAATA-
AAAAAAATTAAAAAATATTAAAAAATAAAAA. 
Protein sequences are strings over an alphabet 
of 20 amino acids which are the building blocks 
of proteins. The kinds of amino acids occurring, 
their frequency of occurrence and their relative 
positions of occurrence in a protein sequence in-
fluence the functionality of a protein. An example 
of a protein sequence is MGTPTLAQPVVTGM-

FLDPCH. Discrete symbol sequences are also 
used to analyze text data.

A paragraph is considered as a sequence of 
words. In text analysis, words are the observa-
tion symbols derived from a vocabulary of all the 
words. Discrete observation sequences are also 
derived by vector quantization of the continuous 
feature vector sequences extracted from speech 
data and online handwritten character data. Pattern 
analysis tasks involving discrete symbol sequences 
are classification and clustering. In order to use 
kernel methods for these tasks, it is necessary to 
address the issue of handling the varying length 
nature of sequences. In some approaches, an 
explicit feature map (Ding & Dubchak, 2001; 
Jaakkola et al., 2000; Leslie et al., 2002; Leslie 
& Kuang, 2003; Liao & Noble, 2002; Lodhi et 
al., 2002; Logan et al., 2001) is used to obtain a 
fixed length representation for each of the vary-
ing length sequences. In some other approaches, 
a kernel is designed directly from the varying 
length sequences (Saigo et al., 2004; Tsuda et al., 
2002; Vert et al., 2004; Watkins, 1999). Kernels 
designed using any of these two methods are called 
as dynamic kernels for discrete symbol sequences.

The organization of the rest of the chapter is as 
follows: The next section describes the methods 
for the design of dynamic kernels for discrete sym-
bol sequences. Then a review of kernel methods 
based approaches to sequential pattern analysis 
involving discrete symbol sequences is presented.

DESIGN OF DYNAMIC 
KERNELS FOR DISCRETE 
SYMBOL SEQUENCES

The main issue in designing a kernel for discrete 
observation symbol sequence is to handle the vary-
ing length nature of the sequences. The varying 
length sequences of discrete observation symbols 
may be explicitly mapped onto a fixed dimensional 
feature vector and then the kernel is computed as 
an innerproduct in that fixed dimensional space. 
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Instead of obtaining an explicit feature map, kernel 
between a pair of discrete symbol sequences can 
also be computed implicitly either by defining 
a function or an operation between the pair of 
sequences. In this section we present the design 
of various dynamic kernels for discrete symbol 
sequences.

Consider two discrete symbol sequences, P = 
p1p2... pm... pM and Q = q1q2... qn... qN of lengths M 
and N respectively defined over an alphabet Σ. A 
dynamic kernel between the sequences

P and Q is defined as

K (P,Q)= ¦ (P) ¦ (Q),  (1)

Where Φ(P) and Φ(Q) correspond to an im-
plicit or explicit feature map for P and Q respec-
tively and ., .  denotes the innerproduct operation. 
The kernel function K(P,Q) represents a measure 
of similarity between the two sequences. For 
example, in Figure 1, the feature map Φ(.)maps 
variable length sequences of symbols to points in 
a fixed dimensional space. The transformation is 
expected to increase the discrimination between 
the families of sequences. In this section, we 
present the feature maps Φ(.) designed for differ-
ent dynamic kernels.

Pairwise Comparison Kernel

A common task involving discrete symbol se-
quences is to assign a sequence to a family of 
sequences.

For example, protein homology detection pro-
cess involves understanding the structure and func-
tionality of an unannotated protein and assigning 
it to a family of proteins whose structure is known 
and with which the given protein is similar. This 
requires detecting similarities among sequences. 
Pairwise comparison kernel (Liao & Noble, 2002; 
2003) uses an empirical feature map that maps a 
discrete symbol sequence to a fixed dimension 
vector of pairwise similarity scores. Empirical 
feature map (Tsuda, 1998) involves representing 
an object by measures of its similarity to the ref-
erence objects. The empirical feature map used 
by the pairwise comparison kernel represents a 
sequence by a set of scores indicating how similar 
the sequence is to the reference sequences.

Let P = p1p2... pm... pM be a discrete observation 
sequence. Let P= {P1, P2,..., Pr,..., PR} be the set 
of reference sequences used for mapping. Pairwise 
comparison score based feature map for P is 

given by Φ pair-comparison(P)= ϕ
r r

R
P( )( )

=1
 (2)

Figure 1. Illustration of a feature map for variable length sequences
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Where φr(P) denotes the similarity score be-
tween the sequence P and the reference sequence 
Pr. The similarity score φr(P) is computed using 
any of the string similarity metrics such as, edit 
distance based measures, city block distance, 
Needleman-Wunsch algorithm (Needleman & 
Wunsch, 1970), or Smith-Waterman dynamic 
programming algorithm (Smith & Waterman, 
1981). In (Liao & Noble, 2002; 2003), Smith-
Waterman dynamic programming algorithm is 
used for computing the similarity between two 
sequences. Pairwise comparison kernel for two 
sequences P and Q using this empirical feature 
map is defined as

Kpair-comparison(P,Q)=
Φ Φpair comparision pair comparisionP Q− −( ), ( )         (3)

The pairwise comparison score based feature 
map uses the information present in various 
families of sequences. It differs from the other 
aggregate statistics based approaches such as 
profiles (Gribskov et al., 1990) and hidden Mar-
kov models (HMMs) (Baldi et al., 1994, Krogh 
et al., 1994) in that it captures the discriminatory 
information between the families of sequences. 
The discriminatory information between the 
families of sequences was also considered in the 
Fisher score based feature map (Jaakkola et al., 
1999, 2000). This involves modeling the aggregate 
statistics for a family of sequences by training a 
HMM. Pairwise comparison score based feature 
map is simpler when compared to the Fisher score 
based feature map because it does not need train-
ing of HMMs.

Composition Kernel

A composition kernel defines a feature map of 
a sequence that characterizes the composition 
of various discrete observation symbols or their 
properties. The feature map is defined as

Φcomposition(P)=(φr(P))pϵΣ (4)

where φr(P) is the number of occurrences of the 
symbol p in the sequence P. For example, a feature 
map for a protein sequence may be a 20-dimen-
sional vector that contains the frequency of occur-
rence of each amino acid. For a protein sequence 
P = MGTPTLAQPVVTGMFLDPCHTWTVM, the 
feature map Φcomposition(P) is [1 1 1 0 1 2 1 0 0 2 3 
0 3 1 0 0 5 3 1 0]T. Significant amount of informa-
tion present in the sequence is neglected in the 
composition feature map of (4). The composition 
feature map of (4) can be enhanced by appending 
additional features as follows:

Φcomposition(P)=(φr(P))pϵΣ, ϕs s

m
P( )( )






=1

 (5)

where ϕ
s s

m
P( )( )

=1
 correspond to m features rep-

resenting the structural or physico-chemical or 
sequence information. In (Ding & Dubchak, 2001), 

ϕ
s s

m
P( )( )

=1
 comprises of 5 sets of features related 

to structural and physico-chemical properties of 
the amino acids present in a given protein se-
quence. The 5 sets of features with 21 features in 
each set contain the information about the follow-
ing: (1) predicted secondary structure, (2) hydro-
phobicity, (3) normalized van der Waals volume, 
(4) polarity, and (5) polarizability. A protein se-
quence is mapped onto a 125-dimensional feature 
vector consisting of 5 sets of features along with 
the 20 compositional features. In (Wang et al., 
2004; Zhang et al., 2003), sequence information 
is used as the m features. Every amino acid sym-
bol in the protein sequence is represented by a 
numerical index so as to obtain a numerical se-
quence, H = h1h2... hn... hN corresponding to the 
discrete symbol sequence P = p1p2... pn... pN. An 
autocorrelation function defined as follows is used 
to obtain the m features:
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(6)

The composition kernel for two sequences P 
and Q is given by

Kcomposition(P,Q)= Φ Φcomposition compositionP Q( ), ( )  
(7)

The composition kernel that uses the feature 
maps corresponding to the frequencies of occur-
rence of symbols and sequencing information is 
called as physico-chemical kernel in (Zhang et 
al., 2003). In the next subsection, we describe the 
spectrum kernel for strings defined as a composi-
tion kernel based on substrings.

Spectrum Kernel

Spectrum kernel is a string kernel based on the 
sequence similarity. The sequence similarity is 
computed using k-mers that correspond to sub-
strings of k contiguous symbols occurring in a 
sequence. Figure 2 illustrates all possible 3-mers 
for a given sequence.

The similarity score for two sequences is re-
lated to the number of common k-mers. The k-
spectrum of a sequence is defined as the set of all 
possible k-length substrings in the sequence (Les-

lie et al., 2002). The feature map based on k-mers 
for a sequence is given by

Φk
spectrum(P)= (φu(P))uϵΣ

k (8)

where φu(P) is the frequency of occurrence of a k-
mer u in P. The spectrum kernel for two sequences 
P and Q is computed as

Kk
spectrum(P,Q)= Φ Φ

k
spectrum

k
spectrumP Q( ), ( )  (9)

The computation of spectrum kernel func-
tion between two given sequences is illustrated 
in Figure 3.

The k-spectrum feature map, Φk
spectrum(P), re-

sults in a high dimensional sparse feature vector. 
For example, when k = 5 and the size of the al-
phabet is 20, each feature vector consists of 520 
elements. However, the spectrum kernel can be 
computed implicitly using data structures such as 
trie or suffix trees, without obtaining an explicit 
feature map. The k-spectrum feature map proposed 
in (Leslie et al., 2002) considers an equal weight 
for every k-mer. Weighted sum of k-mers is pro-
posed in (Vishwanathan & Smola, 2003) that uses 
different weights for different k-mers. Spectrum 
kernel computes a measure of similarity between 
the sequences by considering the exact match 
between the k-mers. Many problems involving 
the sequence similarity computation need to 
consider some amount of mismatch between the 

Figure 2. The k-mers and their frequencies of occurrence for a given sequence using k = 3
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k-mers of the two sequences. For example, in 
molecular biology, proteins of a family may not 
match exactly due to mutations. With some extent 
of mismatch tolerated, all of them are considered 
to be similar and belonging to the same family. 
In the next subsection, we describe the mismatch 
kernel to compute a measure of similarity between 
sequences when there are some mismatches.

Mismatch Kernel

Mismatch kernel is a generalization of a spectrum 
kernel. The value of the spectrum kernel func-
tion computed between a pair of sequences is 
high when many common k-mers are present in 
both the sequences. This notion is generalized in 
the mismatch kernel (Leslie et al., 2003; 2004). 
If there are many number of k-length substrings 
that mismatch by at most l symbols and occur 
commonly between a pair of sequences, then the 
measure of similarity between them is high. For 
example, consider a 5-mer VTWTA that would 
match with the sequences such as VTATA, VCWTA, 
or VTWTK when l = 1. For a given k-mer, all the 
k-length substrings that differ from it by at most l 
symbols form a (k, l) neighborhood for the k-mer. 

For a k-mer, u = u1u2... uk, the (k, l) neighborhood 
is the set of all k-length subsequences v ∈ Σk that 
mismatch from u by at most l symbols. For a k-
mer u, the feature map is defined as

Ψ Ψ
Σ( , )

( ) ( )
k l
mismatch

v v
u u

k
= ( )

∈
 (10)

where Ψv(u)=1 if v belongs to the (k, l) neigh-
borhood of u and Ψv(u)=0 otherwise. Mismatch 
feature map for a sequence P is obtained by sum-
ming the feature vectors from the feature maps of 
all the k-mers as given below:

Φ Ψ
( , ) ( , )

( ) ( )
k l
mismatch

k l
mismatchP u

u P

=
∈
∑   (11)

The (k, l) mismatch kernel for two sequences 
P and Q is computed as

K P Q P Q
k l
mismatch

k l
mismatch

k l
mismatch

( , ) ( , ) ( , )
( , ) ( ), ( )= Φ Φ  

(12)

An illustration of computation of the mismatch 
kernel between two sequences is given in Figure 4.

Figure 3. Illustration of computing the spectrum kernel function between two sequences for k = 2

Figure 4. An illustration for the computation of mismatch kernel between two sequences P and Q for 
k = 3 and l = 1
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A specific case of mismatch kernel when l = 
0 is the spectrum kernel. The mismatch feature 
map proposed in (Leslie et al., 2003;2004) is 
extended using other kinds of inexact string 
matching that involve restricted gaps (restricted 
gappy kernel), probabilistic substitutions (substi-
tution kernel) or wildcards (wildcard kernel) in 
(Leslie & Kuang, 2003). Explicit mismatch feature 
map involves considering all possible k-mers and 
results in high dimensional feature vectors. How-
ever, the mismatch kernel function between the 
two sequences, K

k l( , )
mismatch (P,Q), can be computed 

implicitly using data structures like tries.

String Subsequence Kernel 
or Gappy N-Gram Kernel

String kernels such as spectrum kernel and mis-
match kernels consider two sequences to be similar 
if they share many common substrings, where a 
substring is a contiguous sequence of symbols. 
In this section, we present a string kernel that 
considers two sequences to be similar when they 
have many common subsequences, where a subse-
quence is a non-contiguous sequence of symbols. 
For example, the pattern car occurs as a subse-
quence in both the sequences card and custard. 
The string subsequence feature map (Lodhi et al., 
2002) maps a string into a feature vector whose 
dimension is equal to the number of all possible 
subsequences of a particular length. However, 
in order to compensate for the non-continuities 
while matching, a decay factorλ∈(0,1) is used to 
weigh each feature.

Given an alphabet Σ, a string P is a finite length 
sequence of symbols from Σ denoted by

P = p1p2... p|P|, where |P| is the length of the 
string P. Then a subsequence u of P is defined 
as follows: u is a subsequence of P, if there exist 
indices i = (i1, i2,..., i|u|), with 1 ≤ i1 ≤... ≤ i|u| ≤|P|, 
such that uj = Pij, for j = 1, 2,..., |u|, or u = P[i]. 
The length l(i) of the subsequence in P is i|u| − i1 + 
1 The set of all strings of length k is denoted by Σ k. 
The string subsequence feature map is defined as

Φk
subsequence(P)=(φu(P))u∈Σ

k (13)

where φu(P) is given by

φu(P)= λl i
i u P i

( )

: = 




∑  (14)

The subsequence kernel for two sequences P 
and Q is given by,

K
k k k
subsequence(P,Q)=

      

subsequence subsequenceΦ Φ( , (P) Q)
            

                 

=

=
∈

+

∑ ϕ ϕ

λ

u u
u

l i l j

j

P Q
k

( ), ( )

( ) ( )
Σ

:: [ ]: [ ] u Q ji u P iu k ==∈

∑∑∑
Σ  

(15)

For example, the two sequences DIARY and 
DAILY are mapped onto a 15-dimensional feature 
space by considering the subsequences of length 
2 as shown in Table 1.

It is seen that the features are weighted by a 
decay factor proportional to the length of the 
subsequences. For example for the feature DA, 
the weight used for the string DIARY is λ3, 
whereas for the string DAILY, the weight factor 
is λ2. The value of subsequence kernel between 
the two sequences DIARY and DAILY for k = 2 

Table 1.

DL DI DA DR DY IA IR IY IL AR AY AL AI RY LY

Φ2
subsequence(DIARY) 0 λ2 λ3 λ4 λ5 λ2 λ3 λ4 0 λ2 λ3 0 0 λ2 0

Φ2
subsequence(DAILY) λ4 λ3 λ2 0 λ5 0 0 λ3 λ2 0 λ4 λ3 λ2 0 λ2
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is, K2
subsequence(DIARY,DAILY)=2 λ5+2 λ7+ λ10. String 

subsequence kernel was proposed as a measure 
of similarity between two text documents. The 
text documents are considered as long sequences 
of words. This representation is better than the 
bag-of-words representation (Salton et al. 1975), 
where the sequential information between the 
words in the text document is neglected. String 
subsequence kernel for two sequences is com-
puted as the inner product between the explicit 
feature maps corresponding to the two sequences. 
Since the explicit feature map results in a high 
dimensional feature vector, whose dimension is 
given by the total number of k-mers possible for 
a given alphabet, computation of the kernel func-
tion becomes impractical even for small values 
of k. However, the kernel formulation is shown 
to be of recursive nature in (Lodhi et al., 2002), 
so that the dynamic programming based ap-
proaches can be used for efficient computation.

Term Frequency Log 
Likelihood Ratio Kernel

The string kernels such as spectrum kernel and 
subsequence kernel map a discrete symbol se-
quence onto a feature space corresponding to 
the frequency of occurrence of certain patterns 
like k-mers or subsequences of length k. In case 
of term frequency log likelihood ratio based fea-
ture map, probabilities of occurrence of k-mers 
are considered (Campbell et al., 2004a,b; 2007). 
Given a sequence P = p1 p2...pn...pN, let the K k-mers 
occurring in P be denoted as u1

P, u2
P,…,uk

P. For 
example, given the sequence ABCABC, the 2-mers 
in the sequence are given by AB, BC, CA, AB, BC. 
Let the unique k-mers occurring in a corpus be uj, 
j = 1, 2,..., D. Here the corpus comprises of all the 
sequences available in the training data set. Let 
L denote the total number of k-mers occurring in 
the corpus. The probability of observing a k-mer 
uj in a sequence P is given by

p(uj|P)=
n

K
j
P

 (16)

where nj
Pis the frequency of occurrence of uj in P. 

The probability of occurrence of uj in the corpus 
is given by

p(uj)=
n

L
j  (17)

where nj is the frequency of occurrence of uj in 
the corpus. The feature map used by the term 
frequency log likelihood ratio (TFLLR) kernel 
is given by

Ψ
k
TFLLR

j j

D

P p u P( ) ( )= ( )
=1

 (18)

The elements of the feature vector in (18) 
correspond to the term frequencies. Here ‘term’ 
refers to a k -mer. In order to normalize the ele-
ments of the feature vector in (18), every element 
in the feature vector is weighted using the cor-
responding term frequencies in the corpus. This 
is explained below along with the description of 
the TFLLR kernel.

The TFLLR kernel considers a sequence P to 
be similar to a sequence Q if the probability of 
occurrence of k-mers of P in Q is high. The prob-
ability of occurrence of the k-mers of P in Q is 
computed using the likelihood ratio given below:

Likelihood ratio score =
p u Q

p u
i
P

i
P

i

K ( )

( )=
∏

1

 (19)

where p
i

( )u QP  denotes the probability of a k-mer 
of P, ui

p also occurring in Q. The TFLLR kernel 
is obtained by considering the log of the likelihood 
ratio (19) and normalizing it by the number of 
observations in P as follows:
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K P Q
K

p u Q

p uk
TFLLR i

P

i
P

i

K

( , ) log
( )

( )
=

=
∑1

1

 (20)

Expressing in terms of unique k-mers in the cor-
pus, the TFLLR kernel function can be written as

K P Q
p u Q

p uk
TFLLR n

K
j

D
j

j

j
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( , ) log
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=
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From (16) it follows that

K P Q p u P
p u Q

p uk
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=
∑

1

 

(22)

Linearizing the log function in (22) using 
log(x) ≈ x − 1,

K P Q p u P
p u Q
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From (23) it is seen that the elements of the 
feature vector in (18) are weighted using the fac-
tor 1 p u

j
( ) . Hence the TFLLR feature map is

Φ
k
TFLLR

j j

D
P P( ) ( )= ( )

=
ϕ

1
 (24)

where ϕ
j

j

j

P
p u P

p u
( )

( )

( )
= . The TFLLR kernel 

between two sequences P and Q is computed as

K P Q P Q
k
TFLLR

k
TFLLR

k
TFLLR( , ) ( ), ( )= Φ Φ .   

(25)

Motif Kernels

Pattern analysis tasks involving discrete symbol 
sequences need to compute a measure of similarity 
between two sequences. Kernels such as pairwise 
comparison kernel, composition kernel, spectrum 
kernel, subsequence kernel and TFLLR kernel 
compute a measure of similarity by considering 
common patterns in the two sequences. However, 
there are situations where the pattern analysis 
tasks need to be carried out even when the se-
quences have low similarity or share only a few 
common patterns. In molecular biology, remote 
homology detection involves protein homology 
detection even when the sequence similarities 
are low. Though the sequences are globally dis-
similar, certain portions in protein sequences that 
represent the information regarding the protein’s 
functionality are found to be similar in homolo-
gous proteins. These highly conserved regions in 
protein sequences that are functionally important 
are known as motifs. Protein sequence motifs are 
used to compute a measure of similarity between 
protein sequences. Protein sequences that share 
many number of motifs are considered as similar 
sequences. Motifs are constructed from multiple 
sequence alignments of related sequences. Motifs 
can be represented as discrete sequence motifs 
(Ben-Hur & Brutlag, 2003) or position specific 
scoring matrices (PSSMs) (Logan et al., 2001). 
Given a protein sequence, substrings of the same 
length as that of the motifs called ‘blocks’ are 
considered and are scored against the set of all 
available motifs.

A discrete sequence motif is defined as fol-
lows. A motif is a sequence of elements where 
an element is a symbol in the alphabet Σ, or a 
substitution group, or a wild card character *. A 
substitution group is a subset of Σ. For example, 
consider the motif m = [AS ] *DKF[FILMV] 
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**[FILMV] ***L[AS T], with length |m| =14. 
Here [AS ], [FILMV], and [AS T] are substitution 
groups. A sequence P = p1p2... pN is said to contain 
a motif m = m1m2...m|m| at a position i, if one of 
the following properties is satisfied for every j = 
1, 2,..., |m|:

1.  pi+j-1 = mj, if mj ∈Σ
2.  pi+j-1 ∈ S, if mj ∈ S, where S is a substitution 

group
3.  pi+j-1 ∈Σ if mj = *

An illustration of a discrete sequence motif 
of length 14 is shown in Figure 5 along with 
four protein blocks of the same length which are 
compared with the motif. The first two blocks b1 
and b2 match with the motif whereas the blocks b3 
and b4 do not match with the motif. The elements 
in blocks b3 and b4 that do not match with the 
corresponding elements in m are shown in bold.

A sequence P is mapped onto the fixed dimen-
sion motif feature space as

Φmotif(P)= ϕ
m m M
P( )( )

∈
 (26)

where M is the set of all motifs and φm(P) is the 
frequency of occurrence of the motif m in P. Motif 
kernel for two sequences P and Q is defined as

Kmotif(P,Q)= Φ Φmotif motifP Q( ), ( )  (27)

A motif can also be represented as a position 
specific scoring matrix (PSSM) (Logan et al. 

2001). The PSSMs are used to map the sequences 
onto the motif feature space. A motif is represented 
by a T × L matrix, MPS SM, where each of the T rows 
corresponds to a symbol from the alphabet. For 
protein motifs, each of the T rows corresponds to 
an amino acid. Here L corresponds to the length of 
the motif and a column corresponds to a position 
in the motif. An element in the matrix MPS SM(at, 
posl) represents the probability of occurrence of 
tth amino acid, at, at lth position, posl, in the motif.

As a large number of motifs are considered, the 
dimension of motif feature vector space is high. 
Motif kernel computation between two sequences 
involves computation of inner product between 
such high dimensional feature vectors, that is 
computationally intensive. However, the motif 
kernel can be computed implicitly by storing the 
motifs in data structures such as tries.

Marginalised Kernels

String kernels such as spectrum kernel, mis-
match kernel and subsequence kernel consider 
the frequency of occurrence of certain patterns 
called k-mers in a given sequence to obtain a 
measure of similarity between two sequences. 
The composition kernel uses such frequency 
based features to obtain a measure of similarity 
between sequences. Instead of using the frequency 
of occurrence based features, term frequency log 
likelihood ratio kernel considers the probability of 
occurrence of a pattern for mapping a sequence to 
a fixed dimension feature vector. However, none 
of these approaches for feature mapping consider 
the context information associated with the sym-

Figure 5. Matching a discrete sequence motif with four protein blocks
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bols in the sequence. The context information 
corresponds to the circumstances under which 
a discrete symbol is observed. Some discrete 
symbols observed in two different contexts may 
have different meanings. For example, consider 
the following two text sentences where words are 
the discrete observation symbols: ‘I purchased a 
book’ and ‘I am planning to book a ticket’. The 
word ‘book’ has a different meaning depending 
on the context of its appearance. For processing 
text sequences, say in text classification, consider-
ing the context information is useful. Biological 
sequences such as DNA sequences are also context 
sensitive. The DNA sequences have coding and 
noncoding regions that have different statistical 
properties. A particular residue occurring in a 
coding region has a different meaning when it 
occurs in a non-coding region. The coding and 
non-coding regions provide the context informa-
tion that is hidden from the discrete observation 
symbols. In a generative perspective, we can 
consider an observation symbol being emitted 
by a hidden state corresponding to the context. 
Figure 6 shows a discrete symbol sequence P and 
the corresponding hidden state sequence H with 
the states representing the coding and non-coding 
regions of DNA.

Marginalized kernels (Tsuda et al. 2002) con-
sider the context information in the form of the 
hidden state information for computing a measure 
of similarity between sequences. First, a joint 
kernel is defined as a measure of similarity between 
sequences assuming that the hidden state sequence 
is available. However, the information about hid-
den state sequence is not available. The marginal-
ized kernel takes the expectation of the joint 

kernel with respect to the hidden state sequence. 
The posterior distribution of the hidden state 
sequence is estimated using the probabilistic 
models such as HMMs.

Let P = p1p2... pn... pN and Q = q1q2... qm... qM be 
two sequences on an alphabet Σ. Let HP = h1h2... hn... 
hN and HQ = h1h2... hm... hM be the corresponding 
sequences of hidden states. Here, hi corresponds to 
a hidden state such that hi ∈ H, where H is the set 
of hidden states. A combined sequence ZP can be 
written as, ZP = z1z2... zn... zN = {p1, h1}{p2, h2}... 
{pn, hn}... {pN, hN}. The hidden state sequence 
information is used in defining the joint kernel 
Kjoint(ZP, ZQ). The marginalized kernel is derived 
from the joint kernel by taking the expectation 
with respect to hidden state sequence as follows:

Kmarginalized(Zp,ZQ)=
p H P p H Q K Z Z

P
HH

Q
jo

P Q

QP

( ) ( ) ( , )int∑∑       (28)

The posterior distribution, p(HP|P), is estimated 
using the probabilistic models such as HMMs. An 
important example of a marginalized kernel is the 
marginalized count kernel that incorporates the 
context information into a count kernel. Given the 
two sequences P and Q, a count kernel is defined as

Kcount(P,Q)= C C
k

k
k

( (P) Q)
∈
∑
Σ

 (29)

where Ck(P) is the frequency of occurrence of 
the symbol k in the sequence P, normalized by 
the length of the sequence. The count kernel is 
extended to the combined sequences ZP and ZQ as

Figure 6. Illustration of a biological sequence with context information in the form of hidden states 
corresponding to coding (1) and non-coding (2) regions
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where Ckl(ZP) is the number of instances in which 
a discrete observation symbol k is observed by 
being in the state l. The marginalized count kernel 
is derived from the joint count kernel as

Kmarginalized-count(P,Q)= ψ ψ
kl

l Hk
kl

P Q( ) ( )
∈∈
∑∑

Σ

 (31)

where ψ
kl PH kl P
P p H P C Z

P

( ) ( ) ( )=∑ . If HMMs 

are used to model the distribution of the sequenc-
es, then the posterior probability of the hidden 
state sequence p(HP|P) is computed in an efficient 
manner using the forward-backward algorithm. 
The marginalized count kernel enhances the count 
kernels by considering the context information. 
However, the adjacency relationships between 
symbols are totally ignored while computing the 
measure of similarity between the sequences. In 
order to consider the adjacency relationships 
between the symbols, the second order marginal-
ized count kernels are proposed in (Tsuda et al., 
2002). It is also shown that the Fisher kernel 
(Jaakkola et al., 2000) is a special case of mar-
ginalized kernel. In the next subsection, we pres-
ent the Fisher kernel.

Fisher Kernel

Fisher kernel (Jaakkola et al., 2000) for discrete 
symbol sequences is designed using a global dis-
crete hidden Markov model (DHMM) built using 
the training examples of all the classes. Let the 
set of parameters of the global DHMM be θ. Let 
the number of parameters of the global DHMM 
be R. The log-likelihood of a discrete symbol 
sequence P is given by

Lθ(P)=1np(P| θ)  (32)

where p(P| θ), the probability of the global 
DHMM generating the discrete symbol sequence 
P, is computed using the forward method or the 
backward method (Rabiner & Juang, 1993). The 
Fisher score vector corresponds to the gradient 
vector of the log-likelihood and is given by

g P
P

i i

R

θ
θ

θ
( )

( )
=
∂

∂










=



1

 (33)

The Fisher information matrix Iθ is given by

I
L

g P g P
l

l

L

l

t

θ θ θ= ( )( )
=
∑1

1

( ) ( )  (34)

where L is the number of training examples used 
to build the global DHMM.

The Fisher kernel for two sequences of discrete 
symbols, P and Q is given by

K g g
tFisher( ( (P,Q) P) I Q)= ( ) ( )−

θ θθ

1  (35)

Pair HMM Kernel

A pair hidden Markov model (pHMM) (Watkins, 
1999) shown in Figure 7 is an HMM that generates 
two symbol sequences, P and Q, simultaneously. 
The two sequences need not be of the same length.

A pHMM consists of a set of states S compris-
ing of four subsets of states, a START state and 
an END state. The subset SPQ includes the states 
that emit two symbols simultaneously, one for the 
sequence P and one for the sequence Q. The 
subsets SP and SQ include the states that emit one 
symbol only for the sequences P and Q respec-
tively. The subset S−1 includes the states that emit 
no symbols. The pHMM defines a joint probabil-
ity distribution over pairs of discrete symbol se-
quences of finite length. The joint probability 
p(P,Q) of two sequences, P and Q, is related to 
the score obtained by global alignment of two 
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sequences (Haussler, 1999; Needleman & Wunsch, 
1970; Watkins, 1999). Haussler (1999) showed 
that the joint probability p(P,Q) obtained using a 
pHMM corresponds to the value of a valid string 
kernel. However, the joint probability values 
obtained are too small to be considered as the 
kernel function values. In situations where a fam-
ily of sequences may not get aligned globally and 
still they have some localized similarity, global 
alignment based schemes such as pHMM may be 
of little use. For example, homologous proteins 
may have little global similarity. In such cases, 
local similarity measures like Smith-Waterman 
score (Smith & Waterman, 1981) are useful. In 
the next subsection, we present a convolution 
kernel that uses the local alignment between se-
quences.

Local Alignment Kernel

Local alignment kernel is based on alignment of 
sequences and is obtained by convolving simple 
kernels. Haussler (1999) has shown that convo-
lution of two string kernels is a string kernel. 
Given two string kernel functions, K1 and K2, the 
convolution of the two kernels, K1 * K2, is given as

K ( P, Q ) = K 1* K 2=
P P P Q Q Q1 2 1 2. , .= =
∑ K 1( P 1, Q 1)

K2(P2,Q2)          (36)

where P1.P2 denotes the concatenation of two 
substrings P1 and P2 to form the string P. A 
string can be expressed as a concatenation of two 
strings in many ways. For example the string S 
EQUENCE can be expressed as S EQ.UENCE, S 
EQU.ENCE, S E.QUENCE, S EQUEN.CE, etc. 
While computing the kernel function in (36), all 
the possible ways of concatenation are considered 
in the summation. Given any two sequences P and 
Q, an alignment (with gaps) π of n ≥ 0 positions 
between them is specified by a pair of n-tuples 
(Vert et al. 2004):

π π π π π= ( ) ( )( )P P Q Q
n n( ), , ( ) , ( ), , ( )1 1   

(37)

that satisfies

1 1 2≤ < < < ≤π π π
P P P

n P( ) ( ) ( )  

1 1 2≤ < < < ≤π π π
Q Q Q

n Q( ) ( ) ( )  

Figure 7. Pair hidden Markov model (pHMM) for generation of two sequences P and Q simultaneously
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where |P| and |Q| are the lenghts of sequences P 
and Q respectively. An example for one possible 
alignment for two sequences is shown in Figure 
8. The alignment can be represented as a pair of 
15-tuples as π=((πP),(πQ)), where πP = (1, 2, 3, 4, 
5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17) and πQ =

(2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17).

It is seen that the symbols in the two sequenc-
es get aligned either to exactly match or to have 
mismatches. It is also seen that some insertions 
or deletions are required in order to align the two 
sequences. Few possible alignments between two 
sequences HAWGEG and AGEHV are given in 
Figure 9. It is seen that the number of symbols 
aligned varies from one alignment to another. It 
is also seen that for the same number of symbols 
aligned, the combination of the alignment varies.

For a given alignment of n symbols between 
two sequences P and Q, the local alignment ker-
nel is defined as the convolution of three basic 
kernels, K0(P,Q), K P Q

ai
β( , ) , and K P Q

gi
β( , )  as 

shown in Figure 10. The first basic kernel is de-
fined as

K0(P,Q)=1 (38)

It is used to compare the parts of the two se-
quences that do not contribute to the local align-

ment. The other two basic kernels, K P Q
ai
β ( , ) , 

and K P Q
gi
β( , )  are used to compute a measure of 

similarity between the n symbols aligned with 
possible gaps. For every aligned position π (i), 
for i = 1,..., n, the kernel K P Q

ai
β( , )  is defined as

K P Q e
ai

S P i Q iP Qβ β π π
( , )

,
=

( )( ) ( )( )( )  (39)

where P(πP(i)) indicates the ith aligned symbol in 
P, β ≥ 0 is a parameter whose value decides the 
positive definiteness of the kernel matrix and S 

Figure 8. Illustration for one possible alignment of two sequences P and Q

Figure 9. Illustration of multiple alignments be-
tween two sequences
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is the substitution matrix. Substitution matrix 
contains values proportional to the probability 
that a symbol in one sequence possibly gets sub-
stituted to the same or another symbol in the other 
sequence in order to get aligned with the other 
sequence. Substitution matrices are constructed 
by assessing a large and diverse sample of verified 
pairwise alignments of sequences. A substitution 
matrix used for protein sequence alignments is of 
size 20×20. The elements of the matrix denote 
the probability of one amino acid mutating to 
another amino acid. Though some of the amino 
acids mutate, the two proteins remain homologous.

In order to consider the possible gaps between 
the n aligned symbols, the kernel K P Q

gi
β( , )  is 

defined as

K P Q e
gi

g i i g i iP P Q Qβ β π π π π
( , )=

+( )− ( )( )+ +( )− ( )( )( )1 1
 (40)

where g: N → R is a gap penalty function such 
that g(0) = 0. The gap penalty function may be a 
regular gap penalty function that adds a constant 

penalty for every insertion or deletion operation, 
or an affine gap penalty function given as g(l) = 
d +e(l -1). Here l indicates the length of the gap, 
d indicates a gap opening cost and e indicates the 
gap extension cost. Affine gap penalty increases 
the kernel value when there are extended gaps 
rather than having multiple fragments of gaps.

For an alignment of n symbols between the 
sequences, P and Q, a kernel is obtained by con-
volving the three basic kernels, K0(P,Q), K P Q

ai
β( , )  

and K P Q
gi
β( , )  as Equation 41 in Box 1.

This kernel gives a measure of similarity be-
tween the two sequences P and Q when n symbols 
are exactly aligned. The convolution operation 
sums up the contribution of all possible decom-
positions of the sequences P and Q or all possible 
alignments of P and Q. In order to consider align-
ments of different number of symbols as shown 
in Figure 9, the local alignment kernel for two 
sequences, P and Q is defined as

Figure 10. Illustration of the computation of the local alignment kernel for two sequences

Box 1.

K P Q K P Q K P Q K P Q K P Q K P
n ai gi

n

ai
β β β β( , ) ( , ) * ( , ) * ( , ) ( , ) * ( ,= ( ) −( )

0

1

0
QQ K P Q

gi

n
) * ( , )β( ) −( )1

        (41)
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K P Q K P Qlocal alignment
i

i
β

β−

=

∞

= ∑( , ) ( , )
0

 (42)

The complexity of direct computation of (42) is 
exponential in |P| and |Q|. Alternative methods that 
make use of dynamic programming approaches 
are proposed (Vert et al., 2004).

Each of the dynamic kernels presented in 
this section computes a measure of similarity 
between two sequences of discrete observation 
symbols either by constructing an explicit feature 
map or by computing the value of a kernel func-
tion directly. Frequency of occurrence of each 
of groups of symbols such as k-mers is used to 
construct the feature map in the spectrum kernel, 
the composition kernel, the mismatch kernel, and 
the subsequence kernel. The mismatch kernel dif-
fers from the spectrum kernel in that, it tolerates 
mismatches between sequences. The subsequence 
kernel is based on the subsequences present in the 
sequences, with the non-continuities penalized 
using appropriate decay factors. The pairwise 
comparison kernel uses an empirical feature map 
for mapping a sequence onto a fixed dimensional 
feature vector. Each element of the feature vec-
tor corresponds to the similarity of the given 
sequence to one of the reference sequences. The 
TFLLR kernel uses the probabilities of occurrence 
of k-mers in the sequences. If the probability of 
k-mers from one sequence occurring in the other 
sequence is high, then the measure of similarity 
between the two sequences computed using the 
TFLLR kernel is high. The pair HMM kernel gives 
a high value of a measure of similarity between 
two sequences, if their joint probability computed 
using a pair HMM is high. In biological sequences, 
it is common that the two sequences that may not 
be similar globally, may still belong to the same 
family of sequences. The two sequences may have 
same locally conserved regions that are similar. 
These characteristics of sequences are used in 
the motif kernel and the local alignment kernel. 
Although the computation is intensive for many 

dynamic kernels presented in this section, faster 
methods using data structures such as tries or us-
ing dynamic programming based techniques can 
be considered. The dynamic kernels presented 
in this section are used for tasks such as protein 
classification, protein function prediction, protein 
structure prediction, text categorization, speaker 
verification, and online handwritten character 
recognition. A brief description of the approaches 
using the kernel methods for classification and 
clustering of sequences of discrete symbols is 
presented in the next section.

REVIEW OF KERNEL METHODS 
BASED APPROACHES TO 
CLASSIFICATION AND CLUSTERING 
OF DISCRETE SEQUENCES

Various kinds of discrete symbol sequences are 
biological sequences (for example proteins, DNA, 
RNA etc.), text data and the sequences obtained 
from tokenizing the continuous feature vector 
sequences extracted from speech signal data or 
handwritten character data. In this section we pres-
ent approaches used for classification of discrete 
symbol sequences using the dynamic kernels.

Protein sequences are strings over an alpha-
bet of 20 symbols that correspond to the amino 
acids which are the building blocks of proteins. 
Dynamic kernels are used for pattern analysis 
tasks such as protein classification, protein func-
tion prediction and protein structure prediction. 
Protein classification involves assigning an unan-
notated protein sequence to a category of proteins 
based on the sequence similarity between a pair 
of sequences. Spectrum feature map was used to 
map an unannotated protein sequence to a fixed 
dimension feature vector, in (Leslie et al., 2002). 
Since exact sequence similarity is very rare to 
occur in biological sequences like proteins, some 
degree of mismatch was tolerated in the feature 
map of (Leslie et al., 2003; 2004). The mismatches 
tolerated in biological sequences correspond to 
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the mutations happening in the cell. The notion 
of mismatch was extended to restricted gaps, 
substitutions and wildcard characters in (Leslie 
& Kuang, 2003). The composition feature map 
involving frequency of occurrence of the amino 
acids as well as the autocorrelation coefficients is 
used in (Wang et al., 2004) to predict the type of 
the membrane proteins. Protein function predic-
tion involves detecting the functionality of any 
unannotated protein by analyzing their amino 
acid sequences. Protein homology prediction is a 
process of detecting the functionality of a protein 
where the given protein sequence is compared with 
a family of protein sequences of known functional-
ity. Difficulty in homology prediction is that there 
is less similarity between the sequences in terms 
of overall composition. However, the proteins in 
a family might have been generated from a com-
mon source and undergone multiple mutation 
cycles. The common functionality exhibited by 
the proteins in a family despite the differences 
in sequence similarities may be attributed to the 
remote source of common origin in the evolution-
ary hierarchy. Protein homology prediction is ap-
propriately called as remote homology prediction. 
A dynamic kernel based on Fisher feature map 
was used for remote homology prediction by 
Jaakkola et al. (1999; 2000). Here, the statistical 
distribution of the protein sequences of a family 
is modeled using a HMM and the gradient of the 
log likelihood of an unannotated protein sequence 
in the HMM parameter space gives the Fisher 
feature map. The dimension of the feature vector 
is equal to the number of parameters of the HMM. 
The Fisher kernel needs a HMM to be trained 
for each family of proteins in order to obtain the 
statistics of that family. Liao ans Noble (2002; 
2003) used the pairwise comparison kernel for 
remote homology prediction by mapping a protein 
sequence onto a fixed dimension feature vector 
of pairwise similarity scores of the sequence with 
a set of reference protein sequences. The set of 
reference protein sequences consists of protein 
sequences belonging to all the known families. 

A 125-dimensional feature vector consisting 
of both the amino acid composition as well as 
the physico-chemical properties of the protein 
sequence is used for protein function prediction 
in (Cai et al., 2003). Though there is less global 
similarity between the sequences in a family of 
proteins with common functionality, there are cer-
tain regions in the sequences that are similar which 
correspond to the common functionality. These 
locally conserved regions of protein sequences are 
used as protein sequence motifs by Ben-Hur and 
Brutlag (2003) and Logan et al. (2001). Blocks 
of an unannotated protein sequence are matched 
against every motif in the set of motifs to verify 
the presence of a motif and the protein sequence 
is mapped onto a fixed dimensional feature vec-
tor of frequency of occurrence of motifs. Local 
sequence similarities among a family of proteins 
are utilized in the local lignment kernel (Saigo et 
al., 2004; Vert et al., 2004) for remote homology 
prediction. Protein structure prediction involves 
predicting the protein fold structure or quaternary 
structure of proteins using only the primary se-
quence. Structure prediction helps in predicting 
the functionality, understanding the cellular func-
tion, and discovery of new drugs and therapies. 
It is found that structurally similar proteins have 
less sequence similarities. However, considerable 
information regarding the structure is available in 
the primary sequence. Composition kernel was 
used in (Ding & Dubchak, 2001; Hua & Sun, 
2001; Park & Kanehisa, 2003; Zhang et al., 2003) 
for protein structure prediction. Classification of 
bacterial gyrB amino acid sequence is carried out 
using marginalised kernel in (Tsuda et al., 2002). 
Spectrum and motif kernels were used to predict 
protein-protein interactions by Ben-Hur and Noble 
(2005). Understanding such interactions is useful 
to learn the functionality of proteins as proteins 
perform their functions by interacting with the 
other proteins.

Text data comprises of a sequence of words 
belonging to a language. Dynamic kernels are 
used for categorizing text documents and iden-
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tification of the language of the written text. For 
categorizing text documents, Lodhi et al. (2002) 
considered a text document as a long sequence 
of symbols by concatenating the words in their 
order of occurrence. A sequence corresponding 
to a document is mapped onto a fixed dimen-
sion feature vector using the string subsequence 
feature map and classified using a SVM based 
classifier. Language of the text is identified using 
the spectrum kernel in (Kruengkrai et al., 2005). 
Every text is represented as a string of bytes and 
the spectrum kernel is computed using suffix trees.

The TFLLR kernel is used for speaker verifica-
tion in (Campbell et al., 2004a,b, 2007; Stoicke 
et al. 2008). Speaker verification involves either 
to accept or reject the claim made by a speaker 
based an utterance given by the speaker. The 
speech signal of an utterance is first converted into 
a sequence of tokens such as words or phonemes. 
The sequence of tokens is classified using the 
TFLLR kernel based SVM classifier. The sequence 
corresponding to the speech signal of an utterance 
is tokenized in order to make use of high-level 
features like idiolects. This corresponds to the 
observation that every speaker has an unique way 
of language usage in terms of the words used and 
the order in which the words are used.

Online handwritten character recognition 
(OHCR) refers to the task of identifying char-
acters in a script. A stroke based OHCR for an 
Indian language script, Telugu, is proposed in 
(Jayaraman, 2008). A character is written as a 
sequence of strokes, where a stroke is defined as 
the trajectory of pen from a pen-down event to a 
pen-up event. The number of strokes is different 
for different characters. A stroke is represented as 
a sequence of discrete symbols corresponding to 
the structural or segmental features, resulting in 
a varying length representation. An SVM based 
classification approach is used to classify a stroke 
to a known category using the string subsequence 
kernel. A character is recognized as combination 
of strokes using ternary search trees (TSTs). Time 
series data corresponding to measurements done 

in a chemical process is tokenized and classified 
using the pHMM kernel and the string subsequence 
kernel in (Ruping, 2001).

CONCLUSION

In this chapter, we presented a review on the 
design of dynamic kernels for the sequences of 
discrete observation symbols. The focus is on 
design of suitable kernel functions for different 
kinds of discrete symbol sequences. Two catego-
ries of methods for designing dynamic kernels 
for discrete symbol sequences are as follows: 
(1) Construct a higher-dimensional representa-
tion using an explicit mapping for each of the 
discrete symbol sequences and then compute an 
innerproduct between the higher-dimensional 
representations, (2) Compute the kernel function 
without explicitly mapping the discrete symbol 
sequences onto higher-dimensional feature space. 
Most of the dynamic kernels presented in this 
chapter such as, the pairwise comparison kernel, 
the composition kernel, the spectrum kernel, the 
mismatch kernel, the string subsequence kernel, 
and the motif kernel belong to the first category. 
Instead of explicitly mapping the discrete sym-
bol sequence onto a higher-dimensional feature 
space, the TFLLR kernel is computed based on 
the probability of occurrence of the features of 
one discrete symbol sequence in the other discrete 
symbol sequence. All these dynamic kernels for 
discrete symbol sequences do not consider the 
sequence information. The local alignment kernel, 
the pair HMM kernel, the marginalized kernel, and 
the Fisher kernel consider the sequence informa-
tion. In addition to the sequence information, the 
marginalized kernel also considers the context 
information. The Fisher kernel is a special case 
of the marginalized kernel. Dynamic kernels for 
sequences of discrete symbols have been explored 
for several tasks in bioinformatics, text analysis, 
speaker verification, and handwritten character 
recognition. Kernel methods using dynamic ker-
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nels have been shown to be effective for sequential 
patterns analysis in these tasks.
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INTRODUCTION

Detection or identification of statistically signifi-
cant sequences or mining interesting patterns from 
a given string has lately emerged as an important 
area of study (Denise et al., 2001; Ye & Chen, 

2001). In such applications, we are given an input 
string composed of symbols from an alphabet set 
with a probability distribution defining the chance 
of occurrence of each symbol, and the aim is to 
find those portions of the string that deviate most 
from their expected nature, and are thus potent 
sources of hidden pattern and information. Such 
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ABSTRACT

With the tremendous expansion of reservoirs of sequence data stored worldwide, efficient mining of large 
string databases in various domains including intrusion detection systems, player statistics, texts, and 
proteins, has emerged as a practical challenge. Searching for an unusual pattern within long strings of 
data is one of the foremost requirements for many diverse applications. Given a string, the problem is to 
identify the substrings that differ the most from the expected or normal behavior, i.e., the substrings that 
are statistically significant (or, in other words, less likely to occur due to chance alone). We first survey 
and analyze the different statistical measures available to meet this end. Next, we argue that the most 
appropriate metric is the chi-square measure. Finally, we discuss different approaches and algorithms 
proposed for retrieving the top-k substrings with the largest chi-square measure.



74

Mining Statistically Significant Substrings Based on the Chi-Square Measure

solutions come handy in automated monitoring 
systems, such as in a cluster of sensors sensing 
the ambient temperature for possible fire alert, or 
a network server sniffing the network for intru-
sion detection. Also, text analysis of blogs, stock 
market trend deciphering, detection of protein 
mutation and the identification of good and bad 
career patches of a sports icon can be few of the 
target applications. It is such diverse utility that 
makes the study and development of this field 
challenging and necessary.

STATISTICAL MODELS AND TOOLS

Establishing a relationship of the empirical or 
observed results of an experiment to factors 
affecting the system or to pure chance calls for 
various statistical models and measures. In such 
scenarios, an observation is deemed statistically 
significant if its presence cannot be attributed to 
randomness alone. The literature hosts a number 
of statistical models to capture the uniqueness of 
such observations such as p-value and z-score. In 
the next few sections, we discuss different impor-
tant statistical tools that are used for this purpose.

Before venturing forward, we provide a formal 
definition of the problem.

Problem 1. Given a string S of length l compris-
ing symbols from the alphabet set Σ of cardinal-
ity m, and with a given probability distribution 
P modeling the chance of occurrence of each 
symbol in Σ, the problem is to efficiently identify 
and extract the top-k substrings that exhibit the 
largest deviation from the expected nature, i.e., the 
substrings that are most statistically significant.

It is this measure of deviation of a sequence 
that we will capture by using various statistical 
models. In the remainder of the chapter, we in-
terchangeably use the term string with sequence 
and substring with subsequence.

Hypothesis Testing and P-value

Given an observation sample X (in this case a 
substring), with an associated score of S(X), the 
p-value of X is defined as the probability of obtain-
ing a random sample with score S(X) or greater 
under the same probability model (Bejerano et al., 
2004; Regnier & Vandenbogaert, 2006). For each 
such observation, we test the null hypothesis H0 
that the substring is drawn from the given prob-
ability model P against the alternate hypothesis H1 
that the subsequence is not drawn from the same 
probability distribution. The p-value measures the 
chance of rejecting the null hypothesis; in other 
words, the less the p-value, the less likely it is 
that the null hypothesis is true.

Figure 1 shows an example. For a particular 
score S, the shaded area represents the chance of 
having a sample with a score greater than the one 
under consideration. In other words, the p-value 
is the value of the cumulative density function 
(cdf) measured at S subtracted from the total 
probability, i.e.,

pvalue(S)=1-cdf(S).

If the probability density function (pdf) of the 
scores is known, it is relatively simpler to compute 
the p-value of a particular score using the above 
formula. However, in most real situations, the pdf 
is hard to estimate or can be non-parametric. The 
accurate computation of the p-value then needs 
all the possible outcomes to be listed, their scores 

Figure 1. Computing the p-value of X with score S
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computed, and the number of outcomes having 
scores more than S counted. Since the number of 
possible outcomes is large, and is exponential in 
most cases, computing the p-value in such a man-
ner is practically infeasible.

To alleviate this problem, various branch-and-
bound techniques have been proposed (Bejerano 
et al., 2004). In systems where such accuracy in 
measurement is not a necessity and a small factor 
of error can be tolerated, an approximation of the 
p-value can be calculated using other statistical 
tools (Rahmann, 2003).

Z-Score

The z-score (Regnier & Vandenbogaert, 2006) or 
the standard score also measures the deviation 
exhibited by a sample from its expected value. 
It measures the number of standard deviations 
that an observation differs from the mean value. 
The z-score for an observation X with score S is 
given by,

Z(S)=
S

x

x

− µ
σ

where μx and σx represent the mean and standard 
deviation of the population respectively.

The z-score is suitable if data about the entire 
population of the observations is known. If data 
about only a sample is at hand, this measure is 
known as the Student’s t-measure.

It has been shown that between the z-score 
and the p-value, the latter is far more precise in 
evaluating the statistical significance, i.e., the 
deviation of a substring (Denise et al., 2001). 
This follows from the observation that the p-value 
actually computes all the possible outcomes and 
accurately predicts the chance of the particular 
outcome, whereas the z-score simply provides an 
approximation using the mean and variance of the 
population, without considering the probability at 
all the points on the probability distribution curve.

Log-Likelihood Ratio (G2)

A statistical testing tool that is being increas-
ingly used is the log-likelihood ratio (G2) (Read 
& Cressie, 1988). This measure quantifies the 
significance of the result of an experiment based 
on the deviation of the observed sample from the 
given theoretical distribution. It takes into consid-
eration the expected outcome and the observed 
outcome for all possibilities.

For an experiment having k possible outcomes 
(here, a string is composed of characters from an 
alphabet of size k), the G2 value is calculated as
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where Oi and Ei are the observed and expected 
outcomes of the various possibilities respectively. 
For a string, the outcomes are measured by the 
observed and expected counts of the k different 
characters.

It is interesting to note that the log-likelihood 
ratio statistic G2 follows a distribution approximat-
ing the chi-square distribution (Read & Cressie, 
1988; Read & Cressie, 1989). In fact, the G2 dis-
tribution is also characterized by the degrees of 
freedom as the chi-square distribution discussed 
later. However, G2 suffers from the problem of 
instability of logarithm values when the expected 
or observed counts are too small and approach 0.

Hotelling’sT2 Measure

The Hotelling’s T2 measure is a generalization 
of the Student’s t-measure (Hotelling, 1947). It 
takes into account the multivariate distribution 
of the various outcomes to identify the abnormal 
patterns. It measures the difference between the 
mean of two observed group of outcomes, or in 
other words, the distance of each observation from 
the centre of the given test dataset. Hotelling’s T2 
measure is calculated as
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T n x C xT2 1= − −−( ) ( )
 

µ µ  

where n is the number of observations, x


 is a 
column vector of observations of size k (where k 
is the alphabet size), μ indicates the corresponding 
means and C is the covariance matrix of size k×k. 
However, measuring T2 is computationally very 
intensive and is thus impractical.

Chi-Square Measure (x2)

The chi-square distribution (x2) is widely used to 
compute the goodness-of-fit of a set of observa-
tions to the theoretical model describing a null 
hypothesis. In most situations, the x2 distribution 
provides a good approximation of the p-value 
(Read & Cressie, 1988). However, when the 
sample size is small or the null model is highly 
uneven, it is better to compute the actual p-value. 
In such situations, the chi-square distribution 
tends to degenerate into the normal distribution, 
and the approximation to the p-value is lost. 
The Pearson’s chi-square measure is based on 
the chi-square distribution and uses frequency 
of occurrences of an outcome to test the fit of a 
model by comparing it with the set of theoretical 
frequencies of the events. The events are assumed 
to be mutually exclusive and independent.

The Pearson’s chi-square measure for a string 
of length l and an alphabet set Σ of size m is 
measured as
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where Oi is the observed frequency of occurrence 
of symbol σi∈Σ and Ei is the expected frequency. 
If pi denotes the probability of occurrence of the 

symbol σi (where p
i

i

m

=
=
∑ 1
1

), the expected fre-

quency Ei is given by pi×l.

The chi-square distribution is characterized 
by the degrees of freedom, which in the case of a 
string is one less than the cardinality of the alphabet 
set. Thus, the chi-square values of all substrings 
follow the same distribution and can be easily 
compared. Further, the chi-square distribution 
is well-behaved; this implies that the chi-square 
value is anti-monotonic with the p-value, i.e., 
larger the deviation of a subsequence from the 
expected, greater is its x2 value, lower is the p-
value, and the more significant it is. The substring 
with the highest score is considered to be the most 
statistically significant substring.

However, if the expected frequencies of the 
outcomes are small, the approximation of chi-
square measure to the actual p-value becomes 
low. In other cases, even for multinomial models, 
the x2 statistic approximates the importance of a 
string more closely than the G2 measure (Read 
& Cressie, 1988; Read & Cressie, 1989). In 
time-series databases, categorizing a pattern as 
surprising based on its frequency of occurrence 
alone and mining it efficiently using suffix trees 
has been proposed in (Keogh et al., 2002), but the 
x2 measure seems to provide a better parameter 
for judging whether a pattern is indeed interest-
ing. As the chi-square measure provides the best 
way of efficiently approximating the p-value for 
measuring the significance of an experimental 
observation, in this chapter, we use it as the tool 
for computing the statistical significance of a 
substring.

ALGORITHMS

In this section we look at the various existing 
algorithms and heuristics to efficiently mine the 
most statistically significant substring using the 
chi-square measure. The objective is to extract 
the top-k substrings with the highest x2 values.
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Naïve Algorithm

The simplest procedure to identify the substring 
having the maximum x2 value involves extracting 
all the substrings from the given input string and 
individually computing their chi-square values. 
The algorithm then returns the substring(s) having 
the maximum or top- k scores (using a heap of k 
elements) as the result.

As an example, consider the following sce-
nario.

Example 1. Assume an alphabet set Σ={a,b}, 
and the probabilities of occurrence for the symbols: 
pa=0.2,pb=0.8. Consider the string S=aaaabbba.

Consider the substring a The observed frequen-
cies for a and b are 1 and 0 respectively, while 
the expected frequencies are 0.2×1 and 0.8×1 
respectively. The chi-square value, therefore, is:

x a2
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Consider another substring aab. The chi-square 
value can be similarly computed to be

x aab2
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Considering all such possible substrings, the 
most significant substring is found to be aaaa 
with the corresponding chi-square value as 16.

This simple approach, however, is computa-
tionally expensive. For a string of length n, we 
obtain O(n2) substrings and hence the runtime 
complexity of this algorithm is O(n2). (The time 
complexity, more precisely, is O(n2m) where m is 
the size of the alphabet set, as the computation 
of x2 requires measuring the frequencies of m 
symbols. However, for a given string, m is fixed. 
Therefore, it can be treated as a constant and 
we do not include it in the complexity analysis 
any further.) For long strings (n in the order of 

thousands), the quadratic complexity renders the 
algorithm impractical, especially for real-time 
applications. In the subsequent sections we look 
at more efficient algorithms and heuristics.

Blocking Algorithm and its Variants

The blocking algorithm (Agarwal, 2009) reduces 
the practical running time of the naïve algorithm, 
although its theoretical runtime remains O(n2) 
for a string of length n. The algorithm initially 
partitions the string into blocks consisting of 
identical symbols lying adjacent to each other in 
the input string.

As an example, consider the string S=aaaabbba 
given in Example 1. After “block”-ing identical 
adjacent symbols, the string becomes S’=a1b2a3 
where the bold face indicates blocks. The first 
block a1 represents the first four a’s in the original 
string, the next block b2 represents the three b’s 
and the final a3 represents the single a. In most 
cases, this step significantly reduces the length 
of the input string.

The naïve algorithm is now run on this “block”-
ed string and the substring with the highest chi-
square value is returned as the answer. Note that 
while the number of substrings is reduced in this 
manner, the computation of the chi-square value 
for each substring takes into account the frequency 
of the symbol in each block (it is not taken as 1).

The above algorithm is optimal (Agarwal, 
2009), the proof of which hinges on the follow-
ing fact: if the most significant substring selects 
a symbol in a block, then it must select the entire 
block associated with the symbol. In other words, 
either a block is completely selected in the most 
significant substring, or it is not selected at all. 
There is no substring that selects the symbols of 
a block partially and has a x2 value greater than 
the two extreme alternatives – the substring that 
selects the entire block and the substring that does 
not select the block at all. Referring to Example 
1, it can be verified that the substring aaaabhas 
a x2 value (11.25) which is not greater than both 
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the possibilities (aaaabbb with x2=6.03 and 
aaaanwith x2=16).

While the full proof is given in (Agarwal, 
2009), we provide a sketch of the idea. Consider 
the current substring to be sub with length lsub and 
the adjacent block of length n to be composed of 
the symbol σe∈Σ. Suppose that appending the first 
σe of the block to sub increases the x2 value of the 
new substring. Given that x x

sub sub+ ≥1
2 2 , denoting 

the observed frequencies by θ, we have the equa-
tion in Box 1.

By algebraic manipulations of the above equa-
tion, we can show that x2

sub+j≥ x2
sub+j-1≥…≥ x2

sub+2≥ 
x2

sub+1. for any j. Hence, by including the entire 
block the x2 value of the substring will increase.

The practical running time of the blocking 
algorithm is considerably less than the naïve one. 
However, in the worst case, adjacent symbols at 
all positions of the input string may be dissimilar, 
and there will be no benefit. The expected number 
of blocks for an alphabet where the probability 
distribution of occurrences of the symbols tend to 
be uniform, is O(n) for a string of length n. Thus, 
the running time remains O(n2).

An interesting optimization of the blocking 
algorithm was proposed in (Agarwal, 2009) for 
binary alphabets. It was shown that the most 
significant substring must start and end with the 
same symbol, i.e., for the above example, the 
possibilities are restricted to a1,b2,a3, and a1,b2,a3 
only. The two other substrings a1b2 and b2a3 cannot 
have the largest x2 value.

A heap variant of the above algorithms was also 
proposed in (Agarwal, 2009). However, it suffers 
from high theoretical and practical running time 
costs and is not discussed any further.

Local Maxima-Based Algorithms

A recent method proposed in (Dutta and Bhat-
tacharya, 2010) works on a similar strategy as that 
of the blocking algorithm. It too initially partitions 
the input string, but instead of constructing blocks 
based on adjacent identical symbols, it constructs 
local maxima. A local maximum is defined as a 
substring such that while traversing through it the 
inclusion of the next symbol does not decrease 
the x2 score. In other words, when the inclusion 
of the next symbol decreases the current x2 value, 
the present local maximum ends. The next local 
maximum begins at this symbol position. The 
first local maximum starts at the beginning of the 
string, and the last one finishes at the end.

Consider Example 1. The first substring a 
has a x2 value of 4. Inclusion of the next char-
acter increases the x2 value of aa to 8. Thus, 
the local maximum extends to aa. Continuing 
in this fashion, we notice that x2(aaaa)=16 and 
x2(aaaab)=11.25. Therefore, the first local maxima 
is aaaa. Repeating this procedure for the entire 
string S, all the local maxima present, namely, 
aaaa., bbb and a are found. Note that they need 
not be equivalent to the blocks.

The global maximum, i.e., the string with 
the maximum x2 score may obviously start from 
anywhere within the input string and not neces-
sarily from the starting positions of the local 
maxima. So, after identifying the local maxima, 
the method finds the suffix within each of the 
maxima having the largest x2 score. The suffix 
may be the whole local maximum itself (as it is 
in the case in Example 1). The starting positions 
of these suffixes are stored in a list A. These posi-
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tions form the potential starting positions for the 
global maximum.

To find the potential ending positions, the 
string is reversed and the same procedure is re-
peated. The starting position of the suffixes of the 
reversed string are stored in another list B. These 
positions form the potential ending positions for 
the global maximum.

It was conjectured in (Dutta & Bhattacharya, 
2010) that the starting and ending positions of the 
global maximum are in A and B respectively. Based 
on this conjecture, two heuristics are proposed: 
All Pair Refined Local Maxima Search (ARLM) 
and Approximate Greedy Maximum Maxima 
Search (AGMM).

All-Pair Refined Local 
Maxima Search (ARLM)

The All-Pair Refined Local Maxima Search 
(ARLM) algorithm examines all combinations of 
starting and ending positions, and finds the com-
bination with the largest x2 value. A starting and 
ending position is combined to form a substring 
extending from the symbol at the starting position 
to the symbol at the ending position. It is ensured 
that the combination is valid, i.e., the starting posi-
tion is not later than the ending position.

Approximate Greedy Maximum 
Maxima Search (AGMM)

The Approximate Greedy Maximum Maxima 
Search (AGMM) algorithm uses the same two 
lists A and B, but in a different manner. Instead of 
considering all possible combinations of starting 
and ending positions, the AGMM algorithm first 
finds the suffix with the largest x2 value and uses 
only that corresponding starting position. The 
other starting positions are pruned. This position 
is combined with all the ending positions to find 
the substring with the largest x2 value. Since the 
starting and ending positions are similar, the 
same is repeated by finding the ending position 

with the largest x2 value and then combining only 
that with all the starting positions. The substring 
thus found is declared as the most statistically 
significant substring.

The above two algorithms has been further 
optimized by first “block”-ing the string before 
extracting the local maxima (Dutta & Bhattacha-
rya, 2010). Since the blocks can be treated as 
indivisible portions of the string for the purposes 
of x2 measure, the above optimization works.

Runtime Analysis

In this section, we analyze the runtime perfor-
mance of the two local maxima-based algorithms. 
For a string of length n, all the local maxima present 
can be extracted in a single pass of the input string 
in O(n) time. In the worst case, each symbol may 
form a local maxima by itself, and so the number 
of local maxima is also n, and in general, is O(n). 
However, practically the number of local maxima 
has been found to be much less, depending on the 
probabilities of occurrence of the symbols. The 
number of local maxima d has been shown to be 
less than n (Dutta & Bhattacharya, 2010).

The number of suffixes and the sizes of the 
lists A and B are, therefore, O(d) as well. Since 
ARLM examines all possible combinations, the 
runtime of ARLM is O(d2+n). AGMM, however, 
only combines the maximum with all the ending 
positions (and reverse); so, the running time is 
O(d+n). Since d is O(n), ARLM is essentially a 
quadratic-time algorithm (although with a lower 
practical running time) while AGMM is strictly 
a linear-time algorithm.

EXPERIMENTAL RESULTS

In this section we look at the different experimental 
results, performed on multiple datasets, real as 
well as synthetic, to assess the performance of 
the various procedures and heuristics discussed 
(Agarwal, 2009, Dutta & Bhattacharya, 2010). 
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The heap variant of the blocking algorithm has not 
been compared with as it is practically infeasible 
due to large memory and runtime requirements. 
The results shown are based on two parameters, 
(1) the number of blocks or local maxima found 
(whichever is applicable), and (2) accuracy of the 
results. The accuracy of an algorithm is measured 
using the approximation ratio, i.e., the ratio of 
the x2 value of the answer returned by it to that 
of the optimal.

Real Datasets

No results were reported on real datasets on block-
ing algorithm by (Agarwal, 2009). Experiments on 
real datasets for local maxima-based algorithms 
were, however, carried out by Dutta and Bhat-
tacharya (2010). The authors used the innings-
by-innings runs scored by Sachin Tendulkar in 
one-day internationals (ODI) (425 records as 
on November 2009, available from http://stats.
cricinfo.Com/ci/engine/player/35320.html?class
=2;template=results;type=batting;view=innings). 
The runs were quantized into five symbols, namely, 
0-9 (poor), 10-24 (bad), 25-49 (average), 50-99 
(good) and 100+ (excellent). The probability of 
occurrence of each of the symbols was calculated 
empirically as the ratio of the number of innings 
with that score to the total number of innings to 
obtain the probability distribution. The ARLM and 
AGMM algorithms were then run to obtain the 
substrings with the highest x2 value. These were 
identified as the good and bad patches in his career.

The findings have been summarized in Table 
1 which shows that his best career patch was in 
the latter half of 1998 with an average of above 
84. Referring to cricket databases, it was found 
that this period included his run in Sharjah that 
many pundits believe to be his best. Moreover, in 
this period, he scored 8 centuries within 7 months. 
While the best patch of a sportsperson is clearly a 
matter of subjective opinion, the analysis shows 
that the top performances can be identified by 
using the x2 measure. During his bad patch for 

nearly the whole of 1992, Sachin struggled with 
his form and did not have a single score of even 40.

For the cricket dataset, the local maxima-based 
algorithms, AGMM and ARLM, required the least 
amount of time to find the substring with the 
largest x2 values when compared to the blocking 
and naïve algorithms (Dutta & Bhattacharya, 
2010). This gain in time comes from the lesser 
number of local maxima constructed with respect 
to the number of substrings or blocks in the naïve 
and the blocking algorithms respectively. For 
Sachin’s data, the number of local maxima found 
was 281 as compared to 319 blocks. The accu-
racy (or approximation ratio) for ARLM and 
AGMM was 1 for the top-1 query, i.e., they found 
the substring with the largest x2 value. With in-
creasing values of k for the top- k query, the ap-
proximation ratio initially drops to around 0.98 
before increasing again to almost 1.

Experiments on a much larger real dataset were 
run by (Dutta & Bhattacharya, 2010) to analyze 
the difference in running times of the algorithms. 
The data was that of number of user clicks (nearly 
a million) encountered on the front page of msnbc.
com (available from http://archive.ics.uci.edu/ml/
datasets/MSNBC.com+Anonymous+Web+Data). 
The results shown in Table 2 established the ad-
vantage of ARLM over the blocking algorithm. As 
expected, since it is a linear algorithm, AGMM was 
about an order of magnitude faster than the others.

Table 1. Results of x2 analysis on Sachin Ten-
dulkar’s batting career 

Form Date Average

Best patch

From 22nd 
April, 1998 to 
13th November, 

1998

84.31

Worst patch

From 15th 
March, 1992 to 
19th December, 

1992

21.89
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Synthetic Datasets

To study the scalability of the various algorithms 
with the different parameters, experiments on 
synthetic datasets were conducted by (Dutta 
& Bhattacharya, 2010). The synthetic datasets 
used were randomly generated using a uniform 
distribution. Chunks of data from a different dis-
tribution (in this case, geometric) were inserted 
randomly to perturb the original data and simulate 
the deviations encountered in real applications. 
The parameters tested with were: (1) length of 
the input string, (2) size of the alphabet, and (3) 
number of top- k values to be reported.

The results indicate that the number of “blocks” 
were approximately from 0.70 to 0.85 of the total 
length of the string while the number of local 
maxima were between 0.65 and 0.75 of the total 
length. Consequently, the local maxima-based 
algorithms were faster. The scalability of AGMM 
was the best as it was a linear algorithm. ARLM, 
while theoretically has a running time which is 
quadratic with the length of the string, showed 
a better scalability. The running time increased 
with the size of the alphabet and the number of 
top-k values.

The approximation ratio of the local maxima-
based heuristics always remained 1 for top-1 query. 
Even for values of k up to 50, the accuracy never 
dropped below 0.96. More detailed results and 
analysis be found in (Dutta and Bhattacharya, 
2010).

CONCLUSION

This chapter aims at tackling the problem of ef-
ficiently mining statistically significant substrings 
present in an input string. Such interesting pattern 
detection is applicable in many applications rang-
ing from intrusion detection to protein mutation. 
We discussed various statistical tools that can 
be used to model a substring as “statistically 
significant”. Given the setting, we found that the 
chi-square measure is best suited for this purpose, 
the reason being the fact that it is computationally 
simple, and yet, it provides a high approximation 
of the p-value as compared to the other measures.

We discussed various existing algorithms 
in the literature from naïve to blocking to local 
maxima-based ones for finding the substrings 
with the largest x2 values. The local maxima-based 
algorithms, ARLM and AGMM, reported the best 
running time and the best approximation ratio.

Finally, we would like to mention that the 
field is ready for richer analyses, including find-
ing heuristics with guaranteed approximation 
ratio, and randomized algorithms. Moreover, the 
problem can be extended to a two-dimensional 
setting for spatial data mining applications, or 
more generally, to a graph.
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ABSTRACT

Predicting minority class sequence patterns from the noisy and unbalanced sequential datasets is a chal-
lenging task. To solve this problem, we proposed a new approach called extreme outlier elimination and 
hybrid sampling technique. We use k Reverse Nearest Neighbors (kRNNs) concept as a data cleaning 
method for eliminating extreme outliers in minority regions. Hybrid sampling technique, a combination 
of SMOTE to oversample the minority class sequences and random undersampling to undersample the 
majority class sequences is used for improving minority class prediction. This method was evaluated in 
terms of minority class precision, recall and f-measure on syntactically simulated, highly overlapped 
sequential dataset named Hill-Valley. We conducted the experiments with k-Nearest Neighbour classi-
fier and compared the performance of our approach against simple hybrid sampling technique. Results 
indicate that our approach does not sacrifice one class in favor of the other, but produces high predic-
tions for both fraud and non-fraud classes.
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INTRODUCTION

Unbalanced data classification is an important 
issue in today’s datamining community. There are 
several real world domains like intrusion detec-
tion; fraud detection and medical diagnosis (Visa 
& Ralescu, 2005) are unbalanced in nature. But 
some of these datasets like promoter recognition 
(Rani & Bapi, 2008), intrusion detection (Pradeep, 
Rao, Krishna, Bapi & Laha, 2005; Sanjay, Gulati 
& Pujari, 2004), and protein sequence prediction 
(Sikic, Tomic, & Vlahovicek, 2009; Zhao, Li, 
Chen, & Aihara, 2008) are sequential in nature, 
where each instance is the ordered list of discrete 
items. Unbalanced data classification problem is 
beatitude in those datasets when one class of data 
(majority class) severely outnumbers the other 
class (minority class) of data.

We can solve imbalance problem that occur 
in sequence classification by using data mining 
techniques. If the imbalance problem is ignored 
and conventional classification methods are em-
ployed with the usual criterion of minimal overall 
error, then the model estimated will often ignore 
any contribution from the minority class samples. 
As such the model learned will only represent 
predominantly the majority class samples. These 
classification methods also assume that there is 
equal cost derived from all classes, which is not 
true in real world scenarios.

Consider intrusion detection system, (Pradeep, 
Rao, Krishna, Bapi & Laha 2005; Sanjay, Gulati, 
& Pujari, 2004) compared to non-intruder system 
call transactions, the occurrence of intruder trans-
actions is infrequent. So it is extremely difficult 
to extract the intruder patterns in this scenario. In 
this work, we consider sequence classification as 
an unbalanced data classification problem where 
the majority samples outnumber the minority 
samples. Usually, the classification algorithms 
exhibit poor performance while dealing with un-
balanced datasets and results are biased towards 
the majority class. Hence, an appropriate model 
is needed to classify unbalanced sequential data. 

For these types of problems, we cannot rely upon 
the accuracy of the classifier because the cost as-
sociated with fraud sample being predicted as a 
non-fraud sample is very high. The performance 
measures that can be used here are cost based met-
rics, ROC analysis and minority class F-measure.

In this work we considered sequence clas-
sification as a binary classification problem and 
proposed a hybrid sampling approach called 
extreme outlier elimination with SMOTE and 
random undersampling. Here k Reverse Nearest 
Neighbors (kRNNs) concept is used as a data clean-
ing method for eliminating extreme outliers in 
minority regions before generating extra samples 
using SMOTE. Synthetic Minority Oversampling 
Technique (SMOTE) synthetically incorporates 
new samples in the distribution whereas random 
undersampling randomly deletes majority class 
samples from current distribution. Proposed ap-
proach is evaluated on a discrete sequential data 
set named Hill-Valley dataset. We identified op-
timal classifier based on its precision, recall and 
F-measure rates. Compared with other models 
constructed based on one-class classification tech-
niques and other sampling techniques proposed 
approach yielded better performance.

The remainder of this chapter is organized as 
follows. In BACKGROUND section, we present 
the background of the proposed approach. The 
work related to proposed approach is discussed 
from two perspectives in Related Work section. 
Proposed approach and experimental setup is 
discussed in Solutions and recommendations sec-
tion. Finally conclusions from the current work 
and future research directions are provided at the 
end of the chapter.

BACKGROUND

This section describes the background of the meth-
ods used for proposing extreme outlier elimination 
and Hybrid sampling approach.
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Hybrid of Synthetic Minority 
Oversampling Technique and RUS

Hybrid sampling of SMOTE and random under-
sampling is a prominent solution for unbalanced 
data classification problem (Sun et al., 2009; Taft 
et al., 2009; & Cieslak 2006), here SMOTE+RUS 
was employed to alleviate from the bias caused 
non-fraudulent samples. Synthetic Minority Over-
sampling technique (SMOTE) was introduced by 
Chawla et al, in which the minority class samples 
are over-sampled by creating synthetic (or arti-
ficial) samples rather than replicating random 
minority class sample. SMOTE algorithm gener-
ates synthetic minority samples between the line 
segment joining from each minority class sample 
to its k minority class’ nearest neighbors. This 
approach effectively forces the decision region 
of the minority class to become more general. 
The following psudocode describes the SMOTE 
algorithm.

Latter combined approach of SMOTE and 
random undersampling (RUS) was devised by the 

authors of SMOTE to further improve the perfor-
mance of the classifier towards unbalanced dis-
tributions. Science SMOTE projects new samples 
between minority class geometrical nearest neigh-
bours, minority class outliers (mislabeled points) 
play a major role and sometimes the newly gener-
ated synthetic samples go beyond the actual mi-
nority class boundaries. Thus hampers the clas-
sifiers generalization ability.

Outlier Selection and 
Filtering by RNN

Several outlier detection and filtering methods 
are devised to filter mislabeled training instances 
for classification problem. Generally they are of 
distance based (Muhlenbach, Lallich & Zighed, 
2004) or classification algorithm based (Brodley 
and Friedl 1999). In this chapter k- reverse near-
est neigbbour (kRNN) (Soujanya, Satyanarayana 
& Kamalakar, 2006) based outlier detection and 
elimination was employed for mining Hill-Valley 
sequences. The advantage of (kRNN) over other 

Algorithm 1. psudocode for SMOTE Algorithm

Input: 

N=Number of minority class samples

T=SMOTE factor.

k=Number of nearest neighbours

Output: 

T * N synthetic samples

Begin 

for each sample i in N do

compute k nearest neighbours.

while T ≠  0 do

           choose randomly one neighbour nn from k.

compute the difference dif between i and nn.

Generate a random number gap between 0 and 1.

compute new synthetic point as synth = i + dif * gap.

end while 

end for 

end
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distance based outlier methods is the parameter 
independency. By using (kRNN) concept, the 
neighbourhood density around a point p increases 
with the increase of the number of neighbours (k 
value). Following are the notations used in this 
chapter for describing the reverse nearest neigb-
bour concept.

X: d-dimensional dataset:

kNN(p): Set of k-nearest neighbors of p.

kRNN(p): Set of k-reverse nearest neighbors of 
p. A point q belongs to kRNN(p)

iff p Є kNN(q).

k nearestneighborset: kNN(xp) is defined as 
{xq|dpq < kth nearest distance of xp}.

For given point xp, the kth smallest distance after 
sorting all the distances from xp to the remaining 
points is the kth nearest distance of xp.

k reversenearestneighborset: kRNN(xq) is de-
fined as {xq|xp Є kNN(xq)}.

k reverse neighbours (kRNN) defines influence 
around a point in terms of neighborhood density. 
Note that, in case of kNNs, for a given k value, 
each point in the dataset will have at least k near-
est neighbors (> k in case of ties) but the kRNN 
set of a point could have zero or more elements. 
The kRNN set of point p gives set of points that 
consider p as their k-nearest neighbour, for a given 
value of k. If a point p has higher number of kRNNs 
than another point q, then we can say that p has a 
denser neighborhood than q. Lesser the number 
of kRNNs, the farther apart are the points in the 
dataset to q, i.e. the neighborhood is sparse.

According to kRNN concept (Soujanya, Sa-
tyanarayana & Kamalakar 2006), outlier point 
is defined as follows: An outlier point is a point 
that has less than k number of kRNNs. That is the 

cardinality of kRNN set is less than k, (|kRNNs| < 
k). Lesser the numberof kRNNs, the more distant 
it is from its neighbors.

Science considered Hill-Valley dataset is 
highly overlapped and unbalanced, the minority 
points extremely far from minority class sample 
subgroups are prone to be mislabeled and degrades 
the classifier performance while SMOTEing. So 
here we define the concept called extreme outlier 
and eliminate them as part of data preprocessing 
step.

RELATED WORK

The related work for the proposed approach to 
counter unbalanced sequential classification 
problem has been approached from two directions. 
The techniques that are available to handle the 
unbalanced data sets are reviewed first and cor-
responding applications in sequence classification 
are reviewed later.

There have been several approaches for cop-
ing with unbalanced datasets. Kubat and Matwin 
(Kubat & Matwin, 1997), did selective undersam-
pling of majority class by keeping minority classes 
fixed. They categorized the minority samples into 
some noise overlapping, the positive class decision 
region, borderline samples, redundant samples 
and safe samples. By using Tomek links concept, 
which is a type of data cleaning procedure used 
for undersampling, they deleted the borderline 
majority samples. Ling and Li (Ling & Li, 1998) 
combined oversampling of the minority class 
with undersampling of the majority class. They 
used lift analysis instead of accuracy to measure 
a classifier’s performance. They proposed that the 
test samples be ranked by a confidence measure 
and then lift be used as the evaluation criteria. A 
lift curve is similar to an ROC curve, but is more 
tailored for the marketing analysis problem. In one 
experiment, they undersampled the majority class 
and noted that the best lift index is obtained when 
the classes are equally represented. In another ex-
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periment, they oversampled the minority samples 
with replacement to match the number of majority 
samples to the number of minority samples. The 
oversampling and undersampling combination 
did not provide significant improvement in the 
lift index. Study of “whether oversampling is 
more effective than undersampling” and “which 
oversampling or undersampling rate should be 
used” was done by Estabrooks et al (Estabrooks, 
Jo & Japkowicz, 2004), which concluded that 
combining different expressions of the resam-
pling approach is an effective solution. Batista 
et al (Batista, Prati & Monard, 2004) proposed 
two hybrid sampling techniques for overlapping 
datasets namely SMOTE+TOMEK Links and 
SMOTE+ENN for better-defined class clusters 
among majority and minority classes. Apart from 
sampling solutions, some studies (Raskutti & 
Kowalczyk, 2004) are indicating that one-class 
classification technique like one-class SVMs 
(Tax, 2001), one-class neural networks (Japkow-
icz, Hanson & Gluck, 2000) are also efficient in 
solving unbalanced data classification problem on 
some specific applications like anomaly detection.

Concern with unbalanced sequential classifica-
tion, (Sikic, Tomic & Vlahovicek, 2009) applied a 
combined approach of sliding window and random 
forest on the sequence and structure parameters 
as well as on sole sequence parameters to identify 
protein- protein interaction sites in sequences 
and 3D structures. Their study indicated that the 
combined approach with sequences alone was 
result with high accuracy. A probability based 
mechanism was proposed in (Yu, Chou & Darby, 
2010) to convert sequences into feature vectors. 
Latter these feature used to identify protein-protein 
interactions in an unbalanced data using primary 
structure. A new algorithm with committee of 
classifiers is discussed in (Zhao, Li, Chen & 
Aihara, 2008) for unbalanced protein classifica-
tion problem.

For the promoter recognition problems 
SMOTE and ADABOOST algorithms were ap-
plied (Rani & Bapi, 2008) on minority majority 

concepts and this study indicated that a simple 
ADABOOST improved the promoter recognition 
rate than SMOTE algorithm. Further a synthetic 
protein sequence oversampling method (SPSO) 
(Beigi & Zell, 2007) was proposed using Hid-
den Markov Model profile (HMM profile) for 
the prediction of protein sequences and remote 
homology detection.

Finally to identify intrusions in a database 
of UNIX system calls different scheme with the 
combination of one-class k-nearest neighbour 
classifier and text processing techniques were 
proposed by (Pradeep, Rao, Krishna, Bapi & Laha, 
2005; Sanjay, Gulati & Pujari, 2004). Along with 
this new scheme for identifying intrusions the au-
thors also proposed different sequence similarity 
measures using text processing metrics.

This chapter proposes a new hybrid approach 
of outlier elimination and hybrid sampling for 
handling noisy sequential unbalanced datasets.

MAIN FOCUS OF THE CHAPTER

Here our basic motivation is to balance the training 
data distribution so that minority class predicts 
well. For this, we are generating the required 
number of artificial minority class samples using 
SMOTE which generates new samples by inter-
polation. If we use SMOTE on the entire minority 
class samples, minority class sub regions may 
not be emphasized well if the data is very much 
sparsely distributed. So there is a great need of 
picking the points that are in denser regions and 
use only those points for generating artificial fraud 
class samples using SMOTE. For this, we have to 
eliminate the points that are far from the minority 
samples; we call them as extreme outliers. The 
application of existing outlier detection techniques 
on highly overlapped and unbalanced datasets, half 
of the minority samples are predicted as outliers. 
Eliminating half of the minority samples is not 
feasible as their presence is very less compared 
with the majority class.
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Solutions and Recommendations

The k Reverse Nearest Neighbors concept is an 
efficient solution for this problem. By using the 
cardinality of kRNN set, of a point p, we can say 
that the point is in denser region or sparser region. 
If the point p yields the cardinality of kRNNset 
more than k, then p falls in denser region or else 
if p’s cardinality on kRNNset yields less than k 
or zero then p falls in sparse region. Based on 
cardinality of kRNNs the minority points are 
ranked and least ranked points are eliminated. 
We proposed extreme outlier concept as a data 
preprocessing method for minority samples and 
hybrid sampling approach for balancing the data 
distribution. An extreme outlier point is a point 
that has number of kRNNs far less than k, when k 
values are increased. For example, we can define 
a point as extreme outlier if its kRNNs are less 
than k/10 over systematically increased k values.

After elimination of extreme outliers, we ap-
plied hybrid sampling approach on Hill-Valley 
data set. This is a combination of random under-
sampling and oversampling. It mainly works 
based on determining how much percentage of 

minority class samples (original samples + artifi-
cial samples) and majority class samples to add to 
the training set such that a classifier can achieve 
best recall and precision values for minority class. 
Here, recall represents TPrate (the number of 
minority class samples that are correctly classi-
fied) of the minority class. The tradeoff between 
minority class TPrate and TNrate (the number 
of majority class samples correctly classified) is 
being represented by precision.. After eliminat-
ing minority class extreme outlier, the majority 
class samples are randomly under-sampled and 
the minority class samples are over-sampled us-
ing SMOTE to emphasize the minority class data 
regions, which uses euclidian distance metric.

Figure 1 shows the process of generating sam-
ples for training the classifier. Initially, minority 
class and majority class sequences are separated 
from the dataset and latter extreme outliers are 
eliminated in the minority class sequences using 
the method described above. Then SMOTE was 
applied on minority class sequences for the given 
level of SMOTE factor. For example, if we specify 
SMOTE factor as 5 and input minority samples are 
x, then artificial minority samples generated after 

Figure 1. Proposed hybrid of kRNN+ hybrid sampling
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SMOTE are 5x. Generally the choice of optimal 
SMOTE factor is data dependent. For the dataset 
under consideration, the class distribution of mi-
nority and majority class samples is 10:90 (MI: 
MJ). So for experiments we considered SMOTE 
factors of 1, 3, 5, 7 and 9.

Experimental Evaluation

This section depicts the datasets, evaluation 
metric for estimating classifier performance and 
comparative study with other methods for approxi-
mating the performance of the proposed approach, 
in terms of experimental results and discussion.

Evaluation Metric

The classifier outcomes, which are required to 
evaluate the performance, can be represented in 
the form of a confusion matrix (Table 1).

Table 1 derives the following measures (base 
lines) to estimate the classifier performance.

True positive Rate (TP rate) is the percentage of 
correctly classified positive samples.

True negative rate (TN rate) is the percentage of 
correctly classified negative samples.

False negative (FN rate) is the percentage of incor-
rectly classified positive samples.

False positive (FP rate) is the percentage of nega-
tive examples predicted as positives.

The goal of any ideal classifier is to maximize 
TP and TN rates. The following are normally 
applied measures for evaluating classification 
performance:

Accuracy=(TP+TN)/(TP+FP+TN+FN) (1)

TPRate=Recall=TP/(TP+FN) (2)

Precision=TP/(TP+FP) (3)

F measure
call ecision
call ecision

_
* Re * Pr
Re Pr

=
+

2  

(4)

For unbalanced data classification point of 
view accuracy is not an appropriate measure for 
evaluating the classifier performance. Consider-
ing there are only 6% of samples from minority 
class and 94% of the samples are from majority 
class, If a classifier miss predicts all minority 
class samples as majority class samples then the 
accuracy becomes 94% with the contribution of 
majority class samples only.

Proposed approach is evaluated using minor-
ity class recall (Equation 2), precision (Equation 
3) and F-measure (Equation 4). Minority class 
F-measure depicts the performance of the target 
class in terms of tradeoff between precision and 
recall, where as recall is simply the TP rate of 
the target class and precision gives the trade-off 
between TP and FP rates. If both precision and 
recall are high, then F-measure is also high. For 
unbalanced datasets the precision and recall goals 
are conflicting, increasing recall rates without 
disturbing the precision of the minority class 
(target class) is a challenging issue.

Dataset

Experiments are conducted on Hill-Valley dataset 
(http://archive.ics.uci.edu/ml) which is sequential 
in nature. Each record in this dataset represents 
100 points in a two dimension graph. These points 
in y axis can create either a Hill or Valley. Since 
the noisy Hill-Valley dataset accurately repre-
sents the underlined domain, it is considered for 
evaluating proposed hybrid approach. Actually 
this dataset is balanced in nature with 307 records 

Table 1. Confusion matrix 

Predicted 
Negative

Predicted 
Positive

Actual Negative TN FP

Actual Positive FN TP
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from valley class, 299 records from hill class in 
the training set and the test set also contains the 
similar distribution as like training set. For the 
experimental purpose the Hill-Valley dataset 
distribution was synthetically unbalanced by keep-
ing only 10% Valley class distribution as it is and 
making rest of the Valley distribution as Hill class 
distribution. The training set considered for the 
experiments was the combination of both training 
and testing set that is provided in UCI repository 
(http://archive.ics.uci.edu/ml/).We implemented 
the extreme outlier detection using kRNNs and 
SMOTE in MATLAB7.0 and used Weka3-4 tool-
kit for experimenting with the classifiers. Weka 
(Witten & Frank, 2000) is Java-based knowledge 
learning and analysis environment developed at 
the University of Waikato in New Zealand.

Initially we eliminated the extreme outliers 
found from the minority samples using the method 
described in (Main focus of the chapter). We 
found that 24 points qualify as extreme outliers 
and eliminated them from the dataset. Proposed 
approach is validated using k-nearest neighbour 
classifier and compared with hybrid sampling 
of SMOTE and RUS. Since the dataset consid-
ered for the experiments is sequential in nature, 
validating the proposed approach using global 
classifiers like decision tree, neural networks 
can leads to performance degradation because 

of loss of sequential information (Pradeep, Rao, 
Krishna, Bapi, & Laha, 2005). For the dataset 
under consideration, total number of minority 
class sequences is 121 and 1091 majority class 
sequences. Since the unbalanced class distribution 
ratio for the considered Hill-Valley dataset is 10:90 
and we varied the SMOTE factor from 1%, 2%., 
5%, 7%...9% in order to make balanced training 
set distributions. For the k-nearest neighbour clas-
sifier the k value is set to 3 for all experiments 
with varied SMOTE factor.

Our observations from the experiments con-
ducted using the proposed extreme outlier elimina-
tion with kRNNs combined with hybrid sampling 
approach on k-NN classifier is as follows: from 
Table 2 as the SMOTE factor increases from 1% 
to 5% the minority class recall increases from 
0.825 to 0.945, precision is increases from 0.615 
to 0.717 and the F-measure increases from 0.705 
to 0.815. Our observations from hybrid sampling 
are as follows from Table 2 as the SMOTE fac-
tor increases from 1% to 5% the minority class 
recall increases from 0.843 to 0.944, precision is 
increases from 0.632 to 0.698 and the F-measure 
increases from 0.705 to 0.798. The highest per-
formance was highlighted.

Comparing kRNN+Hybrid with normal Hy-
brid sampling approach the k-NN classifier with 
kRNN+Hybrid yielded superior performance in 

Tabel 2. Comparison across Hybrid kRNN+Hybrid over k-NN classifier 

SMOTE factor% Method Precision Recall F-measure

1% Hybrid 0.632 0.843 0.722

kRNN+Hybrid 0.615 0.825 0.705

3% Hybrid 0.688 0.944 0.796

kRNN+Hybrid 0.716 0.945 0.815

5% Hybrid 0.698 0.931 0.798

kRNN+Hybrid 0.717 0.932 0.811

7% Hybrid 0.686 0.931 0.79

kRNN+Hybrid 0.693 0.939 0.797

9% Hybrid 0.694 0.924 0.793

kRNN+Hybrid 0.688 0.926 0.789
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terms of minority class prediction with 0.716 
precision, 0.945 recall and with 0.815 F-measure 
at 3% SMOTE factor itself. Whereas Hybrid 
sampling technique alone attained the minority 
class prediction with 0.698 precision, 0.931 recall 
and with 0.798 F-measure at 5% SMOTE factor. 
From the both methods kRNN+Hybrid yielded 
superior performance of 0.815 in terms minority 
class F-measure than the simple hybrid sampling 
even in early rounds of SMOTE factor. From 
the experiments we also observed that once the 
maximum performance is achieved at n% SMOTE 
factor the performance of the classifier deteriorates 
from (n+1)% SMOTE factor onwards.

Thus intelligent use of kRNNs for extreme 
outlier elimination of minority class sequences 
and SMOTE for generating artificial minority 
sequences resulted in improving the performance 
of the unbalanced sequential datasets. Proposed 
kRNN+Hybrid improved the minority class se-
quence prediction efficiently at early rounds of 
SMOTE factor without sacrificing the majority 
class prediction as well than the simple hybrid 
sampling which generally applied to improve the 
classifier performance in the case of unbalanced 
datasets. This method can be further explored to 
other unbalanced sequential classification do-
mains like bioinformatics and cheminformatics.

Future Research Directions

The unbalanced data classification problem can be 
solved at data level and classification algorithm 
level. Concern with unbalanced sequence classi-
fication most of the research is carried out at data 
level with the combination sequence data handling 
methods. Further the unbalanced sequence clas-
sification should be explored at classification 
algorithm level along with cost of each minority 
sequence in consideration.

CONCLUSION

This chapter introduced a new approach for 
eliminating outliers from the noisy and highly 
unbalanced sequential datasets. In this work we 
defined the concept called extreme outlier and 
used kRNNs to find them. Results show that, the 
extreme outlier elimination combined with hybrid 
sampling can improve the accuracy of the classi-
fier for minority class. Here we used SMOTE to 
artificially create minority class sequences and 
emphasize the minority class regions after ex-
treme outliers in the minority class sequences are 
eliminated. Experiments are conducted on highly 
overlapped sequential dataset named Hill-Valley 
for k-nearest neighbour classifier. The results 
obtained indicate that, the proposed approach is 
efficient for minority sequence detection from 
the unbalanced sequential dataset (Table 2). 
Though our approach is implemented for discrete 
real sequence domain like Hill-Valley, it can be 
applied to other unbalanced sequential domains 
like bioinformatics and cheminformatics as well.
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Chapter  6

INTRODUCTION

With increasing number of transactions, reducing 
cost of storage devices, and the need for generat-
ing abstractions for business intelligence, it has 
become important to search for efficient methods 
for dealing with large, sequential and time series 
data. Data mining (Agrawal, et al, 1993; Fayyad, 

et al, 1996; Han & Kamber, 1996) focuses on 
development of scalable and efficient generation 
of valid, general and novel abstraction from a 
large dataset.

A transactional dataset consists of records 
that have transaction-id and the items that make 
up the transaction. A temporal dataset stores 
relational data that included time-related attri-
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butes. A sequence dataset contains sequences of 
ordered events, with or without time information. 
A time-series dataset contains sequences of values 
or events obtained over repeat measurements of 
time periodically like those of spacecraft health 
data, data from stock exchange, etc. Data Mining 
is inter-disciplinary subject that encompasses a 
number of disciplines like Machine Learning, 
large data clustering and classification, statistics, 
algorithms, etc.

In the current chapter, we present schemes for 
non-lossy and lossy compression of data using 
sequence generation, run-length computation, 
subsequence pruning leading to efficient cluster-
ing and classification of large data. The schemes 
are efficient, scale up well and provide high clas-
sification accuracy.

The proposed scheme integrates the following.

A.  Vector Quantization
B.  Sequence Generation
C.  Item Support and Frequent subsequences 

(Agrawal et al., 1993; Han et al., 2000)
D.  Subsequence Pruning (Ravindra, Murty, & 

Agrawal, 2004)
E.  Run length encoding
F.  Support Vector Machines
G.  Classification

The chapter is organized into sections. We 
discuss motivation for the work in the following 
section. It is followed by discussion on related 
work, background terminology and concepts along 
with illustrations. It is followed by a description 
of datasets on which we deomstrate working of 
the proposed schemes. The description includes 
summary of preliminary analysis of the datasets. 
Then the following section contains a discussion 
on proposed scheme, experimentation and results 
followed by a section on discussion on future re-
search directions. Finally the work is summarized 
in the last section.

Motivation

When data is large, operating on every pattern 
to generate an abstraction is expensive both in 
terms of space and time. In addition, as the data 
size increases, multiple scans of database would 
become prohibitive. Hence, generation of abstrac-
tion should happen in a small number of scans, 
ideally a single scan.

Some approaches to deal with large and high 
dimensional data make use of optimal represen-
tative patterns or optimal feature set to represent 
each pattern. Alternatively, it is interesting to 
explore whether it is possible to deal with data by 
compressing the data and work in the compressed 
domain without having to decompress.

Compression would lead to reduction in 
space requirements. Further it is also interesting 
to explore, while compressing the data, whether 
we can work only on subset of features based on 
some criterion. This would lead to working in 
lossy compression domain. However care should 
be exercised in ensuring that the necessary infor-
mation is not lost in the process.

We propose two such schemes and examine 
whether such schemes work efficiently on large 
datasets in terms of pattern classification.

BACKGROUND

Related Literature

Large data clustering schemes (Jain, Murty & 
Flynn, 1999) provide ways to deal with large data. 
Some of the successful methods in this direction 
have been optimal prototype selection schemes 
(Ravindra & Murty, 2001; Susheela, 2010), multi-
agent systems for large data clustering (Ravindra, 
Murty & Subrahmanya, 2010; Ravindra, Murty 
& Subrahmanya, 2009), optimal feature selection 
(Kim, Street & Mericzer, 2003) and simultaneous 
selection of prototype and features (Ravindra, 
Murty & Agrawal, 2005).
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Alternate approaches include compressing 
the data in either lossy form (Ravindra, Murty 
& Agrawal, 2007) or non-lossy form (Ravindra 
et al., 2004) and operate on the compressed data 
directly. This significantly improves space and 
computation requirements.

Data compression focuses on changing original 
data representation to an efficient representation by 
reducing redundancy (Salomon, 2000). Compres-
sion is termed lossy when we cannot reproduce the 
original form. With the objective of dealing with 
large data efficiently, non-lossy compression is 
useful as long as classification accuracy of patterns 
is unaffected or improved. Reduction in number 
of patterns reduces VC Dimension (Vapnik, 1999) 
provided Nearest Neighbour Classifier (NNC) 
accuracy is not affected (Karacah & Krim, 2002).

In the current chapter we discuss ways to deal 
with large data in terms of lossy and non-lossy 
compression of data.

Discussion on Related Terms

In the current section, we provide some definitions 
on which our application of non-lossy compres-
sion algorithm (Ravindra et al, 2004) and lossy-
compressions schemes are based. We provide a 
brief description of handwritten digit dataset and 
intrusion detection data which are considered for 
demonstrating the proposed schemes.

Consider a data set of ‘p’ patterns. The data 
is divided into three parts, pr, pv and pt corre-
sponding to training, validation and test patterns 
respectively. Let ‘q’ represent number of binary 
valued features per pattern. Equivalently, each 
pattern can be seen as a transaction and features 
as items. The set of items form itemset. In the 
current chapter, we use patterns and transactions 
to mean the same. Similarly features and items 
are used interchangeably.

• Support (Agrawal et al., 1993; Han & 
Kamber, 1996): In the current work, num-

ber of occurrences of an item is referred to 
support of an item, ω. It should, however, 
be noted that conventionally, probability/
percentage of number of occurrences of 
an item to total number of transactions 
represents support. For example, 11101, 
01101,10010,10100,10000 are examples 
of transactions with binary valued features 
representing presence (1) or absence (0) of 
an item.

• Frequent Itemset: The set of items whose 
support is more than minimum chosen sup-
port, ω, are referred to as frequent items. In 
the above example, with minimum support 
of 3, item-1 is frequent.

• Sequence and subsequence of items 
(Goldberg, 1978): Consider two sets of 
positive integers, viz., I and J. A sequence 
of integer numbers S:{a1, a2,…} is a func-
tion from I to J. If T is subsequence of posi-
tive integers, S o T is called subsequence 
of S.

• Length of subsequence: Number of el-
ements of a subsequence is referred to 
length of subsequence, ‘s’.

• Minimum Frequency for Subsequence 
Pruning: It is defined as number of times a 
subsequence should occur for it to be con-
sidered for further processing, η. It helps in 
compressing or pruning the subsequences. 
It is defined as a separate parameter to dif-
ferentiate from minimum support.

• Block: Finite number of items forms a 
block. Number of items in the block is 
called block length, l.

• Value of Block: Decimal equivalent value 
of a block with binary valued features is 
referred to as value of the block.

• Dissimilarity Threshold: The dissimilar-
ity threshold, ε, in identifying nearest sub-
sequence when original subsequences are 
pruned using η.
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The symbols used in the current chapter are 
provided in Table 1. Following examples illustrate 
above definitions.

Example 4.1. Consider a pattern with binary 
features as ‘011000111000’. Sequence is repre-
sented by ‘011000111000’. ‘011000111’ repre-
sents subsequence of length, s= 9. ‘011’, ‘000’, 
‘111’ form blocks of length, l= 3 each with cor-
responding quantized block values of 3,0 and 7.

Example 4.2. Consider 7 patterns or equiva-
lently transactions with 6 features or items each 
counted from 1 to 6 viz., (110011), (011010), 
(100010), (101110), (101010), (010101), and 
(001111). Here, 1 represents of presence and 0 
represent absence of an item in the transaction. 
Support of each of the items is counted by count-
ing number of respective non-zero values. The 
item-wise supports are (4, 3, 4,3,6,3). Frequent 
itemsets corresponding to different minimum 
support or support thresholds of 2,3,4 5,6, and7 
respectively are (1,2,3,4,5,6), (1,2,3,4,5,6), (1,3,5), 
(5), (5) and Null.

Example 4.3. Consider same data as in 
Example 4.2. We identify blocks of length 2, 
sequentially from each of the considered trans-
actions, viz., {(1,1), (0,0), (1,1)}, {(0,1), (1,0), 
(1,0)}, {(1,0),(0,0),(1,0)}, {(1,0),(1,1,),(1,0)}, 
{(1,0), (1,0), (1,0)}, {(0,1),(0,1),(0,1)}, and 
{(0,0), (1,1), (1,1)}. Compute block-values and 

form subsequences of length-3, each as, (3,0,3), 
(1,2,2), (2,0,2), (2,3,2), (2,2,2), (1,1,1), and (0,3,3). 
It should be noted that all the above subsequences 
have items that have minimum support of ω ≥3. 
Here all the subsequences are non-repeating and 
hence distinct. By considering only frequent items 
with, say, ω ≥4, the transactions with frequent 
features (items) are (100010), (001010), (100010), 
(101010), (101010),(000000), (001010). Here 
again, by considering blocks of length 2, the 
set of subsequences are (2,0,2), (0,2,2), (2,0,2), 
(2,2,2), (2,2,2), (0,0,0), and (0,2,2). The set of 
distinct subsequences is (2,0,2), (0,2,2), (2,2,2), 
and (0,0,0). Observe the reduction in number of 
distinct subsequences with increasing support, ω.

Run, Run length: In an ordered sequence of 
elements of two types, maximal subsequence of 
same type is called a run. Number of elements in a 
subsequence of same type of elements is referred 
to as run length.

Example 4.4. For example, a sequence 00011 
has subsequences of 000 and 11 of types 0 and 1 
respectively. The corresponding run lengths are 
3 and 2.

Run-sequence: Sequence of runs of sequence 
of elements is referred to run-sequence. It forms 
compressed representation of given sequence of 
elements.

Example 4.5. Run-sequence of 0001100001 
is 3241.

Table 2 contains illustration of concept of non-
lossy compression through run-length encoded 
data along few additional terms. The terms are used 
further while explaining the proposed schemes.

• Support Vector Machine (Burges, 1998; 
Duda, Hart & Stork, 2002): The focus of 
the method is to classify given set of pat-
terns by non-linearly mapping them into a 
sufficiently high dimension such that the 
two categories are separated by hyperplane 
(Duda et al., 2002). Training a SVM aims 
at finding a hyperplane with largest margin 
which is the distance from the decision hy-

Table 1. Parameters used in lossy data compres-
sion scheme 

Parameter Description

p No. of patterns or transaction

q No. of features

l Block length, no. of binary features per block

n No. of blocks per pattern

ω Support

s Length of subsequence

η Minimum frequency for pruning a subsequence

ε Dissimilarity threshold for identifying nearest 
neighbor of subsequence
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perplane. With the help of support vectors 
which are part of training patterns and are 
close to decision hyperplane, we classify 
the unseen patterns.

• Knowledge-Based Decision Tree 
(Ravindra et al., 2009): Knowledge-
Based Decision Tree or KBTree exploits 
domain knowledge on handwritten dig-
it data. Based preliminary analysis, it 
is observed that classes (0,3,5,6,8) and 
(1,2,4,7,9) share similar sample statistics. 
Further statistical analysis showed earlier 
that the classes (0,6), (3,5,8), (3,5), (4,9), 
(1,2,7) and (1,7) can be grouped together. 
Based on this analysis a tree is devised 
(Ravindra, et al; 2009) that classifies 
10-class HW digit data with a decision tree 
of depth just 4. We make use of the concept 
in the current work.

• Leader clustering algorithm (Spath, 
1980): Given a set of patterns, leader algo-
rithm consists of considering any arbitrary 
pattern as first leader. Every other pattern 
is sequentially compared with the leader 
to examine whether it lies within a pre-
chosen threshold. When it falls within the 
threshold, the pattern under consideration 
belongs to the pattern represented by the 
leader. When it deviates from the leader 
with reference to the threshold, the pattern 
forms new leader. All subsequent patterns 
are compared with existing set of leaders 
to decide whether they belong to existing 
leaders representing corresponding clus-
ters or a new leaders need to be identified. 

The leaders form prototypes of the given 
dataset. Advantage of leader algorithm is 
that it generates an abstraction of the data 
with singe database scan. Also, it should be 
noted that as the threshold value increases 
number of prototypes would reduce. The 
value of threshold is trade-off between rep-
resentability and computation cost.

Handwritten Digit Dataset

Handwritten digit dataset under consideration 
consists of 10003 labeled patterns. Each pattern is 
represented as 16X12 matrix. Thus each pattern is 
characterized by 192 binary valued features. Value 
of ‘1’ represents the presence and ‘0’, the absence 
of feature. The dataset is divided into 6670 training, 
3333 test patterns. A subset of training data is set 
out as validation dataset. Equivalently, the dataset 
can be seen as 10003 transactions with 192 items 
each with feature value representing presence or 
absence of the item. Figure 1 represents a set of 
sample digits.

Table 2. Illustration of parameters used in non-lossy compression scheme 

Sl. No. Sequence or Pattern Run Sequence Length of Original 
Sequence

No. of runs Maximum 
run-length

1 0101010101 1111111111 10 10 1

2 0000111000 432 10 3 4

3 1000000001 181 10 3 8

4 0001111111 37 10 2 7

Figure 1. Sample handwritten digits
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Intrusion Detection Dataset

Intrusion Detection dataset (10% data) that was 
used during KDDCup99 contest is considered for 
the study. The data relates to access of computer 
network by authorized as well as unauthorized 
users. The access by unauthorized users is termed 
as intrusion. Different costs of misclassification 
are attached in assigning a pattern belonging to 
a class to any other class. The challenge lies in 
detecting intrusion belonging to different classes 
accurately minimizing the cost of misclassifica-
tion. The current data set assumes floating point 
values.

The training data consists of 41 features. Three 
of the features are attributes and remaining are 
floating point numerical values. For effective 
use of these attributes along with other numeri-
cal features, the attributes need to be assigned 
proper weights based on the domain knowledge. 
Arbitrary weightages could adversely affect clas-
sification results. In view of this, only 38 features 
are considered for the study. On further analysis it 
is observed that values of two of the 38 features 
in the considered 10%-dataset are always zero, 
effectively suggesting exclusion of these two 
features (features numbered 16 and 17, by count-
ing first feature as 0). The training data consists 
of 311029 patterns and the test data consists of 
494020 patterns. A closer observation reveals that 
not all features are frequent. We make use of this 
fact during the experiments.

The training data consists of 23 attack types 
that form 4-broad classes, viz., ‘dos’, ‘normal’, 
‘u2r’, ‘r2l’, and ‘probe’. As noted earlier test data 
contains 19 more classes than those in the training 
data. Since the classification of test data depends 
on learning from training data, the unknown at-
tack types(or classes) in the test data have to be 
assigned one of a priori known classes of train-
ing data. This is carried out in two ways, viz., (a) 
assigning unknown attack types with one of the 
known types by nearest neighbour assignment 
within Test Data, or (b) assigning with the help 

of domain knowledge. Independent exercises are 
carried out to assign unknown classes by both 
the methods. The results obtained by both these 
methods differ significantly. In view of this, assign-
ments based on domain knowledge are considered 
and test data is formed accordingly.

In classifying the data, each wrong pattern 
assignment is assigned a cost. The cost matrix 
is provided in Table 3. Observe from the table 
that cost of assigning a pattern to a wrong class 
is not uniform. For example, cost of assigning a 
pattern belonging to class ‘u2r’ to ‘normal’ is 3. 
Its cost is more than that of assigning a pattern 
from ‘u2r’ to ‘dos’, say.

Further, dissimilarity measure plays an impor-
tant role. The range of values for any feature 
within a class or across the classes is large. Also 
the values assumed by different features within a 
pattern are also largely variable. This scenario 
suggests use of Euclidean as well as Mahalanobis 
distance measures. Both the methods are used in 
carrying out exercises on random samples drawn 
from the original data. Based on the study on the 
random samples, it is observed that Euclidean 
distance measure provided better classification 
of unseen patterns. Thus, Euclidean measure alone 
is used further.

With the full data of the given dataset, NNC 
provides a classification accuracy of 92.11 with 
a cost of 0.254086}. This result can be made use 
while analyzing the results reported in the rest 
of the chapter.

Table 3. Cost matrix 

Class 
Type

‘normal’ ‘u2r’ ‘dos’ ‘r2l’ ‘probe’

‘nor-
mal’

0 2 2 2 1

‘u2r’ 3 0 2 2 2

‘dos’ 2 2 0 2 1

‘r2l’ 4 2 2 0 2

‘probe’ 1 2 2 2 0
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Results reported during KDDCUP’99 are 
provided in Table 4.

Proposed System

In the current section, we present proposed 
schemes that efficiently handle large data. Initially 
we discuss need aspect of such schemes, and fol-
low it with an overview of proposed schemes. 
Subsequently we describe each of the proposed 
schemes along with previous work carried out 
in the direction and the present extensions. Re-
sults of preliminary data analysis leads to final 
implementation of the scheme is discussed in the 
same sub-section. The experimental results are 
presented in the section titled, “Experimentation 
and Results”.

NEED ASPECT

When we deal with large datasets, one important 
aspect is to study whether entire data is necessary 
to generate an abstraction. And whether it is pos-
sible to extract a representative subset based on 
which we generate an abstraction which is as valid 
as it is generated from entire dataset.

In addition to above, it is interesting to explore 
whether we can generate a non-lossy compaction 
or compression of the dataset and operate in the 
compressed domain without having to decompress 

to generate an abstraction (Ravindra et al., 2007). 
Another view is resort to lossy compression of 
data (Ravindra et al., 2004) and still be able to 
generate an abstraction which is at least as good as 
the one generated by full data. In either case, the 
schemes would lead to space and time advantage 
due to compression and less number of operations 
respectively.

Such schemes are found to be quite useful for 
data mining applications. We provide outline of 
methods with the help of discussion on background 
provided in background section.

OVERVIEW OF COMPRESSION 
SCHEMES

In the current subsection we discuss previous 
work done in this direction. This forms the basis 
for the proposed scheme.

Lossless Compression

The scheme consists of following steps.

A.  Consider transaction-type dataset which 
contains patterns with binary valued features. 
Some examples of such datasets are sales 
transaction data, and handwritten digit data 
with binary valued features.

B.  Encode the data as run lengths
C.  Use dissimilarity computation scheme 

(Ravindra et al., 2007) to compute dissimilar-
ity in the compressed domain without having 
to decompress

D.  In order to validate non-lossy nature of 
compression, decompress the run length 
encoded data to original form and compare. 
However the same was theoretically proven 
earlier (Ravindra et al., 2007)

E.  Encode training, validation and test datasets
F.  Using kNNC, classification of test data can 

be done in compressed domain with the 
help of dissimilarity computation scheme 

Table 4. Accuracy of winner and runner up of 
KDDCUP’99 

Description Winner Runner-up

Class name:‘dos’ 99.5% 99.4%

Class name: ‘nor-
mal’

97.1% 97.5%

Class name: ‘r2l’ 8.4% 7.3%

Class name: ‘u2r’ 13.2% 11.8%

C l a s s  n a m e : 
‘probe’

83.3% 84.5%

Cost 0.233 0.2356
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as mentioned in (d) above, which leads to 
savings in terms of time and space.

Following are some of the important observa-
tions in the implementation of above scheme.

Unequal number of runs: The features of the 
patterns are binary valued. Since each transaction/
pattern is different, the run length and number of 
runs per pattern are different for different pat-
terns. Thus they lead to unequal number of runs 
for different patterns, because of intra-class and 
inter-class variations.

Application of dissimilarity measures: Because 
of unequal number of runs, it is difficult to apply 
conventional dissimilarity measures to the data.

Some further exploration possibilities of the 
above scheme is to examine whether we can 
generate similarities among the compressed data 
directly, or is it possible to further compress the 
data by extraction of some additional features so 
that we can obtain similarities among the data.

We present an extension of the above scheme 
as part of discussion on proposed scheme.

Lossy Compression

In brief, the scheme consists of observing that 
not all items/features contribute to discrimina-
tion. Because of this, if by some means, if some 
of the non-zero features could be eliminated, it 
would lead to further compaction. Equivalently 
in terms of runs it would lead to less number of 
runs per pattern. However, it needs to be validated 
that such elimination does not affect the overall 
accuracy of abstraction.

The scheme consists of the following steps. 
We describe each of the steps.

• Compression by Minimum support
• Data Encoding
• Compression by Subsequence Generation 

and Pruning
• Encoding Training Dataset

• Dissimilarity Computation of Encoded 
data

• Encoding Test Dataset
• Classification of Test Patterns

Compression by Minimum Support

The input data often contains noise and contain 
features that not frequent. The set of active features 
differs from one pattern to another even within 
class. In order to obtain proper abstraction, it is 
necessary remove the noise. Consider the training 
data. Each pattern is characterized by ‘q’ items. 
Compute support for each of the items. Consider 
a minimum support, ‘ω’, which is data domain 
dependent. In order to compute ‘ω’, we carry out 
preliminary analysis of data under study. After 
computing minimum support, we consider only 
those items of each of the transactions which 
exceed ‘ω’. Thus number of effective items 
reduces. However, it should be noted here that 
notwithstanding the reduction in the number of 
effective items, total number of items ‘q’ per pat-
tern is left unchanged.

Data Encoding

Subsequent to reduction in number of effective 
features, subsequence generation is carried out 
for encoded data. For encoding, consider ‘l’ 
number of items as a block and compute decimal 
equivalent of each block. Value of ‘l’ is chosen 
based on preliminary data analysis such that ‘q’ is 
integral multiple of ‘l’. Thus it provides sequence 
of decimal values for each pattern.

Subsequence Generation

Sequence of decimals values is further compacted 
by considering subsequences of decimal values. 
The length of subsequence ‘s’ is data dependent. 
Large data representing a scenario is likely to have 
similarity among different patterns. The value of 
‘s’ is essentially a trade-off between achievable 
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compactness and pattern representativeness. At 
the extremes, s takes the value of 1 as minimum 
and q/l as maximum value. At minimum, number 
of subsequences equals to q/l subsequences. At 
maximum entire pattern gets represented as single 
subsequence.

After the subsequences are computed, we look 
for distinct subsequences. Least number of distinct 
subsequences indicates maximum compactness. 
The number of distinct subsequences is a func-
tion of ‘ω’.

Subsequence Pruning

Second level of compaction is achieved by prun-
ing distinct subsequences. Distinct subsequences 
which occur once or less number of times, do 
not add to discrimination. After generating the 
distinct subsequences, frequency of each distinct 
subsequence across entire training data is counted. 
Consider a data dependent minimum frequency 
threshold for a distinct subsequence, ‘η’. Replace 
all those distinct subsequences that occur less than 
‘η’ by their nearest neighbours (NN). In order 
to obtain Generalization, ‘η’ is chosen to be last 
possible value above 1.

Encoding Training Dataset

Each of ‘p’ training patterns is considered. Based 
on ‘ω’, the number of items across all the ‘p’ pat-
terns is minimized. Subsequently, with a block 
length of ‘l’ the data is encoded to block values. 
The subsequences of length ‘s’ are considered. 
Distinct subsequences across entire training data 
are identified as k, say. With minimum frequency 
value of ‘η’, least frequent distinct subsequences 
are replaced by their nearest neighbours. At this 
stage entire training dataset is represented by k1 
distinct subsequence, where k1<k.

Dissimilarity Computation Between 
Distinct Subsequences

The number of distinct subsequences k1 is num-
bered from 1 to k1. The combination of distinct 
subsequences for each pattern is are likely to 
be different. When patterns contain binary val-
ued features, Hamming distance and Euclidean 
distance provide equivalent information for dis-
crimination. We consider Hamming distance for 
computing distance between two encoded values. 
Dissimilarity between two patterns is computed 
as sum of dissimilarities between corresponding 
decimal codes. For example for 4-bit blocks, the 
range of decimal codes is 0 to 15. To compute 
distance between blocks, it is sufficient to store 
16*17/2=136 values. In summary distance compu-
tation between two training patterns is simplified 
as given below.

A.  With ‘l’ bit encoding, pattern of ‘q’ features 
is reduced to q/l blocks.

B.  By considering frequent subsequences, 
number of distinct subsequences further 
reduces.

C.  Dissimilarity between two patterns is carried 
out by table look-up.

Encoding Test Dataset

Encoding Test data involves approximation. 
As discussed earlier, distinct subsequences are 
computed based on the training data. The distinct 
subsequences are pruned further. Test dataset 
is independent of Training data. The pruning 
parameters are not applicable to test data. Thus 
test data can always contain subsequences that 
would have got pruned in the training data. Thus 
for finding distance between training and test 
patterns, when a matching subsequence in test 
pattern is not available in the training data, it is 
assigned a nearest distance subsequence identi-
fied earlier during training in the process of lossy 
compression. Once assigned, the dissimilarity 
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computation would be same as explained in the 
previous Subsection.

The scheme is directly applicable to binary 
valued features. We explore here to see how the 
scheme can be extended to patterns with real valued 
feature values. We present a proposed scheme and 
implementation of the same on network intrusion 
data of KDDCup 99.

PROPOSED METHODS

The current sub-section contains discussion on 
proposed methods. We provide two extensions 
of the work described in Sub-section of proposed 
system.

Scheme 1

Consider the case of lossless compression of binary 
feature valued patterns. Runs are computed of the 
given training and test data. The test data is clas-
sified in the compressed domain directly without 
having to uncompress using a novel scheme. It 
was shown earlier (Ravindra et al., 2007) that 
such a scheme is non-lossy and provided a space 
advantage of 3 times and CPU time advantage 
of about 5 times with handwritten digit data. The 
same data set is used for exercises in the current 
Chapter too. The scheme is an extension of the 
previously reported scheme (Ravindra, et al, 2007).

The scheme consists of additional steps in 
leading to further compaction and summariza-
tion. The steps can be enlisted as below. Figure 
2 contains corresponding Schematic.

A.  Given patterns with binary valued features, 
encode the data as run lengths. We illustrate 
the concepts considering handwritten digit 
data. The data covers both training and test 
patterns.

B.  Compute runs in both horizontal and vertical 
directions.

C.  Compute maximum number of runs and run 
of maximum length in both horizontal and 
vertical directions. It forms 4-dimensional 
vector.

D.  Use Leader clustering algorithm to cluster 
patterns class-wise

E.  Consider cluster representatives or leaders 
and classify the test data both in run-length 
encode form using Support Vector Machines

It should be noted here that the scheme leader 
enormous compression of given data. We demon-
strate the same through some illustrations.

Scheme 2

Consider lossy compression of data. Earlier work 
in this direction (Ravindra et al., 2004) consisted 
of two levels of lossy compression. Initially out 
of original elements only those elements that are 
frequent with a chosen support are considered for 
further treatment. This forms first level of lossy 

Figure 2. Proposed scheme 1
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compression. Subsequently based on preliminary 
analysis length of fixed block is derived. Consider 
fixed blocks of binary valued features and com-
pute decimal equivalents through quantization 
step. We consider subsequences of fixed length 
and compute frequency of such subsequences. 
Subsequences of frequency less than a chosen 
threshold are eliminated. This forms second 
level of compression. However, test data could 
still contain some of the eliminated features and 
subsequences. Hence nearest derived subsequence 
from the training data is assigned to an hitherto 
unseen subsequence found in a test pattern. Based 
on the classification method, a label is assigned 
to the test pattern. It was shown earlier (Ravindra 
et al., 2004), that it provided accuracy better than 
original uncompressed data set.

The scheme proposed earlier worked ef-
ficiently with binary valued features, since the 
application of the scheme is direct in both the 
levels of lossy compression. However, it needs 
to be explored whether it could work with float-
ing valued features. We examine the same in our 
proposed scheme.

The scheme can be summarized through fol-
lowing steps. Figure 3 contains the proposed 
scheme.

A.  Given floating point values of features of a 
pattern, carry out preliminary statistical 
analysis on the sample data to find out range 
of each of feature values.

B.  Quantize the range through number of bits 
and the resolution. This forms equivalent bi-
nary representation of floating point values. 
Together with all the features of the pattern, 
it forms a pattern with binary valued features.

C.  Compute frequent features and eliminate the 
features that lie below pre-chosen support 
threshold. It forms first level compression.

D.  Form blocks of constant length and subse-
quences of quantized features. Eliminate 
subsequences of frequency lower that given 
threshold. It forms second level compression.

E.  Classify test patterns as discussed above.

EXPERIMENTATION AND RESULTS

We carry out brief experimentation in order to dem-
onstrate the working of the schemes. Scheme-1 
is demonstrated using handwritten digit dataset 
and Scheme-2 is demonstrated using KDDCUP99 
dataset (KDDCup99 data, 2009). The datasets are 
described in Subsections of background section.

Scheme-1

We consider handwritten digit data containing 
10 classes with labels 0 to 9. Each class has 667 
training patterns. The data is considered at the 
first stage as two sets containing (0,3,5,6,8) and 
(1,2,4,7,9) based on their shape and similarity 
based on sample statistics. Total number of train-
ing patterns is 6670. They are equally divided into 
above two sets. The classification scheme is based 
on Knowledge Based Decision Tree (Ravindra et 
al., 2009). We demonstrate working of the scheme 
based on these two datasets.

Figure 3. Proposed scheme 2
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We compute runs corresponding to each pat-
tern both in horizontal and vertical directions. 
Each pattern consists of 192 binary features and 
each pattern is recognizable digit when arranged 
in 16X12 matrix. Horizontal runs correspond to 
computation of runs in row-direction and verti-
cal runs correspond to column-direction. Figure 
4 contains plot of these runs with reference to 
patterns. First set of two figures in horizontal di-
rection correspond to pattern wise horizontal and 
vertical runs respectively of the first set consisting 
of classes (0,3,5,6,8). Second set of two figures in 
horizontal direction are horizontal and vertical runs 
of second set containing training patterns belong 
to classes (1,2,4,7,9). Following observations can 
be made from the figures.

• No. of runs in horizontal direction are 
higher than those in vertical direction. This 
is due to existence of longer sequence of 
zero features in vertical directions by the 
nature of pattern.

• The plots provide range for value of runs 
for different patterns. For example, in case 
of class-0 the runs approximately range 
from about 42 to 58 in horizontal direction 
and 10 to 32 in vertical direction

• Class-wise runs could possibly be charac-
terized as number of runs and maximum 
run length. It is further explored to whether 
the information is good enough for group-
ing similar patterns.

The patterns are clustered using 4-dimensional 
vector consisting of the following

1.  Number of runs in horizontal direction of 
the pattern,

2.  Maximum run length of the runs within 
pattern,

3.  Number of runs in vertical direction of the 
pattern

4.  Maximum run length of the runs within 
pattern

We cluster patterns within each class based 
on these features. Interestingly they successfully 
group the patterns. The leaders thus computed 
are considered as prototypes. The corresponding 
compressed run-length encoded data is extracted. 
Using these prototypes classification of unseen 
patterns numbering 3333 is carried out using 
support vector machines using the package, 
svmlight (Chang & Lin, 2001). The classification 
accuracy obtained using linear kernel is 93.91%. 
Further class-wise labeling as we pass through 
Knowledge Based Decision tree is carried out in 
similar manner.

Scheme-2

In this case, we consider intrusion detection data of 
KDDCup 99. Description of the data is provided 
in background section. Table 5 provides quantiza-
tion effort corresponding to some features among 
the 38 features of the data. Feature wise statistics 
of training data are computed. The table contains 
a number of interesting statistics. They can be 
summarized below.

• Ranges of mean values of different fea-
tures are different.

• Standard deviation which is a measure of 
dispersion is different for different feature 
values

• Minimum value of each feature is 0.0
• Maximum values of different features are 

different ranging from 1.0 to 693375616
• Feature-wise support is different for dif-

ferent features. The support is defined here 
as number of times a feature assumed non-
zero value in the training data.

• If the real values are to be mapped to in-
tegers, number of bits required along with 
corresponding resolution is different for 
different features.

With support value of 5%, the number of fea-
tures reduces to 22 and with support value of 10% 
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the number of features reduces to 17. Experiments 
are conducted varying threshold for subsequence 
elimination.

We consider support value of 10%. Further in 
order to further reduce the dataset size, we subject 
to clustering as well. We classify the test data us-
ing NNC. Table 6 contains the results. The results 
are presented for subsequence threshold of value 
‘0’. It can be observed from the table that with 
increasing distance threshold of leader clustering 
algorithm, number of prototypes reduces. Best 
classification accuracy obtained and best cost 
obtained is highlighted. It should be noted that 
the cost obtained is better that reported values 
of winner and runner up in KDDCup 99 contest.

FUTURE RESEARCH DIRECTIONS

With reducing costs of storage devices and in-
creasing need for business intelligence, demand 
for efficient algorithms is continuously on the 
increase. The work opens up a number of directions 
for compressed data handling with and without 
the use of prototype selection as well as feature 
selection. Some of the future research directions 
are the following.

• Compress the data in lossy manner and 
use extracted information of the com-
pressed data for generating prototypes 
alone. For example, we demonstrated the 
use of number of runs and maximum run 

Figure 4. Run lengths for set-1 and set-2
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length in horizontal and vertical directions 
to successfully clustering compressed pat-
terns. We can use additional statistics for 
more effective clustering of the patterns. 
Clustering can however be validated using 
classification of unseen patterns.

• Starting with patterns with equal number 
of features, run length encoding leads to 
uneven number of extracted features per 
pattern. Research work towards making 
the number of extracted features equal 
would enable application of conventional 
dissimilarity measures

• Classification of compressed data using 
SVMs is successful. Multi-kernal SVMs 
is one important direction of further 
exploration.

• The direction of lossy compression com-
bined with prototype selection is signifi-
cantly promising area. Choice of block 
length is domain dependent. Theoretical 
extensions can be taken up in this direction.

• Extension of the work in both lossy and 
non-lossy data compaction for text pro-
cessing is a promising research direction.

CONCLUSION

Data Mining conventionally focuses efficient and 
effective algorithms that deal with large data. In 

the current Chapter we discuss possibility of gen-
erating a compaction of data and working in such 
compressed domain without having to decompress 
to generate abstraction. We discussed previous 
work done in these directions. And proposed exten-
sions in terms of using information extracted out 
of run-length compressed data leading to further 
compaction. Also, we extended previous work on 
lossy compression on binary valued feature data 
to real valued data.

We provided discussion on background ter-
minology, previous work in this direction and 
proposed two schemes. We described each of the 
schemes. We carried out experiments demonstrat-
ing their working on large data sets of handwrit-
ten digit data and intrusion detection data. We 
briefly discussed possible future directions of 
the current work.

Table 5. Quantization statistics for few features of intrusion detection data (KDDCup 99,1999) 

Feature No. Mean Value Std. Deviation Min. Max Bits 
(VQ)

Resolution Support

1 47.979302 707.745756 0 58329 16 1.4e-5 12350

2 3025.609608 988217.066787 0 693375616 30 6.0e-10 378679

3 868.529016 33039.967815 0 5155468 23 7.32e-8 85762

4 0.000045 0.006673 0 1 4 0.06 22

5 0.006433 0.134805 0 3.0 4 0.06 22

6 0.000014 0.05510 0 3.0 4 0.06 1238

30 188.666186 106.040032 0 255.0 8 3.9e-3 494019

38 0.0547512 0.230140 0 1.0 4 0.06 341260

Table 6. Results on original data having support 
of 10% 

Distance 
Threshold

No. of 
Leaders

CA Cost

5.0 17508 91.83% 0.1588

10.0 15749 91.85% 0.1586

20.0 15023 91.83% 0.1585

50.0 9669 84.60% 0.2990

100.0 3479 82.97% 0.3300
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INTRODUCTION

With the development of biology, biotechnology, 
bioinformatics and biomedical research, more 
and more biological data is getting collected and 
is available for analysis (Wang et al., 2005). Data 
mining methods have been applied successfully 

for analyzing this data and many sophisticated 
mining tools such as GeneSpring, Spot Fire and 
VectorNTI have also been developed (Wang et 
al., 2005). The trend of developing data mining 
based solutions for biological data analysis is 
rapidly evolving. Details can be found in (Wang 
et al., 2005, chapter 2).
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Classification of 
Biological Sequences

ABSTRACT

The rapid progress of computational biology, biotechnology, and bioinformatics in the last two decades 
has led to the accumulation of tremendous amounts of biological data that demands in-depth analysis. 
Data mining methods have been applied successfully for analyzing this data. An important problem 
in biological data analysis is to classify a newly discovered sequence like a protein or DNA sequence 
based on their important features and functions, using the collection of available sequences. In this 
chapter, we study this problem and present two Bayesian classifiers RBNBC (Rani & Pudi, 2008a) and 
REBMEC (Rani & Pudi, 2008c). The algorithms used in these classifiers incorporate repeated occur-
rences of subsequences within each sequence (Rani, 2008). Specifically, Repeat Based Naive Bayes 
Classifier (RBNBC) uses a novel formulation of Naive Bayes, and the second classifier, Repeat Based 
Maximum Entropy Classifier (REBMEC) uses a novel framework based on the classical Generalized 
Iterative Scaling (GIS) algorithm.
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A critical problem in biological data analysis 
is to classify biological sequences based on their 
important features and functions. This problem is 
important due to the exponential growth of newly 
generated sequence data during recent years, which 
demands for automatic methods for sequence clas-
sification. The advantage of automatic sequence 
classifier is that, prediction of class of an unclas-
sified sequence reduces the time and cost required 
for performing experiments on the new sequence 
in laboratory to find its functions and properties. 
Since the sequences belonging to the same class 
have similar characteristics, the predicted class 
will give idea about the function and properties 
of the new sequence. For example, (1) a protein’s 
structure and functions depend on its amino acid 
sequence, so if we can predict the class of a new 
protein sequence on the basis of its amino acid 
sequence, then we can predict its structure and 
functions; (2) frequently, it is unknown for which 
proteins a new DNA sequence codes or if it codes 
for any protein at all. If we can predict the class 
of a new coding sequence on the basis of known 
coding sequences then there is a high probability 
to predict the proteins it will code for; and (3) 
prediction of the type of disease can be done by 
predicting the class of a sample sequence using 
a set of known sample sequences divided in dif-
ferent classes according to the type of diseases.

The known state-of-the-art solutions for clas-
sification problem are mainly based on Sequence 
Alignment (Altschul et al., 1990, 1997; Pearson & 
Lipman, 1988), Hidden Markov Model (HMM) 
(Krogh et al., 1994; Durbin et al., 1998; Eddy, 
1998), Probabilistic Suffix Trees (PST) (Bejerano 
& Yona, 1999; Eskin et al., 2003) and Support Vec-
tor Machines (SVM) (Leslie et al., 2002; Ben-Hur 
& Brutlag, 2003a, 2003b; Weston et al., 2005). 
Recent approaches (Melvin et al., 2007; Marsolo 
& Parthasarathy, 2006a, 2006b) have been trying 
to improve SVM by incorporating domain knowl-
edge, using complex features based on structures 
and combining it with other classifiers.

In this chapter we discuss two totally data 
mining based, simple but effective Bayesian 
classifiers for the biological sequences. These 
classifiers are called Repeat Based Naive Bayes 
Classifier (RBNBC) and Repeat Based Maximum 
Entropy Classifier (REBMEC). These classifiers 
use generic domain independent feature extrac-
tion method which requires comparatively less 
memory and time with the advantage of no need 
of domain expertise. Also these classifiers in-
corporate repeated occurrences of subsequences 
within each sequence known as repeats of the 
subsequences. Note that the existing domain based 
feature extraction methods are highly memory 
intensive and time consuming and they need ex-
tensive domain knowledge (Ferreira & Azevedo, 
2005b, 2006; Lesh et al., 1999, 2000; Huang & 
Brutlag, 2001). 

Naive Bayes is well known as a surprisingly 
successful classification method that has outper-
formed much more complicated methods in many 
application domains (Domingos & Pazzani, 1996; 
Kotsiantis & Pintelas, 2004; Zhang, 2004). How-
ever a direct implementation of Naïve Bayes does 
not work well for biological sequences. In RBNBC 
it is adapted to work for biological sequences.

On the other hand REBMEC uses a novel 
framework based on the classical Generalized 
Iterative Scaling (GIS) (Darroch & Ratcliff, 1972) 
algorithm to find the maximum entropy model 
for the given collection of biological sequences. 
The maximum entropy principle has been widely 
used for various tasks including discretization of 
numeric values of features (Kotsiantis & Pintelas, 
2004), feature selection (Li et al., 2003; Tatti, 2007; 
Ratnaparkhi, 1998), and various text related tasks 
like translation (Berger et al., 1996), document 
classification (Nigam et al., 1999), and part-of-
speech tagging (Ratnaparkhi, 1998). REBMEC’s 
approach is inspired by these works because 
comparison between biological sequence data and 
natural languages are commonplace (Buehler & 
Ungar, 2001). Unlike other Bayesian classifiers 
like Naive Bayes, maximum entropy based classi-
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fiers do not assume independence among features. 
These classifiers build the model of the dataset 
using an iterative approach to find the parameter 
values that satisfy the constraints generated by the 
features and the training data (Thonangi & Pudi, 
2005; Ratnaparkhi, 1997; Buehler & Ungar, 2001). 
Maximum entropy based classifiers are known to 
be slow, have high accuracy and serve as a useful 
benchmark to compare other classifiers.

INTRODUCTION TO BIOLOGICAL 
SEQUENCES AND DATABASES

In this section, we discuss the various types of 
biological sequences and the databases which 
store them. There are three types of biological 
sequences available for analysis. Following para-
graphs briefly explains them.

1.  Deoxyribonucleic acid (DNA) acts like a 
biological computer program that spells 
out the instructions for making proteins. 
DNA is a double-stranded nucleic acid 
molecule twisted into a helix (think of a 
spiral staircase). Each spiraling strand, 
comprised of a sugar-phosphate backbone 
and attached nucleotide bases, is connected 
to a complementary strand by non-covalent 
hydrogen bonding between paired nucleotide 
bases. The nucleotide bases are adenine (A), 
thymine (T), cytosine (C) and guanine (G). 
A and T form a base pair connected by two 
hydrogen bonds while G and C are connected 
by three hydrogen bonds. Usually one of the 
two strands is sequenced. Each character in 
the sequence is a base pair, the other char-
acter being present in the sequence of the 
complementary strand. So a base pair is the 
unit in which the length of a DNA sequence 
is measured.

2.  Like DNA, Ribonucleic acid (RNA) is a type 
of nucleic acid but is usually single stranded, 
except when it folds back on itself. It differs 

chemically from DNA because it contains 
Ribose sugar instead of Deoxyribose and a 
uracil (U) base instead of thymine (T) base. 
Thus, the four nucleotide bases in RNA are 
A, C, G and U.

3.  A protein is a linear polymer composed of 
chains of amino acids in a specific order 
determined by the base sequences of nucleo-
tides in the DNA coding for the protein. A 
sequence of amino acids is coded for by the 
sequences of nucleotide bases in a DNA 
molecule—three bases form a triplet code. 
Each triplet code codes for one amino acid. 
A protein is a sequence of amino acids, and 
can be as long as several thousands of amino 
acids. There are twenty distinct amino acids, 
each represented by a letter: alanine (A), 
cysteine (C), aspartic acid (D), glutamic acid 
(E), phenylalanine (F), glycine (G), histidine 
(H), iosleucine (I), lysine (K), leucine (L), 
methionine (M), asparagines (N), proline 
(P), glutamine (Q), arginine (R), seine (S), 
threonine (T), valine (V), tryptophan (W), 
and tyrosine (Y). The length of a protein 
sequence is measured in terms of the number 
of amino acids present in the sequence. The 
length of a protein sequence can go up to 
several thousands of amino acids.

Figure 1 shows the amino acid sequence of a 
protein with primary accession number P91638 
taken from SWISS-PROT (Bairoch & Boeck-
mann, 2003) database. The name of the protein 
is Smallminded protein and is obtained from fruit 
fly. Its length is 943. The format of the presented 
information is called FASTA format in which the 
first line starting with symbol “>” is the header line 
showing protein ID, name and other information 
and from next line onwards the amino acid sym-
bols are shown in groups of up to 80 characters.

There are a lot of different databases where 
biological information such as DNA and protein 
sequence data are stored, including, general bio-
logical data banks such as GenBank (Benson et 
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al., 2008), SWISS-PROT (Bairoch & Boeckmann, 
2003), and Protein Data Bank (PDB) (Westbrook 
& M. Berman, 2000). Specifically, GenBank is 
an annotated collection of all publicly available 
DNA sequences. The GenBank database com-
prises the DNA DataBank (DDBJ) (Sugawara et 
al., 2008) of Japan, the nucleotide sequence da-
tabase EMBL (Akhtar & Cochrane, 2008) of 
European Bioinformatics Institute and GenBank 
at National Center for Biotechnology Information 
(NCBI). SWISS-PROT is an annotated protein 
sequence database maintained by the Swiss In-
stitute of Bioinformatics and European Bioinfor-
matics Institute. PDB contains all publicly avail-
able solved protein structures. These databases 
contain large amounts of raw sequence data.

There are a number of derived or structured 
databases which integrate information from mul-
tiple primary sources, and may include relational 
/ cross-referenced data with respect to sequence, 
structure, function, and evolution. A derived da-
tabase generally contains added descriptive ma-
terials on top of the primary data or provides 
novel structuring of the data based on certain 

defined relationships. Derived / structured data-
bases typically structure the protein sequence data 
into usable sets of data (tables), grouping the 
protein sequences by family or by homology 
domains. A protein family is a group of sequenc-
es that are functionally or structurally similar. 
Examples of the derived databases are:

1.  PIRSF (Nikolskaya & H. Wu, 2004), Pfam 
(Finn & Bateman, 2008), PROSITE (Sigrist 
& Hulo, 2004) and ProDom (Bru & Servant, 
2002) are databases of protein families and 
domains classified automatically on the 
basis of sequence similarity using sequence 
alignment based methods.

2.  GPCRDB (Horn et al., 2003) and KinBase 
(Manning et al., 2002) are databases of 
protein families classified manually on the 
basis of function of proteins.

Problem Definition

Let ∑= {s1, s2,..., sm} be the set of all possible 
symbols. A sequence is an ordered list of symbols 

Figure 1. Protein sequence from SWISS-PROT database in FASTA format. The header line shows Protein 
ID and name. From next line onwards amino acid symbols are shown in groups of 60 characters per line.
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in ∑. The number of symbols in a sequence is 
referred to as length of the sequence. Note that 
each symbol of a sequence is at a specific posi-
tion and symbols at different positions can not 
be interchanged. The given training dataset D = 
{F1, F2,..., Fn} is a set of n families, where each 
family (the terms “family” and “class” are used 
interchangeably in this chapter) is a collection of 
sequences. The sequences of a family are of dif-
ferent lengths and total number of sequences in 
each family is different. The goal of the sequence 
classifier is to label a query sequence S with fam-
ily Fi for which the posterior probability P(Fi|S) 
is maximum. Bayesformula allows us to compute 
this probability from the prior probability P(Fi), 
evidence P(S) and the class-conditional prob-
ability P(S|Fi) as follows:

P(Fi|S)=P(S|Fi)P(Fi)/P(S) (1)

where P(S)=
i=
∑

1

n
P(S|Fi)P(Fi)

Since the evidence P(S) is same for all families, 
it is ignored. So Equation 1 reduces to

P(Fi|S) ∝ P(S|Fi) P(Fi)  (2)

The prior probability P(Fi) is computed as the 
relative frequency of family Fi in D, i.e., P(Fi) 
= Ni/N, where Ni is the number of sequences in 
family Fi and N is the total number of sequences 
in the dataset.

Hence the classification problem reduces to 
the correct estimation of P(S|Fi), given the train-
ing dataset D.

Biological Sequence Classifiers

This section gives overview of various biological 
sequence classifiers categorizing them according 
to the classification method.

Examples of Naive Bayesian Sequence Clas-
sifiers can be found in (Andorf et al., 2004; Fer-
reira & Azevedo, 2005a; Kang et al., 2005, 2006). 
Andorf et al. (2004) proposes that the Naive Bayes 
(NB) classifier can be used for protein classifica-
tion by representing protein sequences as class 
conditional probability distribution of k-grams 
(short subsequences of amino acids of length k). 
They present two NB classifier models: (1) NB 
k-grams, that ignores the statistical dependencies 
between overlapping k-grams and (2) NB(k), that 
uses an undirected probabilistic graphical model 
to capture the relevant dependencies. The relevant 
probabilities required for specifying these models 

Table 1. General and derived biological databases 

Database Name Database Type Website 

GenBank General http://www.ncbi.nlm.nih.gov/Genbank

SWISS-PROT General http://ca.expasy.org/sprot

PDB General http://www.rcsb.org/pdb/home/home.do

DDBJ General http://www.ddbj.nig.ac.jp

EMBL General http://www.ebi.ac.uk/embl

PIRSF Derived http://pir.georgetown.edu/pirsf

Pfam Derived http://pfam.sanger.ac.uk

PROSITE Derived http://ca.expasy.org/prosite

ProDom Derived http://prodom.prabi.fr

GPCRDB Derived http://www.gpcr.org/7tm

KinBase Derived http://kinase.com/kinbase
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are estimated using standard techniques for esti-
mation of probabilities using Laplace estimators. 
The length of k-grams used in the classifiers is 
a user supplied parameter and the performance 
of the classifiers is very sensitive towards this 
parameter. The approach used in (Ferreira & 
Azevedo, 2005a) is to use the unlabeled sequence 
to find rigid gap frequent subsequences of a cer-
tain minimum length and use them to obtain two 
features: (1) number of relevant patterns and (2) 
average length of patterns. Then these features are 
combined in an NB classifier. This classification 
approach uses a computationally expensive query 
driven subsequence extraction method (Ferreira 
& Azevedo, 2006) which is guided by many user 
supplied parameters. This method defers the fea-
ture extraction process until classification time 
and for extracting the subsequences it compares 
the query sequence with all the sequences of 
the database. Due to this the computational cost 
and time complexity of the classification phase 
increases rapidly with only a small increase in 
the dataset size, which makes it unsuitable for 
large datasets.

Kang et al. (2006) introduces a novel word 
taxonomy based NB learner (WTNBL-ML) for 
the text and biological sequences. WTNBL-ML 
is a generalization of NB learner for multinomial 
event model. For building a word taxonomy Word 
Taxonomy Learner (WTL) is used which uses a 
hierarchical agglomerative clustering to cluster 
words based on the distribution of class labels that 
co-occur with the words. This classifier requires 
a similarity measure for words to build the word 
taxonomy which limits its use for biological 
sequences. Kang et al. (2005) tries to improve 
the NB classifier for sequences by relaxing the 
assumption that the instances in each class can 
be described by a single generative model. They 
present a recursive NB classifier RNBL–MN, 
which constructs a tree of Naive Bayes classifiers 
for sequence classification, where each individual 
NB classifier in the tree is based on a multinomial 
event model (one for each class at each node in 

the tree). The classifiers presented in (Kang et al., 
2005, 2006) build a binary classifier for each class 
of the dataset which becomes computationally very 
expensive when the number of classes increases.

Maximum Entropy based Sequence Classifiers 
are presented in (Pavlov, 2003; Buehler & Ungar, 
2001). For modeling a sequence, both (Pavlov, 
2003) and (Buehler & Ungar, 2001) use the his-
tory of symbols to predict the next symbol of a 
sequence. Buehler and Ungar (2001) use maximum 
entropy for modeling protein sequences using 
unigram, bigram, unigram cache and class based 
self triggers as features. After making simplifying 
assumptions about the probability distributions, 
such as assuming length of each sequence to be 
same and using a user supplied value for this 
length, they use GIS to find the parameters of 
the sequence model. Pavlov (2003) presents a 
sequence modeling method for text and biological 
sequences using mixtures of conditional maximum 
entropy distributions. This method generalizes 
the mixture of first order Markov models by 
including the long term dependencies, known as 
triggers, in the model components. The presented 
method uses generalized EM algorithm to learn 
the mixture of conditional maxent models from 
the available data.

HMM based Sequence Classifiers (Durbin 
et al., 1998; Eddy, 1998; Krogh et al., 1994) use 
Hidden Markov Model (HMM) to build a model 
for each protein family based on multiple align-
ments of sequences. A model for a family is one 
that assigns high probability to the sequences of 
that family and this model is used to classify an 
unlabeled sequence. HMM models suffer from 
known learnability hardness results (Abe & 
Warmuth, 1992), exponential growth in number 
of states and in practice, require a high quality 
multiple alignment of the input sequences to 
obtain a reliable model. These HMM based clas-
sifiers use algorithms which are very complex to 
implement and the models they generate tend to 
be space inefficient and require large memory.
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Similarity based Sequence Classifiers 
(Altschul et al., 1990, 1997; Pearson & Lipman, 
1988) compare an unlabeled sequence with all the 
sequences of the database and assess sequence 
similarity using sequence alignment methods 
like FASTA (Pearson & Lipman, 1988), BLAST 
(Altschul et al., 1990) or PSI-BLAST (Altschul 
et al., 1997) and then use the K-Nearest Neighbor 
approach to classify the new sequence based on 
the class label of the k most similar sequences. 
But as the number of sequences in biological da-
tabases is increasing exponentially, this method 
is infeasible due to the increased time required to 
align the new sequence with the whole database.

Probabilistic Suffix Tree (PST) based Sequence 
Classifiers (Bejerano & Yona, 1999; Eskin et 
al., 2003) predict the next symbol in a sequence 
based on the previous symbols. Basically a PST 
(Bejerano &Yona, 1999) is a variable length 
Markov Model, where the probability of a symbol 
in a sequence depends on the previous symbols. 
The number of previous symbols considered is 
variable and context dependent. The prediction of 
an input sequence is done symbol by symbol. The 
probability of a symbol is obtained by finding the 
longest subsequence that appears in the tree and 
ends just before the symbol. These probabilities 
are then combined to determine the overall prob-
ability of the sequence with respect to sequences 
of a database. The conditional probabilities of the 
symbols used in PSTs rely on exact subsequence 
matches, which becomes a limitation, since 
substitutions of symbols by equivalent ones is 
often very frequent in biological sequences. The 
proposed classifier of (Eskin et al., 2003) tries to 
overcome this limitation by generalizing PSTs to 
SMTs with wild-card support, which is a symbol 
that denotes a gap of size one and matches any 
symbol on the alphabet. An experimental evalua-
tion in (Bejerano & Yona, 1999) shows that PSTs 
perform much better than a typical PSI-BLAST 
search and as well as HMM. Eskin et al. (2003) 
shows that SMTs outperform PSTs. This analysis 
is very interesting since PSTs and SMTs are totally 

automated methods without prior knowledge of 
multiple alignments and score matrices or any 
human intervention while other methods use ex-
tensive prior knowledge. As biological sequence 
databases are becoming larger and larger, data 
driven learning algorithms for PSTs or SMTs will 
require vast amounts of memory.

SVM based Sequence Classifiers (Ben-Hur & 
Brutlag, 2003a, 2003b; Leslie et al., 2002; Mar-
solo & Parthasarathy, 2006a, 2006b; Weston et 
al., 2005; Melvin et al., 2007) either use a set of 
features of sequence families to train an SVM or 
use string kernel based SVMs, alone or with some 
standard similarity measure like BLAST or PSI-
BLAST or with some structural information. The 
classifiers of (Ben-Hur & Brutlag, 2003a, 2003b) 
use a set of Motifs—short conserved regions of 
proteins as features of protein families and train the 
SVM on this feature set. For extracting Motifs, they 
use a multiple sequence alignment based method 
called eMOTIF (Huang & Brutlag, 2001). The 
classifier of (Leslie et al., 2002) represents protein 
sequences as vectors in high-dimensional feature 
space via a string-based feature map and trains an 
SVM on the feature vectors without calculating 
the feature vectors explicitly, instead computing 
their pairwise inner products using a mismatch 
string kernel. Weston et al. (2005) use standard 
similarity measures like BLAST or PSI-BLAST 
along with mismatch string kernel to improve 
the performance of the SVM classifier. The clas-
sifier of (Marsolo & Parthasarathy, 2006b) uses 
the frequency scores returned by PSI-BLAST to 
create a wavelet based summary which is used as 
the feature vector for the SVM. The classifier of 
(Marsolo & Parthasarathy, 2006a) uses structure 
related information along with wavelet based 
summary as features for the SVM. Melvin et al. 
(2007) uses profile-based string kernel SVMs 
(Kuang et al., 2004) as base binary classifiers. 
They use PSI-BLAST to generate the sequence 
profiles and to define an additional set of base 
classifiers for extended components of the output 
vector. This output vector is fed into the ranking 
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perceptron to get the final output. The SVM based 
classifiers require a lot of data transformation but 
report the best accuracies among existing biologi-
cal sequence classifiers. Since SVM is basically 
a binary classifier, to handle a large number of 
classes, it uses the one against the rest method, 
which becomes computationally very expensive 
as the number of classes increases.

ESTIMATING FEATURE 
PROBABILITIES FROM FAMILY 
OF BIO-SEQUENCES

This section presents the important definitions and 
terminologies used in this chapter. It also describes 
one simple domain independent method for find-
ing feature probabilities in a biological sequence 
dataset when subsequences are used as features.

Preliminaries and Definitions

This section presents the necessary details of 
terminology and important definitions used in 
this chapter.

• Sequence: Let ∑ = {A1,A2,...,Am} be the 
set of all possible symbols. For example, 
in the case of protein sequences, ∑ consists 
of the 20 amino acid alphabets and for the 
DNA sequences it consists of the 4 nucleo-
tide alphabets. A sequence is a linear or-
dered list of symbols in ∑. Examples of 
this type of sequences are protein or DNA 
sequences or website navigation paths. The 
term linear is used to make the distinction 
from the transactional sequences that con-
sist of sequences of itemsets. The number 
of symbols in a sequence is referred to as 
length of the sequence. Note that each sym-
bol of a sequence is at a specific position 
and symbols at different positions can not 
be interchanged. A sequence S of length 
L can be represented as concatenation of 

L symbols as: S = <s1s2... sL>, where si ∈ 
∑and i = 1 to L. A sample protein sequence 
is shown in Figure 1. 

• Subsequence: A continuous segment 
of a sequence is called a subsequence. 
Formally, sequence SA =<a1a2... au> is a 
subsequence of sequence SB =<b1b2... bv>, 
if there exists u contiguous integers 1 ≤ i < 
i + 1 <... < i + u − 1 ≤ v such that a1 = bi, 
a2 = bi+1,..., au = bi+u−1. In other words, sub-
sequence SA is fully contained in sequence 
SB. Sequence SB is called supersequence 
of SA. Obviously, we have length of SA ≤ 
length of SB. For example,

S1 = KNLSEDAVPRSKDHR and S2 = LY-
QQLHQ are subsequences of S3=QKLHQVV
GNRAKNLSEDAVPRSKDHRNVPGLYQQ
LHQNQSRDRLRKFKRDL.

• Repeat: The multiple occurrence of a 
subsequenceS′in sequenceS is called re-
peat of S′ in S. For example, subsequence 
LHQ is repeated 2 times in the sequence 
S3.

• Family: A familyF = {S1, S2,..., SN} is a col-
lection ofNsequences of variable lengths.

• Training Data: The training data D = {F1, 
F2,..., Fn} is a collection of n families. The 
number of sequences in each family Fi ∈ D 
is different.

• Largest Family: The family Fi ∈ D with 
maximum number of sequences.

• Smallest Family: The family Fi ∈ D with 
least number of sequences.

Definition 1. The SequenceCount of a subse-
quenceXjin familyFiis the number of sequences 
of familyFiin which subsequenceXjis present at 
least once.

Definition 2. The RepeatCount of a subse-
quenceXjin familyFiis the sum of the number of 
occurrences of that subsequence in each sequence 
of the family.
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So, RepeatCount of a subsequence sums up 
all the occurrences of that subsequence from all 
the sequences of a family.

Definition 3. A subsequenceXjis fre-
quent in familyFiiffSequenceCountofXjinFi ≥ 
σwhereσis the MinsupCount for familyFi,and 
is calculated using the user given support 
thresholdminsupandNi(total number of sequences 
in familyFi) asσ = Ni ×minsup.

Definition 4. LetZ = {X1,X2,...,X|z|}be the 
set of all frequent subsequences extracted from 
familyFi. SubsequenceXj ∈ Z is maximal frequent 
in familyFiiff not existsXk ∈ Zsuch thatXkis su-
persequenceofXj.

Hence for a maximal frequent subsequence 
Xj, there are no other frequent subsequences in 
the family which contain Xj.

Feature Probability Estimation

This section describes how feature probabilities 
can be estimated from the training data when 
subsequences are used as features. The discussed 
classifiers RBNBC and REBMEC use maximal 
frequent subsequences as features.

Either SequenceCount or RepeatCount may 
be used to estimate the probability P(Xj |Fi) of a 
feature Xj in a family Fi. Note that since Repeat-
Count is obtained by summing all the occurrences 
of a feature in all the sequences of a family, it 
gives more information about the presence of 
that feature in the family than SequenceCount 
which only gives information about fraction of 
sequences in the family containing that feature.

Using SequenceCount is simple: [(Sequence-
Count of Xj) ∕ Ni] is a good estimate of P(Xj |Fi), 
where Ni is the number of sequences in Fi. Though 
this is simple and efficient, it does not account 
for multiple occurrences of Xj in a sequence. The 
alternative is to use RepeatCount. In our study 
we found that RepeatCount results in better ac-
curacy as it uses all the occurrences of a feature 
in the family.

Use of multiple occurrences of a feature is 
similar to the multinomial event models (McCal-
lum & Nigam, 1998) used in text classification 
but RBNBC and REBMEC follow a very dif-
ferent approach to find the feature probabilities 
which are used to build the model. McCallum 
and Nigam (1998) study multinomial models 
for document classification, which capture the 
word frequency information in each document, 
and show that these models perform better than 
the multi-variate Bernoulli model. Basically, 
the multinomial models represent each training 
sample as a bag of words and use the multinomial 
distribution method to find the class conditional 
probability. In contrast, REBMEC and RBNBC 
model the samples as sequences and find feature 
probabilities using RepeatCounts.

Following method finds P(Xj |Fi) using Re-
peatCount:

1.  Find the number of slots available for Xj in 
family Fi.

If we consider that the features may overlap:

slotsij =
k=
∑

1

Ni

[ length of Sk − length of Xj + 1] 

(3)

If we consider non overlapping features:

slotsij =
k

Ni

=
∑
1

floor (length of Sk ∕ length of Xj ) 

(4)

Where Ni is the total number of sequences in 
family Fi and floor function returns the largest 
integer value. 

Find the probability of feature Xj in family Fi as :

P(Xj |Fi) = (RepeatCount of Xj in Fi) ∕ slotsij 
(5)
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Equations 3 and 4 find the number of slots 
available for feature Xj in family Fi, i.e., the total 
number of times Xj can, in principle, occur in Fi. 
This is done by summing the available slots in 
each sequence Sk of the family Fi. Next, Equation 
5 estimates the feature probability as the fraction of 
times Xj actually occurs over the slots. Equation 3 
finds the number of slots for overlapping features, 
i.e., when boundaries of slots for a feature can 
overlap. Equation 4 finds the number of slots for 
non overlapping features, i.e., when boundaries 
of slots for a feature do not overlap.

Handling Problems of 
Bayesian Classifiers

This section discusses the existing problems of 
the Bayesian classifiers and presents the proposed 
solutions. It is known that Bayesian classifiers like 
Naive Bayes (NB) represent the query sequence 
as a feature vector and use the feature probabili-
ties to estimate the class-conditional probability. 
The class-conditional probability is then used to 
compute the posterior probability of each family. 
This approach can give rise to following problems:

Problem 1: Features Not Represented in the 
Training Data: Since calculation of P(Xj |Fi) is 
based on the presence of Xj in the training data 
of class Fi, a problem can arise if Xj is completely 
absent in the training data of class Fi. This problem 
is called “the problem of zero probabilities”. The 
absence of Xj is quite common because training 
data is typically too small to be comprehensive, 
and not because P(Xj |Fi) is really zero. This 
problem is compounded by the resulting zero prob-
ability for any query sequence S that contains Xj. 
Evidence based on other subsequences of S may 
point to a significant presence of S in Fi. Due to 
this problem, the existing Bayesian formulation 
cannot be applied directly on biological sequences 
when frequent subsequences are used as features. 
Known solutions to this problem are:

1.  Use a nonuniform feature set, i.e., use differ-
ent feature set of query sequence S for each 
class which includes only those features of 
S which are present in that class. Then set 
P(S| Fi) = 0 only if none of the features of S 
is present in class Fi.
a.  This solution has a drawback: classes 

with more matching features of S could 
be computed as having less posterior 
probability due to the multiplication 
of more feature probabilities whose 
values are always less than one. This 
results in wrong classification and is 
illustrated in Example 1.

2.  Incorporate a small sample-correction into 
all probabilities, such as Laplace correction 
(Domingos & Pazzani, 1997; Kotsiantis & 
Pintelas, 2004), which is frequently used in 
text classifiers (Bakus & Kamel, 2002). The 
Laplace correction factor requires chang-
ing all the probability values, so it is not 
feasible for datasets with a large feature set 
like biological datasets.

3.  If a feature value does not occur in a given 
class, then set its probability to (1 / N), where 
N is the number of examples in the training 
set (Kotsiantis & Pintelas, 2004).

Example 1. Suppose C1 and C2 are two classes 
with 10 samples each, so that the prior probabilities 
of the classes are P(C1) = P(C2) = 1/2.

A query sample S with features {X1,X2,X3,X4} 
has two matching features in class C1 with prob-
abilities 

P(X1| C1) = 1/10 and P(X3| C1) = 3/10

and four matching features in class C2 with prob-
abilities 

P(X1| C2) = 1/10, P(X2| C2) = 2/10, P(X3| C2) = 
3/ 10 and P(X4| C2) = 2/ 10.
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Using Equation 1, the posterior probabilities 
of the classes are obtained as

P(C1|S) = 3/200 and P(C2|S) = 6/10000.

Since P(C1|S) > P(C2|S), the query sample 
gets classified into class C1, although intuitively 
we know that class C2 is more suitable because 
it contains more matching features than class C1.

The standard Simple Naive Bayes (Simple NB) 
classifier uses SequenceCount with solution (I) 
to obtain the model of the dataset. RBNBC and 
REBMEC uses another solution described below.

Proposed Solution: To handle the problem of 
zero probabilities the classifiers use a very simple 
assumption. They assume that the probability of 
any feature to be present in any family is never 
zero. So for the features of other families which 
are not present in a given family, they use a correc-
tion probability ∈, which is the minimum possible 
feature probability computed using RepeatCount. 
It is obtained as:

∈ = 1 / Sum of the lengths of sequences of the 
largest family (6)

For handling the problem arising from the 
use of a nonuniform feature set, RBNBC and 
REBMEC use a query-sequence-based uniform 
feature set, which is the set of features present in 
the query sequence S, collected from all families. 
The classifiers then use ϵ as the probability value 
of features not present in a family. We have ex-
perimented with two models of the NB classifier 
for biological sequences–model A, which is the 
Simple NB classifier, using solution (I) and model 
B using our solution with SequenceCount–and 
found that model B performed better than model A. 
For classifiers like model B, which use Sequence-
Count, the correction probability ϵ is obtained as:

∈ = 1 / Number of sequences of the largest  
family (7)

Problem 2: Out of Range Probability Values: 
Probability values obtained using equations 
such as Equations 5 and 6 are very small. When 
these very small values are multiplied to obtain 
the class-conditional probability to be used in 
Bayesian equation 1, the product can go below the 
available minimum number range of the computer 
processor. This is a problem with all Bayesian 
classifiers which work with large feature sets and 
assume independence among the features and 
hence directly multiply the feature probabilities 
to get the class-conditional probabilities.

An appropriate scaling factor, which depends 
on the dataset, or log scaled formulation is used 
to avoid this problem. When scaling factor is 
used then all the feature probability values are 
multiplied with this scaling factor before they are 
used to find the class conditional probabilities. We 
experimented with different scaling factors and 
found a generic scaling factor (1 / Avgminprob), 
which can be used for any dataset. 

Avgminprob is defined as the average of mini-
mum possible probability values for features in 
the dataset:

Avgminprob = α + β / 2

where

α = Minimum value of possible Minimum prob-
ability in the dataset

β = Maximum value of possible Minimum prob-
ability in the dataset

For RBNBC, it is obtained using α = ϵ defined 
in Equation 6 and

β = 1 / Sum of the length of sequences of the 
smallest family           (8)

For other NB classifiers like models A and B 
working with SequenceCount, it can be obtained 
using following values
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α = 1 / Number of sequences of the largest 
family

β = 1 / Number of sequences of the smallest family

We also experimented with the following log 
scaled formulation of Bayes equation and found 
that both scaling factor and Equation 9 give the 
same results:

LP(Fi|S) = LP(S| Fi) + LP(Fi) (9)

where

LP(Fi |S) = log[P(Fi |S)]
LP(S| Fi) = log[P(S| Fi)]
LP(Fi) = log[P(Fi)]

Since using log scaled formulation is simple, 
Equation 9 is readily used to find posterior 
probabilities for all the classifiers. Note that the 
discussed REBMEC classifier implicitly uses a 
log scaled approach for finding class-conditional 
probabilities. In contrast, RBNBC and other Naive 
Bayes classifiers like Simple NB models A and 
B have to explicitly use log scaled formulation 
to find class conditional probabilities.

RBNBC AND REBMEC CLASSIFIERS

This section describes the design of two Bayesian 
sequence classifiers called Repeat Based Naive 
Bayes Classifier (RBNBC) and Repeat Based 
Maximum Entropy Classifier (REBMEC). This 
section discusses the feature extraction process, 
feature selection phase and classification methods 
used by the two classifiers.

The RBNBC and REBMEC classifiers run in 
three phases:

1.  Feature Extraction: This is the training 
phase in which first maximal frequent subse-
quences are extracted as features from each 
family and stored with their RepeatCount 

and SequenceCount. Then for each family, 
the counts for maximal features from other 
families, which are not maximal in this fam-
ily, are also stored. This is to ensure that all 
families share the same feature set.

2.  Feature Selection: The extracted feature set 
is pruned in this phase using an entropy based 
selection criterion. The result is a smaller 
set of features remaining after pruning and 
their counts within each family. This phase, 
which performs feature selection, is an op-
tional phase and the classifier can execute 
the final phase without going through this 
phase. The feature extraction and selection 
phases are executed only once to train the 
classifier. After this the original dataset is no 
longer required and the classifier works with 
the reduced feature set left after pruning.

3.  Classification: This phase is executed for 
labeling a query sequence with the family 
having the maximum posterior probability. 
The classifier first separates all the features 
belonging to the query sequence from the 
available feature set from the previous phase. 
It then uses these features to find the poste-
rior probability of each family and outputs 
the one with the maximum probability. 
The methods used in the first two phases 
are same for both the classifiers, but they 
use different classification methods for the 
third phase. While RBNBC uses a Naïve 
Bayes approach, REBMEC uses a maximum 
entropy based approach. In the following 
sections, we discuss the three phases of the 
classifiers in detail.

Feature Extraction

The first phase for any classifier is the training 
phase in which it is trained using features extracted 
from a training dataset. Since classifiers require 
discriminative features (Han & Kamber, 2001; 
Lesh et al., 1999) to distinguish between different 
classes, the first challenge in “classification of 
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biological sequences” is to extract good features 
from the available sequences. The task of “feature 
extraction from biological sequences” itself is an 
open research problem. Some sophisticated feature 
mining algorithms (Ferreira & Azevedo, 2005b, 
2006; Lesh et al., 1999, 2000; Huang & Brutlag, 
2001) have been developed for this purpose which 
uses complex data transformations and domain 
knowledge. Ben-Hur and Brutlag (2003a, 2003b) 
propose that Motifs–short conserved regions of 
sequences–are highly predictive features for the 
biological sequences.

In this chapter, we focus on the classification 
part of the problem instead of the domain specific 
feature extraction part. The discussed classifiers 
use maximal frequent subsequences as features. 
Use of these very simple features avoids the need 
for complex data transformations and domain 
knowledge in the feature extraction process. 
Based on the observations made by Ben-Hur and 
Brutlag (2003a, 2003b), we believe that frequent 
subsequences capture everything that is significant 
in a collection of sequences. This assumption has 
borne out well in the experimental results. Since 
the number of extracted frequent features increases 
exponentially as minsup decreases, to reduce the 
feature set we opt to use maximal frequent sub-
sequences as features. The careful examinations 
of extracted features of all families reveal that 
extracted maximal frequent subsequences of a 
family are similar to Motifs of that family. So, 
maximal frequent subsequences are able to extract 
predictive features for the biological sequences. 
There may be some loss in information by us-
ing maximal frequent subsequences as features, 
however, they have the advantage that they satisfy 
the following criteria set by Lesh et al. (1999), 
which are necessary for features of any classifier:

1.  Significant Features: this is ensured by 
considering only frequent features, i.e.,
SequenceCount ≥ MinsupCount.

2.  Non-redundant Features: this is ensured 
by using maximal frequent subsequences.

3.  Discriminative Features: For ensuring this, 
entropy based selection criteria described 
later in this chapter is used, after extraction 
of features.

Various methods are available for mining 
maximal frequent patterns. Examples of such 
methods can be found in (Roberto J. Bayardo, 
1998; Zaki et al., 1997, Gouda & Zaki, 2005; 
Guan et al., 2004). Most of these methods focus on 
mining maximal frequent itemsets. Since we need 
to obtain the RepeatCount of the subsequences 
along with the SequenceCount, we use our own 
Apriori (Agrawal & Srikant, 1994) like method 
called ExtractMaxSubseq shown in Figure 2 for 
extracting maximal frequent subsequences and 
optimize it using a novel bit-vector based frequent 
subsequence extraction method shown in Figure 
3. Also, to extract all possible features, we set 
maxlen–maximum length of the features to be 
extracted–as the length of the largest sequence of 
the training set. Note that using ExtractMaxSubseq 
we extract overlapping features, where boundaries 
of features can overlap.

As discussed in Preliminary section, all the 
subsequences X satisfying the following criteria

SequenceCount of X ≥ MinsupCount

are frequent in family Fi (containing Ni sequences) 
where MinsupCount = Ni× minsup and among 
these frequent subsequences, Xj is maximal fre-
quent if there are no other frequent subsequences 
in the family which contain Xj.

In ExtractMaxSubseq algorithm, we use the 
same user given minimum support threshold 
minsup for all the families for extracting features 
from each family. In each iteration, the algorithm 
first initializes FreqList (the list containing fre-
quent subsequences of length l) to empty set and 
then populates this list with extracted frequent 
subsequences of length l while storing the Se-
quenceCount and RepeatCount. Then it removes 
those subsequences from MaxList (the list of 
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maximal frequent subsequences) which have a 
supersequence in FreqList. Finally it adds all the 
frequent subsequences of FreqList to MaxList, 
which is to be checked in the next iteration. After 
the last iteration, MaxList contains all the maximal 

frequent subsequences which are features of the 
family Fi.

After extracting features from all the families 
using ExtractMaxSubseq algorithm, one more pass 
is made over the sequences of each family to find 
the SequenceCount and RepeatCount of features 

Figure 2. The ExtractMaxSubseq algorithm for extracting maximal frequent subsequences as features 
for each family of the dataset

Figure 3. Bit-Vector based optimization of frequent subsequence extraction
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of other families which are not maximal frequent 
in that family. This extra step is performed to 
make the feature set uniform for all the families, 
i.e., all families share the same feature set and to 
ensure that correct probabilities of all the features 
are available for use in the classification phase. 
If a feature is not at all present in a family then a 
small correction probability is used as the prob-
ability of that feature.

Optimization of Frequent 
Subsequence Extraction 
Using Bit Vectors

The biological sequence datasets contain large 
number of very long sequences. Due to this, fre-
quent subsequence extraction from a biological 
sequence dataset is a time consuming and memory 
intensive process. This process can be optimized 
by avoiding extraction of infrequent subsequences 
by storing information of their location in a bit-
vector. This optimization has proved to be very 
effective and reduced the feature extraction time 
from days to hours. The optimization method is 
shown in Figure 3 and explained below.

The procedure initializes a bit-vector of ‘1’s 
for each sequence in a family. The bit-vector of a 
sequence is of the same length as the sequence. The 
procedure starts extracting frequent subsequences 
of length one and iteratively proceeds to longer 
subsequences. The presence of a ‘1’ in a bit-vector 
indicates that a frequent subsequence of length l 
can be extracted from the corresponding position 
in the sequence. The presence of a ‘0’ indicates that 
the subsequence of length l at the corresponding 
position in the sequence is infrequent. It follows 
that subsequences longer than l from this position 
will also be infrequent. Hence the bit will remain 
‘0’. In the first phase of each iteration, candidate 
subsequences of length l are counted.

In the second phase, the bit positions corre-
sponding to frequent subsequences of length l are 
set to ‘1’, to be considered in the next iteration.

Entropy Based Selection of 
Discriminating Features

As is typical of frequent pattern mining, the feature 
extraction phase produces too many Features and 
creates the problem of curse of dimensionality. 
This problem increases as the minsup decreases, 
since the number of extracted features increases 
exponentially as minsup decreases. To alleviate 
this problem we can apply a feature selection 
phase that selects only discriminating features 
(Lesh et al., 1999) for each class.

Our feature selection criterion is based on 
entropy. Entropy based criteria like information 
gain and gain ratio have been widely used to se-
lect features for classifiers (Kotsiantis & Pintelas, 
2004). Since our aim is to find discriminating 
features for each family, we use low values of 
H(D|Xj = present), i.e., entropy of the dataset in 
the presence of a feature as the selection criterion :

H(D|Xj = present) = 
i

N

=
∑
1

[P(Fi|Xj = present) 

log[P(Fi|Xj = present)]]

Where P(Fi|Xj = present) = (SequenceCount 

of Xj in Fi) ∕ 
k
∑ (SequenceCount of Xj in Fk)

Analysis of this criterion gives us the follow-
ing observations:

1.  H(D|Xj = present) = 0 when a feature Xj is 
present in one and only one family.

2.  H(D|Xj = present) is higher when a feature 
Xj is present in all families.

This criteria is opposite of the information gain 
criteria as it selects features with low entropy val-
ues thereby selecting discriminating features. For 
selecting features we use a user-given threshold 
Hth to compare with the calculated value of H(D|Xj 
= present), and select all the features satisfying 
the criteria given below while pruning the others:
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H(D|Xj = present) ≤ Hth

Experimentally we found that for very low 
minsup values, using threshold Hth = 0 gives good 
results in the classification phase. But for other 
minsup values good results are obtained by setting 
Hth as 1/2H(D) or 1/3H(D), where H(D) is the 
total entropy of the dataset which is defined as:

H(D) = −
i
∑  P(Fi) log[P(Fi)]

This happens because with Hth = 0, many im-
portant features get pruned. In our experiments, 
the above entropy based selection not only found 
discriminating features for all families, but also 
reduced the number of features by 36% for low 
minsup values (for details refer to Rani & Pudi 
(2008c)).

Classification Phase

As discussed earlier, RBNBC and REBMEC use 
a very simple assumption to handle the problem 
of zero probabilities and the problem arising from 
the use of a nonuniform feature set. The classi-
fiers assume that the probability of any feature 
to be present in any family is never zero and use 
a query-sequence-based uniform feature set for 
finding class conditional probabilities. This uni-
form feature set is the set of features present in 
the query sequence, collected from all families. 
So for the features of other families which are not 
present in a given family, they use a correction 
probability ϵ, which is the minimum possible 
feature probability computed using RepeatCount. 
It is obtained as (Equation 6 reproduced here):

∈ = 1/Sum of the lengths of sequences of the 
largest family

The classifiers use RepeatCount of the features 
in a family to find the probabilities of features 
present in that family using the method discussed 

earlier in this chapter. This method first finds the 
total number of slots available for feature Xj in 
family Fi using either Equation 3 or 4 and then 
finds the feature probability as the fraction of times 
Xj actually occurs over the slots using Equation 
5. Since we are using overlapping features, the 
classifiers use Equation 3, which finds slots for 
overlapping features, to find the slots.

Also to tackle the problem of out of range 
probability values RBNBC explicitly uses a 
log scaled formulation to find class conditional 
probabilities and then uses Equation 9 to find the 
posterior probabilities. REBMEC implicitly uses 
a log scaled approach for finding class-conditional 
probabilities that can handle small values and 
hence easily deals with this problem.

Classification Phase of RBNBC

For classifying a query sequence S, RBNBC finds 
the query-sequence-based uniform feature set Z = 
{X1,X2,..., Xm}, which is the set of features present 
in S, collected from all families. For computing the 
posterior probabilities, it uses the same feature set 
Z for all families. After finding Z, it uses Equation 
5 for finding probabilities of features present in a 
family and uses ϵ as the probability for features not 
present in that family. It uses these probabilities 
to compute class conditional probabilities using 
following equation:

LP(S|Fi) = 
j

m

=
∑
1

log[P(Xj |Fi)]  (10)

It then uses these class conditional probabilities 
to compute the posterior probability of all families 
using Equation 9 and classifies the query sequence 
into the family with the largest posterior prob-
ability. The pseudo-code for the method discussed 
above is shown in Figure 4. Steps 2(a), 2(b) and 
2(c) of the classification algorithm of RBNBC can 
be merged together to be executed in O(1) time. 
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The time complexity of the algorithm is O(n), 
where n is the number of families.

Classification Phase of REBMEC

For classifying a query sequence S, REBMEC, like 
RBNBC, finds the query-sequence-based uniform 
feature set Z, which is the set of features present in 
S, collected from all families. For computing the 
posterior probabilities, it uses the same feature set 
Z for all families. It uses Equation 5 for finding 
probabilities of features present in a family and 
uses ϵ as the probability for features not present 
in that family.

Using the features in set Z, it makes the 
constraint set CSi for each family. Each feature 
Xj ∈ Z with its probability P(Xj |Fi) in family Fi 
forms a constraint that needs to be satisfied by 
the statistical model for that particular family. 
To satisfy the conditions required by GIS based 
methods, a “correction” feature fl is added to the 
constraint set. For a sample x, a normal feature fl 
gives value of constraint function fl(x) as “0” or 
“1”, which denotes presence or absence of that 
feature in the sample x. But for the correction 

feature, the value of constraint function fl(x) is 
obtained using following equation:

fl(x) = C − 
j

Z

=
∑

1

| |

fj(x)  (11)

So, unlike the existing features, fl(x) ranges 
from 0 to C. This correction feature is assumed 
to be present in all the samples. The value of C 
is taken as the total number of features extracted 
from the training set. Thus, for each family Fi, 
there is a constraint set CSi = {{(Xj, P(Xj |Fi) | 
Xj∈ Z}∪ {fl, E(fl)}}, where E(fl) is the expecta-
tion of fl in family Fi. Since there could be mul-
tiple models satisfying these constraints, the 
proposed algorithm ComputeProb, like GIS, se-
lects the one with maximum entropy and finds 
the parameters of that model. In doing so, it finds 
the class-conditional probability LP(S|Fi) of that 
family.

REBMEC then finds the posterior probability 
of all families using Equation 9. Finally, it classi-
fies the query sequence into the family with the 

Figure 4. Classification by RBNBC



128

Classification of Biological Sequences

largest posterior probability. The pseudo-code for 
the method discussed above is shown in Figure 5.

Dividing the Feature set into Small Sets: To 
make the large feature set manageable, REBMEC 
divides the feature set Z into small sets of similar 
features using Hamming Distance based similar-
ity measure Hamdis. This similarity measure is a 
simple modification of the Hamming Distance to 
take into account features of different length and 
is defined as:

Hamdis (X1,X2) = No. of positions differing in 
symbols + |length(X1)−length(X2)|

For dividing the feature set into small sets of 
highly dependent features, the ComputeProb al-
gorithm selects one feature from Z and calculates 
Hamdis for all other features with respect to the 
selected feature. Then it groups k features with 
least Hamdis, together with the selected feature 
to make the small feature set Zf. This process is 
repeated till there are less than k features left in 

Z, which are grouped together along with the 
correction feature.

ComputeProbAlgorithm: This is a GIS based 
method which, unlike GIS, computes the class-
conditional probabilities instead of storing the 
parameter values of each constraint. It builds an 
approximate maximum entropy model of each 
family by dividing the feature set into small sets 
and combining the results assuming independence 
among the sets. Figure 6 shows pseudo-code of 
the algorithm and is described below.

It uses bit-vectors Tk to represent the presence/
absence of | Zf | features of the set Zf. So for a set 
of n features, T0 to T(2

n
)−1 represents all the pos-

sible samples of the event space. ComputeProb 
iterates over this event space to obtain a probabil-
ity model which is as close to the real distribution 
as possible. The iteration stops when the expecta-
tion of each feature calculated from the model is 
almost equal to the expectation obtained from the 
training data. At this point all the parameter val-
ues converge and further iterations do not make 
any change. Note that during implementation Tks 

Figure 5. Classification by REBMEC



129

Classification of Biological Sequences

need not be stored but can be computed on the 
fly.

In the first step, it uses Hamdis to group the 
highly dependent features in small sets. And then 
for computing the class-conditional probability of 
a family, it computes LP(S|Fi) for each small set 
of features and later combines them by assuming 
independence among the sets. For each small 
feature set Zf ∈ Z′, in steps 6 to 9, it initializes the 
parameters μj and probabilities LP(Tk). In steps 12 
to 22, it updates the μj and LP(Tk) values using the 
probabilities of features obtained from the training 

data. In steps 23 to 28, it finds the normalization 
constant μ0 and applies it to the LP(Tk) values. 
Finally, in step 30, it updates the LP(S|Fi) value 
using the obtained value of LP(Tlast) for that feature 
set, where the bit-vector Tlast represents that all 
the features of the set Zf are present in the query 
sequence. Note that the LP(S|Fi) values returned 
by this algorithm are in log scale.

Discussion of Additional Issues: Like other 
Bayesian methods, GIS based methods also use 
very small parameter and probability values, so 
they also need to tackle “out of range” parameter 

Figure 6. The ComputeProb algorithm
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values discussed in earlier section. In case of GIS 
based methods, this problem becomes even more 
serious due to the iterative nature of these meth-
ods. To deal with it, ComputeProb is designed 
using log scale.

In our experiments we observed that when 
the constant C, having a large value, is used for 
finding the increment values of the parameters, 
the iteration process overshoots the convergence 
point. So to make the increment value smaller, 
unlike GIS, we have not used the constant C in 
the calculation of increment value (in step 18). 
As discussed in (Ratnaparkhi, 1997, 1998), the 
number of iterations required for the model to 
converge can be hard-coded and the algorithm 
can be made to stop once it reaches those many 
iterations, so the while loop of ComputeProb can 
be iterated for a fixed number of times. In our 
experiments we observed that all the parameter 
values converge within 50 iterations only. The 
calculation of expectation of a feature fj from the 
samples of training data D is done using following 
equation (Ratnaparkhi, 1997, 1998):

E p/ (fj) = 
x D∈
∑ p/(x)fj(x)

Since the constraint function fj(x) of a normal 
feature is a binary function denoting the presence/
absence of that feature in a sample sequence x, 
the expectation of a normal feature in a family Fi 
is just the probability of that feature in family Fi. 
For the correction feature fl, using Equation 11, 
the above equation transforms to

Ep/(fj) = 
x D∈
∑ p/(x) [C - 

j

Z

=
∑

1

| |

fl(x)]

where Z is the uniform features set of the query 
sequence. According to this equation, calculation 
of the expectation of fl in a family Fi requires 
scanning all the sample sequences of that family.

The probability of a sample sequence x in a 
family Fi (containing Ni sample sequences) can 
be obtained as 1/Ni, hence we can make following 
observations after analyzing the above equation:

1.  The minimum value of expectation of fl 
calculated using above equation will be (C 
− |Z|), when all the features of the feature 
set Z are present in all the sequences of that 
family.

2.  The maximum value of expectation of fl 
calculated using above equation will be C, 
when none of the features of the feature set 
Z are present in any sequence of that family.

Based on these observations we use the mini-
mum expectation value (C − |Z|) as the approxi-
mate expectation value of correction feature fl in 
each family. This approximation removes the need 
for scanning all the sequences of a family in the 
classification phase for calculating the expecta-
tion of fl. In practice we found this approxima-
tion to be good. In our experiments we observed 
that if the correction feature fl is not added to the 
constraint set with proper expectation value, then 
the algorithm is not able to compute correct class 
conditional probabilities; so using the correction 
feature properly is a very important part of the 
algorithm.

We also observed that either the correction 
feature can be added to each small group of 
features Zf with approximate expectation value 
(|Z| − | Zf |) or only to the last group with value 
(C − |Z|). Both the methods give exactly the same 
result which means that both methods produce 
the same effect on the parameter values. Since 
adding the correction feature to each group of 
features increases the overall running time, it is 
better to add it to only one group with appropriate 
expectation value.

Time Complexity: The running time of Com-
puteProb is dominated by the steps which iterate 
over all possible samples of the event space (steps 
14-16 and steps 19-22). For each small feature 
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set Zf, if the algorithm requires maxiter number 
of iterations to converge and there are M such 
small feature sets then the time complexity of the 
algorithm is O(maxiter * 2 | |Zf * | Zf | * M). If each 
small feature set Zf contains equal number of 
features then |Zf |* M gives the total number of 
features in the uniform feature set Z, i.e., |Zf | = 
| Zf | * M. So the time complexity of ComputeP-
rob can be given as

O(maxiter * 2 | |Zf * | Z|)

Since | Zf | << |Z|, ComputeProb improves the 
time complexity of GIS which has the running 
time complexity O(maxiter * 2|Z|* |Z|) (Thonan-
gi and Pudi, 2005). Under practical circumstanc-
es, the number of iterations maxiter is hard coded 
and the algorithm is made to stop after those many 
iterations. Also, to keep the number of possible 
event space 2 | |Zf  tractable, at the time of dividing 
the feature set Z, the number of features in the 
feature set Zf is kept less than or equal to 10.

Experimental Results and 
Performance Study

For evaluating the performance of the discussed 
classifiers two collections of protein families (1) 
March-2005 Release 9.0 of GPCRDB (Horn et 
al., 2003) (http://www.gpcr.org/7tm) and (2) Feb-
2008 Release 55.0 of SWISSPROT (Bairoch & 
Boeckmann, 2003) using the list of SWISSPROT 
protein IDs obtained from Pfam (Finn & Bateman, 
2008) version 22.0 were used. It was found that 
RBNBC algorithm drastically improves the ac-
curacy from 32% (for the direct Naive Bayes) to 
98% on GPCRDB dataset. Both of the classifiers 
gave around 90% average accuracy on both the 
datasets and outperformed the Simple NB classi-
fiers with a margin of more than 30%. For details 
of results and comparisons with other Bayesian 
sequence classifiers refer to (Rani & Pudi, 2008a, 
2008b, 2008c) and (Rani, 2008).

CONCLUSION

An important problem in biological data analysis 
is to predict the family of a newly discovered se-
quence like a protein or DNA sequence, using the 
collection of available sequences. This problem 
comes under the classification paradigm. In this 
chapter, we studied the problem of classification 
of biological sequences which requires dealing 
with two separate problems (1) feature extraction: 
extracting differentiating information as features 
from the available sequences and (2) classification: 
using this feature information to classify a new 
sequence, i.e., to build a classification model. We 
focused on the classification part of the problem 
which involves building a classification model of 
the collection of biological sequences arranged in 
different families. A domain independent method 
for estimating feature probabilities in a sequence 
dataset when subsequences are used as features 
was also discussed. We discussed the existing 
problems of Bayesian classifiers and proposed 
some simple solutions. We also described two 
Bayesian classifiers for the biological sequences 
which do not use any domain knowledge, REB-
MEC classifier uses maximum entropy method 
while RBNBC uses Naive Bayes method. The 
classification methods proposed in this chapter 
are generic in nature and can be applied to any 
domain where the data is represented as collec-
tion of sequences.
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INTRODUCTION

What is Sequence Data?

Sequence data is omnipresent. Customer shop-
ping sequences, medical treatment data, and data 

related to natural disasters, science and engineering 
processes data, stocks and markets data, telephone 
calling patterns, weblog click streams, program 
execution sequences, DNA sequences and gene 
expression and structures data are some examples 
of sequence data.

Manish Gupta
University of Illinois at Urbana-Champaign, USA

Jiawei Han
University of Illinois at Urbana-Champaign, USA

Approaches for Pattern 
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ABSTRACT

In this chapter we first introduce sequence data. We then discuss different approaches for mining of pat-
terns from sequence data, studied in literature. Apriori based methods and the pattern growth methods 
are the earliest and the most influential methods for sequential pattern mining. There is also a vertical 
format based method which works on a dual representation of the sequence database. Work has also 
been done for mining patterns with constraints, mining closed patterns, mining patterns from multi-
dimensional databases, mining closed repetitive gapped subsequences, and other forms of sequential 
pattern mining. Some works also focus on mining incremental patterns and mining from stream data. 
We present at least one method of each of these types and discuss their advantages and disadvantages. 
We conclude with a summary of the work.
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Notations and Terminology

Let I = {i1, i2, i3 … in} be a set of items. An item-set 
X is a subset of items i.e. X ⊆ I. A sequence is an 
ordered list of item-sets (also called elements or 
events). Items within an element are unordered 
and we would list them alphabetically. An item can 
occur at most once in an element of a sequence, 
but can occur multiple times in different elements 
of a sequence. The number of instances of items 
in a sequence is called the length of the sequence. 
A sequence with length l is called an l-sequence. 
E.g., s=<a(ce)(bd)(bcde)f(dg)> is a sequence 
which consists of 7 distinct items and 6 elements. 
Length of the sequence is 12.

A group of sequences stored with their identi-
fiers is called a sequence database. We say that a 
sequence s is a subsequence of t, if s is a “projec-
tion” of t, derived by deleting elements and/or 
items from t. E.g. <a(c)(bd)f> is a subsequence of 
s. Further, sequence s is a δ-distance subsequence 
of t if there exist integers j1 < j2 < … < jn such 
that s1 ⊆ tj1, s2 ⊆ tj2 … sn ⊆ tjn and jk-jk-1 ≤ δ for 
each k = 2, 3... n. That is, occurrences of adjacent 
elements of s within t are not separated by more 
than δ elements.

What is Sequential Pattern Mining?

Given a pattern p, support of the sequence pat-
tern p is the number of sequences in the database 
containing the pattern p. A pattern with support 
greater than the support threshold min_sup is 
called a frequent pattern or a frequent sequential 
pattern. A sequential pattern of length l is called an 
l-pattern. Sequential pattern mining is the task of 
finding the complete set of frequent subsequences 
given a set of sequences. A huge number of pos-
sible sequential patterns are hidden in databases.

A sequential pattern mining algorithm should:

A.  find the complete set of patterns, when 
possible, satisfying the minimum support 
(frequency) threshold,

B.  be highly efficient, scalable, involving only 
a small number of database scans

C.  be able to incorporate various kinds of user-
specific constraints.

APPROACHES FOR SEQUENTIAL 
PATTERN MINING

Apriori-Based Method  
(GSP: Generalized Sequential 
Patterns) (Srikant & Agrawal, 1996)

The Apriori property of sequences states that, 
if a sequence S is not frequent, then none of the 
super-sequences of S can be frequent. E.g, <hb> 
is infrequent implies that its super-sequences like 
<hab> and <(ah)b> would be infrequent too.

The GSP algorithm finds all the length-1 
candidates (using one database scan) and orders 
them with respect to their support ignoring ones 
for which support < min_sup. Then for each level 
(i.e., sequences of length-k), the algorithm scans 
database to collect support count for each candidate 
sequence and generates candidate length-(k+1) 
sequences from length-k frequent sequences 
using Apriori. This is repeated until no frequent 
sequence or no candidate can be found.

Consider the database as shown in Figure 1. 
Our problem is to find all frequent sequences, 
given min_sup=2.

Figure 1. Database
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As shown in Figure 2, using Apriori one needs 
to generate just 51 length-2 candidates, while 
without Apriori property, 8*8+8*7/2=92 candi-
dates would need to be generated. For this ex-
ample, Apriori would perform 5 database scans, 
pruning away candidates with support less than 
min_sup. Candidates that cannot pass support 
threshold are pruned.

1st scan: 8 candidates. 6 length-1 sequence pat-
terns.

2nd scan: 51 candidates. 19 length-2 sequence pat-
terns. 10 candidates not in DB at all

3rd scan: 46 candidates. 19 length-3 sequence pat-
terns. 20 candidates not in DB at all

4th scan: 8 candidates. 6 length-4 sequence patterns.
5th scan: 1 candidate. 1 length-5 sequence patterns.

Some drawbacks of GSP are: a huge set of 
candidate sequences are generated, multiple 
scans of database are needed and it is inefficient 
for mining long sequential patterns (as it needs 
to generate a large number of small candidates).

Apart from finding simple frequent patterns, 
GSP generalizes the problem by

A.  Allowing a user to specify time constraints 
(minimum and/or maximum time period 
between adjacent elements in a pattern)

B.  Relaxing the restriction that the items in an 
element of a sequential pattern must come 
from the same transaction, instead allowing 

the items to be present in a set of transac-
tions whose transaction-times are within a 
user-specified time window.

C.  Given a user-defined taxonomy (is-a hierar-
chy) on items, allowing sequential patterns 
to include items across all levels of the 
taxonomy.

Vertical Format-Based Method 
(SPADE: Sequential Pattern 
Discovery using Equivalent 
Class) (Zaki, 2001)

This is a vertical format sequential pattern mining 
method. SPADE first maps the sequence database 
to a vertical id-list database format which is a large 
set of items <SID (Sequence ID), EID (Event 
ID)>. Sequential pattern mining is performed by 
growing the subsequences (patterns) one item at 
a time by Apriori candidate generation.

As shown in Figure 3, all frequent sequences 
can be enumerated via simple temporal joins (or in-
tersections) on id-lists. They use a lattice-theoretic 
approach to decompose the original search space 
(lattice) into smaller pieces (sub-lattices) which 
can be processed independently in main-memory.

Their approach usually requires three database 
scans, or only a single scan with some pre-pro-
cessed information, thus minimizing the I/O costs. 
SPADE decouples the problem decomposition 
from the pattern search. Pattern search could be 
done in a BFS (breadth first search) or a DFS 

Figure 2. Length-2 candidates
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(depth first search) manner. The vertical id-list 
based approach is also insensitive to data-skew. 
It also has linear scalability with respect to the 
number of input-sequences, and a number of 
other database parameters.

Pattern Growth Based Methods

These methods help in avoiding the drawbacks 
of the Apriori based methods.

FreeSpan (Frequent pattern projected Se-
quential pattern mining)(Han, Pei, Asl, Chen, 
Dayal, & Hsu, 2000) & PrefixSpan (Pei, et al., 
2001) uses frequent items to recursively project 
sequence databases into a set of smaller projected 
databases and grows subsequence fragments in 
each projected database. This process partitions 
both the data and the set of frequent patterns to 
be tested, and confines each test being conducted 
to the corresponding smaller projected database.

FreeSpan first scans the database, collects the 
support for each item, and finds the set of fre-
quent items. Frequent items are listed in support 
descending order (in the form of item:support) 
E.g., flist=a:4, b:4, c:4, d:3, e:3, f:3.

According to flist, the complete set of sequen-
tial patterns in S can be divided into 6 disjoint 
subsets: (1) the ones containing only item ‘a’, 
(2) the ones containing item ‘b’, but containing 
no items after ‘b’ in flist, (3) the ones containing 
item ‘c’, but no items after ‘c’, in flist, and so on, 
and finally, (6) ones containing item ‘f’.

The subsets of sequential patterns can be mined 
by constructing projected databases. Infrequent 
items, such as ‘g’ in this example, are removed 
from construction of projected databases.

Note that {b}, {c}, {d}, {e}, {f}-projected 
databases are constructed simultaneously during 
one scan of the original sequence database. All 
sequential patterns containing only item ‘a’ are also 
found in this pass. This process is performed re-
cursively on projected databases. Since FreeSpan 
projects a large sequence database recursively 
into a set of small projected sequence databases 
based on the currently mined frequent sets, the 
subsequent mining is confined to each projected 
database relevant to a smaller set of candidates.

The major cost of FreeSpan is to deal with 
projected databases. If a pattern appears in each 
sequence of a database, its projected database 

Figure 3. Frequent sequences
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does not shrink (except for the removal of some 
infrequent items). Moreover, since a length-k 
subsequence may grow at any position, the search 
for length-(k+1) candidate sequence will need to 
check every possible combination, which is costly.

PrefixSpan (Prefix-projected Sequential 
pattern mining) works similar to FreeSpan ex-
cept that the partitioning is done using prefixes of 
sequences. E.g., for a sequence <(abc)(ac)d(cf)>, 
<ab> is a prefix which has <(_c)(ac)d(cf)> as 
the corresponding suffix (projection) as shown 
in Figure 4.

Its general idea is to examine only the frequent 
prefix subsequences and project only their cor-
responding postfix subsequences into projected 
databases because any frequent subsequence can 
always be found by growing a frequent prefix. 
Thus the search space for our example will be 
partitioned into the following six subsets accord-
ing to the six prefixes: (1) the ones having prefix 
<a>... and (6) the ones having prefix <f>. In each 
projected database, sequential patterns are grown 
by exploring only local frequent patterns. The 
subsets of sequential patterns can be mined by 

constructing corresponding projected databases 
and mining each recursively.

PrefixSpan first finds sequential patterns 
having prefix <a>. Recursively, all sequential 
having patterns prefix <a> can be partitioned 
into 6 subsets: (1) those having prefix <aa> (2) 
those having prefix <ab>… and finally, (6) those 
having prefix <af>. These subsets can be mined 
by constructing respective projected databases 
(only if the prefix is frequent) and mining each 
recursively. Similarly, we can find sequential pat-
terns having prefix <b>, <c>, <d>, <e> and <f> 
respectively, by constructing <b>-, <c>-, <d>-, 
<e>- and <f>-projected databases and mining 
them respectively.

No candidate sequence needs to be generated by 
PrefixSpan. Projected databases keep shrinking. 
The major cost of PrefixSpan is the construction 
of projected databases. To further improve mining 
efficiency, two kinds of database projections are 
explored: level-by-level projection and bi-level 
projection. Moreover, a main-memory-based 
pseudo-projection (using pointers rather than 
physically copying postfix sequences) technique 

Figure 4. PrefixSpan
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is developed for saving the cost of projection and 
speeding up processing when the projected (sub)-
database and its associated pseudo-projection 
processing structure can fit in main memory. 
PrefixSpan mines complete set of patterns much 
faster than both GSP and FreeSpan.

Constraint Based Methods

Conventionally, users can specify only min_sup 
as a parameter to a sequential pattern mining 
algorithm. There are two major difficulties in 
sequential pattern mining: (1) effectiveness: the 
mining may return a huge number of patterns, 
many of which could be uninteresting to users, 
and (2) efficiency: it often takes substantial com-
putational time and space for mining the complete 
set of sequential patterns in a large sequence 
database. To prevent these problems, users can 
use constraint based sequential pattern mining for 
focused mining of desired patterns. Constraints 
could be anti-monotone, monotone, succinct, 
convertible or inconvertible. Anti-monotonicity 
means “if an item-set does not satisfy the rule 
constraint, then none of its supersets satisfy”. 
Monotonicity means “if an item-set satisfies the 
rule constraint, then all of its supersets satisfy”. 
Succinctness means “All and only those patterns 
guaranteed to satisfy the rule can be enumerated”. 
Convertible constraints are those which are not 
any of anti-monotonic, monotonic, succinct but 
can be made anti-monotonic or monotonic con-
straints by changing order of elements in the set. 
Inconvertible constraints are the ones which are 
not convertible.

In the context of constraint-based sequential 
pattern mining, (Srikant & Agrawal, 1996) gen-
eralized the scope of the Apriori-based sequential 
pattern mining to include time constraints, sliding 
time windows, and user-defined taxonomy. Mining 
frequent episodes in a sequence of events studied 
by (Mannila, Toivonen, & Verkamo, 1997) can 
also be viewed as a constrained mining problem, 
since episodes are essentially constraints on events 

in the form of acyclic graphs. The classical frame-
work on frequent and sequential pattern mining is 
based on the anti-monotonic Apriori property of 
frequent patterns. A breadth-first, level-by-level 
search can be conducted to find the complete set 
of patterns.

Performance of conventional constraint-based 
sequential pattern mining algorithms dramatically 
degrades in the case of mining long sequential 
patterns in dense databases or when using low 
minimum supports. In addition, the algorithms 
may reduce the number of patterns but unimport-
ant patterns are still found in the result patterns. 
(Yun, 2008) uses weight constraints to reduce the 
number of unimportant patterns. During the min-
ing process, they consider not only supports but 
also weights of patterns. Based on the framework, 
they present a weighted sequential pattern mining 
algorithm (WSpan).

(Chen, Cao, Li, & Qian, 2008) incorporate 
user-defined tough aggregate constraints so that 
the discovered knowledge better meets user needs. 
They propose a novel algorithm called PTAC 
(sequential frequent Patterns mining with Tough 
Aggregate Constraints) to reduce the cost of us-
ing tough aggregate constraints by incorporating 
two effective strategies. One avoids checking 
data items one by one by utilizing the features 
of “promising-ness” exhibited by some other 
items and validity of the corresponding prefix. 
The other avoids constructing an unnecessary 
projected database by effectively pruning those 
unpromising new patterns that may, otherwise, 
serve as new prefixes.

(Masseglia, Poncelet, & Teisseire, 2003) pro-
pose an approach called GTC (Graph for Time 
Constraints) for mining time constraint based pat-
terns (as defined in GSP algorithm) in very large 
databases. It is based on the idea that handling time 
constraints in the earlier stage of the data mining 
process can be highly beneficial. One of the most 
significant new features of their approach is that 
handling of time constraints can be easily taken 
into account in traditional level-wise approaches 
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since it is carried out prior to and separately from 
the counting step of a data sequence.

(Wang, Chirn, Marr, Shapiro, Shasha, & 
Zhang, 1994) looked at the problem of discover-
ing approximate structural patterns from a genetic 
sequences database. Besides the minimum support 
threshold, their solution allows the users to specify: 
(1) the desired form of patterns as sequences of 
consecutive symbols separated by variable length 
don’t cares; (2) a lower bound on the length of 
the discovered patterns; and (3) an upper bound 
on the edit distance allowed between a mined 
pattern and the data sequence that contains it. 
Their algorithm uses a random sample of the input 
sequences to build a main memory data structure, 
termed generalized suffix tree, that is used to ob-
tain an initial set of candidate pattern segments 
and screen out candidates that are unlikely to be 
frequent based on their occurrence counts in the 
sample. The entire database is then scanned and 
filtered to verify that the remaining candidates are 
indeed frequent answers to the user query.

(Garofalakis, Rastogi, & Shim, 2002) propose 
regular expressions as constraints for sequential 
pattern mining and developed a family of SPIRIT 
(Sequential pattern mining with regular expression 
constraints) algorithms. Members in the family 
achieve various degrees of constraint enforcement. 
The algorithms use relaxed constraints with nice 
properties (like anti-monotonicity) to filter out 
some unpromising patterns/candidates in their 
early stage. A SPIRIT algorithm first identifies 
C’ as a constraint weaker than C. Then it obtains 
F1=frequent items in D that satisfy C’. Further, it 
iteratively generates candidates Ck using F and C’, 
prunes candidates in Ck that contain subsequences 
that satisfy C’ but are not in F, identifies Fk as the 
frequent sequences in Ck by scanning the database 
to count support and updates F to F∪Fk. Finally, 
sequences in F that satisfy the original condition 
C are output.

General SPIRIT constrained mining frame-
work can be specified as:

PROCEDURE SPIRIT(D,C) 

Begin 

   1. Let C’=a constraint weaker 

(i.e., less restrictive) than C.      

   2. F=F
1
=frequent items in D 

that satisfy C’ 

   3. K=2 

   4. Repeat { 

     a. //candidate generation 

     b. Using C’ and F generate 

C
k
={potentially frequent k-sequences 

that satify C’} 

     c. //candidate pruning 

     d. Let P={s∊C
k
: s has a sub-

sequence t that satisfies C’ and t∉F}
     e. C

k
=C

k
-P

     f. //candidate counting 

     g. Scan D counting the sup-

port for candidate k-sequences in C
k

     h. F
k
-frequent sequences in 

C
k

     i. F=F∪F
k

     j. K=K+1 

   5.     }until 

TerminatingCondition(F < C’) holds 

   6. //enforce the original 

(stronger) constraint C 

   7. Output sequences in F that 

satisfy C 

   8. End 

Given a user specified RE constraint C, the first 
SPIRIT algorithm SPIRIT(N) (“N” for “Naive”) 
only prunes candidate sequences containing ele-
ments that do not appear in C. The second one, 
SPIRIT(L) (“L” for “Legal”), requires every can-
didate sequence to be legal with respect to some 
state of automata A(C). The third, SPIRIT(V) (“V” 
for “Valid”), filters out candidate sequences that 
are not valid with respect to any state of A(C). The 
fourth, SPIRIT(R) (“R” for “Regular”), pushes C 
all the way inside the mining process by counting 
support only for valid candidate sequences.
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The above interesting studies handle a few 
scattered classes of constraints. However, two 
problems remain. First, many practical constraints 
have not been covered. Also there is a need for 
a systematic method to push various constraints 
into the mining process. Unfortunately, some com-
monly encountered sequence-based constraints, 
such as regular expression constraints, are neither 
monotonic, nor anti-monotonic, nor succinct. (Pei, 
Han, & Wang, 2007) mention seven categories 
of constraints:

1.  Item constraint: An item constraint speci-
fies subset of items that should or should 
not be present in the patterns.

2.  Length constraint: A length constraint 
specifies the requirement on the length of 
the patterns, where the length can be either 
the number of occurrences of items or the 
number of transactions.

3.  Super-pattern constraint: Super-patterns 
are ones that contain at least one of a par-
ticular set of patterns as sub-patterns.

4.  Aggregate constraint: An aggregate con-
straint is the constraint on an aggregate of 
items in a pattern, where the aggregate func-
tion can be sum, avg, max, min, standard 
deviation, etc.

5.  Regular expression constraint: A regular 
expression constraint CRE is a constraint 
specified as a regular expression over the set 
of items using the established set of regular 
expression operators, such as disjunction and 
Kleene closure.

6.  Duration constraint: A duration constraint 
is defined only in sequence databases where 
each transaction in every sequence has a 
time-stamp. It requires that the sequential 
patterns in the sequence database must 
have the property such that the time-stamp 
difference between the first and the last 
transactions in a sequential pattern must be 
longer or shorter than a given period.

7.  Gap constraint: A gap constraint set is 
defined only in sequence databases where 
each transaction in every sequence has a 
timestamp. It requires that the sequential pat-
terns in the sequence database must have the 
property such that the timestamp difference 
between every two adjacent transactions 
must be longer or shorter than a given gap.

A constraint Cpa is called prefix anti-monotonic 
if for each sequence ‘a’ satisfying the constraint, 
so does every prefix of ‘a’. A constraint Cpm is 
called prefix monotonic if for each sequence ‘a’ 
satisfying the constraint, so does every sequence 
having ‘a’ as a prefix. A constraint is called prefix-
monotone if it is prefix anti-monotonic or prefix 
monotonic.

The authors describe a pattern-growth (PG) 
method for Constraint-based sequential pattern 
mining which is based on a prefix-monotone 
property. They show that all the monotonic and 
anti-monotonic constraints, as well as regular 
expression constraints, are prefix-monotone, 
and can be pushed deep into a PG-based mining. 
Moreover, some tough aggregate constraints, such 
as those involving average or general sum, can also 
be pushed deep into a slightly revised PG mining 
process. In the recursive FP growth framework, 
the authors first compute all the length-1 frequent 
prefixes. Then they compute the corresponding 
projected databases. Each of the frequent prefixes 
of length (l+1) are further processed recursively 
only if they satisfy the constraint C.

Closed Sequential Pattern Mining

CloSpan (Yan, Han, & Afshar, 2003) is an algo-
rithm for the mining of closed repetitive gapped 
subsequences (Figure 5). A closed sequential 
pattern s is a sequence such that there exists no 
super-pattern s’, s’ ⊃ s, and s’ and s have the 
same support. E.g., given <abc>: 20, <abcd>:20, 
<abcde>: 15, we know that <abcd> is closed. If 
the database contains 1 long sequence with 100 
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elements and min support is 1, this sequence will 
generate 2^100 frequent subsequences, though 
there is only one of these which is closed. Min-
ing of closed sequences reduces the number of 
(redundant) patterns but attains the same expres-
sive power. Note that if s’ ⊃ s, s is closed iff two 
projected DBs have the same size. CloSpan uses 
backward sub-pattern and backward super-pattern 
pruning to prune redundant search space thereby 
preventing unnecessary computations.

CloSpan is basically similar to PrefixSpan 
with sub-pattern and super-pattern checks which 
involve checking and matching of the size of the 
databases. The authors show that CloSpan per-
forms better than PrefixSpan in terms of execution 
time.

Sequential Pattern Mining in 
Data Streams: SS-BE and SS-MB 
(Mendes, Ding, & Han, 2008)

Data stream is an unbounded sequence in which 
new elements are generated continuously. Memory 
usage is limited and an algorithm is allowed to 
perform only a single scan over the database. Two 
effective methods for stream-based sequential 
pattern mining are SS-BE (Stream Sequence 
miner using Bounded Error) and SS-MB (Stream 
Sequence miner using Memory Bounds).

SS-BE Method can be outlined as follows:

A.  Break the stream into fixed-sized batches.
B.  For each arriving batch, apply PrefixSpan. 

Insert each frequent sequence found into a 
tree.

C.  Periodically prune the tree (the number of 
batches seen is a multiple of the pruning 
period).

D.  Output all sequences corresponding to nodes 
having count >= (σ-∊)N.

This method outputs no false negatives and 
true support of false positives is at least (σ-∊).

E.g., suppose σ = 0.75, ∊ = 0.5 and data stream 
D: <a,b,c>, <a,c>, <a,b>, <b,c>, <a,b,c,d>, 
<c,a,b>, <d,a,b>, <a,e,b>. Let the first batch B1 
contain the first four sequences and the second 
batch B2 contain the next four. The algorithm first 
applies PrefixSpan to B1 with min_sup as 0.5. 
The frequent sequences found are: <a>:3, <b>:3, 
<c>:3, <a,b>:2, <a,c>:2, and <b,c>:2. A frequent 
pattern tree is created. Let the pruning period be 
two batches. So algorithm proceeds to batch B2. 
The frequent sequences found are: <a>:4, <b>:4, 
<c>:2, <d>:2, and <a,b>:4. The frequent pattern 
tree would look as shown in the figure below. 
Now SS-BE would prune the tree by identifying 
and removing all nodes guaranteed to have true 
support below ∊ = 0.5 during the time they were 
kept in the tree. Thus <d>:2, <ac>:2 and <bc>:2 
are pruned away.

Figure 5. CloSpan
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Finally SS-BE outputs all sequences having 
count at least (σ-∊)N = (0.75 – 0.5)*8 = 2.

Thus output is <a>: 7, <b>: 7, <c>: 5, <a, b>:6. 
Note that there are no false negatives and only 
one false positive: <c>.

SS-MB method is similar to SS-BE except 
that in step 3, rather than pruning the tree after a 
time period, the tree size is limited to ‘m’ nodes. 
Due to this, SS-MB can only guarantee no false 
negatives after execution. E.g. in the above ex-
ample, assume that ‘m’ is 7. Then after batch B2 
is processed, the tree contains 8 nodes and hence 
the node with minimum support <b,c> is removed 
(Figure 3). Because of the specific ‘m’, SS-MB 
can control amount of memory used explicitly.

The authors show that the two methods are 
effective solutions to the stream sequential pattern 
mining problem: running time scales linearly, 
maximum memory usage is limited and a very 
small number of false positives are generated.

Mining Incremental Patterns: 
IncSpan (Incremental Mining 
of Sequential Patterns) 
(Cheng, Yan, & Han, 2004)

Many real life sequence databases, such as cus-
tomer shopping sequences, medical treatment 

sequences, etc., grow incrementally. It is undesir-
able to mine sequential patterns from scratch each 
time when a small set of sequences grow, or when 
some new sequences are added into the database. 
Incremental algorithm should be developed for 
sequential pattern mining so that mining can be 
adapted to frequent and incremental database 
updates, including both insertions and deletions. 
However, it is nontrivial to mine sequential pat-
terns incrementally, especially when the exist-
ing sequences grow incrementally because such 
growth may lead to the generation of many new 
patterns due to the interactions of the growing 
subsequences with the original ones. There are 
two kinds of database updates in applications: 
(1) inserting new sequences (INSERT) and (2) 
appending new item-sets/items to the existing 
sequences (APPEND). Let DB be the old database, 
Δdb be the change and DB’ be the new database. 
Thus, DB’ = DB ∪Δdb.

It is easier to handle the first case: INSERT. An 
important property of INSERT is that a frequent 
sequence in DB’ = DB ∪Δdb must be frequent 
in either DB or Δdb (or both). If a sequence is 
infrequent in both DB and Δdb, it cannot be fre-
quent in DB’. Thus, only those patterns that are 
frequent in Δdb but infrequent in DB need to be 
searched in DB to find their occurrence count. 

Figure 6. SS-BE pruning tree
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(Zhang, Kao, Cheung, & Yip, 2002) propose an-
other algorithm of incremental mining to handle 
the case of INSERT in sequential pattern mining.

For the second case, consider that new items 
only get appended. Suppose |DB|=1000 and 
|Δdb|=20, min_sup=10%. Suppose a sequence 
‘s’ is infrequent in DB with 99 occurrences (sup 
= 9:9%). In addition, it is also infrequent in Δdb 
with only 1 occurrence (sup = 5%). Although ‘s’ 
is infrequent in both DB and Δdb, it becomes 
frequent in DB’ with 100 occurrences.

This problem complicates the incremental 
mining since one cannot ignore the infrequent 
sequences in Δdb, but there are an exponential 
number of infrequent sequences even in a small 
Δdb and checking them against the set of infrequent 
sequences in DB will be very costly. (Parthasara-
thy, Zaki, Ogihara, & Dwarkadas, 1999) proposed 
an incremental mining algorithm, called ISM, 
based on SPADE by exploiting a concept called 
negative border. However, maintaining negative 
border is memory consuming and not well adapted 
for large databases. (Masseglia, Poncelet, & Teis-
seire, Efficient mining of sequential patterns with 
time constraints: Reducing the combinations, 
2009) developed another incremental mining 
algorithm using candidate generate-and-test 
approach, which is costly, especially when the 
sequences are long because it requires multiple 
scans of the whole database.

For the third case, where the database is 
updated with both INSERT and APPEND, the 
problem becomes even more complicated. There 
are two approaches: (1) handling them separately 
by first performing APPEND then INSERT; (2) 
treat the inserted sequences as appending to empty 
sequences in DB: a special case of APPEND. Then 
this problem is reduced to APPEND.

Given a minimum support threshold, min_sup, 
a sequence is frequent if its support >=min_sup; 
given a factor μ<=1, a sequence is semi-frequent if 
its support<min_sup but >μ*min_sup; a sequence 
is infrequent if its support<μ*min_sup. Let FS be 

the set of all frequent sequential patterns and SFS 
be the set of semi-frequent sequential patterns.

Given a sequence database DB, min_sup, the 
set of frequent subsequences FS in DB, and an ap-
pended sequence database DB’ of D, the problem 
of incremental sequential pattern mining is to mine 
the set of frequent subsequences FS’ in DB’ based 
on FS instead of mining on DB’ from scratch. A 
simple algorithm, SimpleSpan, exploits the FS 
in the original database and incrementally mines 
new patterns. SimpleSpan updates the support of 
every frequent sequence in FS, adds it to FS’ and 
uses it as a prefix to project database. In addition, 
SimpleSpan scans the new database DB’ to dis-
cover new frequent single items and uses them 
as prefix to project database using PrefixSpan. 
One problem of SimpleSpan is that it makes a 
large number of database projections, which is 
costly. The drawback of SimpleSpan is that it has 
no information about infrequent sequences in the 
original database DB. But such information can 
enable us to reduce search space and find new 
frequent sequences efficiently.

IncSpan uses the technique of buffering semi-
frequent patterns by maintaining a set SFS in the 
original database DB. Since the sequences in 
SFS are “almost frequent”, most of the frequent 
subsequences in the appended database will either 
come from SFS or they are already frequent in 
the original database. With a minor update to the 
original database, it is expected that only a small 
fraction of subsequences which were infrequent 
previously would become frequent. This is based 
on the assumption that updates to the original 
database have a uniform probability distribution 
on items. It is expected that most of the frequent 
subsequences introduced by the updated part of 
the database would come from the SFS. The SFS 
forms a kind of boundary (or “buffer zone”) be-
tween the frequent subsequences and infrequent 
subsequences.

IncSpan algorithm can be outlined as follows.
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A.  Scan Δdb for single items. If a new item 
or an infrequent item becomes frequent or 
semi-frequent, add it to FS’ or SFS’. For 
every item in FS’, use it as prefix to construct 
projected database and discover frequent 
sequences recursively.

B.  Check every pattern in FS and SFS in Δdb 
to adjust the support of those patterns.
1.  If a pattern becomes frequent, add it 

to FS’. Then check whether it meets 
the projection condition. If so, use it 
as prefix to project database. Discover 
frequent or semi-frequent patterns in 
the projected database. To improve the 
performance, shared projection can be 
used in this step.

2.  If a pattern is semi-frequent, add it to 
SFS’.

The authors also mention two optimization 
techniques, reverse pattern matching and shared 
projection to improve the performance.

Multidimensional Sequential Pattern 
Mining: UNISEQ (Pinto, Han, Pei, 
Wang, Chen, & Dayal, 2001)

Consider pattern P1= {try a 100 hour free in-
ternet access package⇒subscribe to 15 hours/
month package⇒upgrade to 30 hours per month 
package⇒upgrade to unlimited package}. This 
pattern may hold for all customers below age of 
35 (75% customers). But for other customers, 
pattern P2= {try a 100 hour free internet access 
package⇒ upgrade to 30 hours per month pack-
age} may hold. Clearly, if sequential pattern 
mining can be associated with customer category 
or other multi-dimensional information, it will 
be more effective since the classified patterns 
are often more useful. (Pinto, Han, Pei, Wang, 
Chen, & Dayal, 2001) propose two categories 
of methods: a. integration of efficient sequential 
pattern mining and multi-dimensional analysis 
methods (Seq-Dim and Dim-Seq). b. embedding 

multi-dimensional information into sequences 
and mine the whole set using a uniform sequential 
pattern mining method (Uni-Seq).

A multi-dimensional sequence database has the 
schema (RID, A1, A2 … Am, S) where RID is the 
record identifier, A1 … Am are the attributes and 
S is the sequence. A multi-dimensional pattern ‘p’ 
would match a tuple ‘t’ in the database, if the attri-
bute values match (or the attribute value is *) and 
‘s’ is a subsequence of the sequence stored in ‘t’. 
e.g. t=(10, business, Boston, middle, <(bd)cba>)

UniSeq (Uniform Sequential): Multi-
dimensional information in a tuple ‘t’ in multi-
dimensional DB can be embedded in the sequence 
by introducing a special element. E.g. ‘t’ can be 
rewritten as (10, <(business Boston middle)(bd)
cba>). Let the database containing such modified 
tuples be called MD-extension DB and denoted as 
SDB-MD. Now the problem is: Given, SDB-MD 
and min_sup, output the complete set of multi-
dimensional sequential patterns. UniSeq mines 
sequential patterns in SDB-MD using PrefixSpan. 
For each sequential pattern ‘p’ in SDB-MD, it 
outputs the corresponding multi-dimensional se-
quential pattern in SDB. As an alternative, instead 
of embedding the multi-dimensional information 
into the first element of each sequence, it can be 
attached as the last element. Both the alterna-
tives have almost identical performance results. 
Thus, UniSeq reduces the problem to mining 
one extended sequence database and is therefore 
easy to implement. But, all dimension values 
are treated as sequential items. Hence, it cannot 
take advantage of efficient mining algorithms for 
multi-dimensional non-sequential computational 
methods. Hence, cost of computing becomes high 
when data has large number of dimensions.

A SDB-MD can be partitioned into two parts: 
dimensional information and sequence. So, we 
can first mine patterns about dimensional in-
formation (called multi-dimensional patterns or 
MD-patterns) and then find sequential patterns 
from projected sub-database (tuples containing 
the MD-pattern) or vice versa. Dim-Seq first finds 
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MD-patterns and then for each MD-pattern, it 
forms MD-projected database and mines sequen-
tial patterns in projected databases. Seq-Dim first 
mines the sequential patterns. For each sequential 
pattern, it forms projected MD-database and then 
finds MD-patterns within projected databases. 
Seq-Dim is more efficient and scalable in general 
compared to Dim-Seq.

Mining Closed Repetitive 
Gapped Subsequences (Ding, 
Lo, Han, & Khoo, 2009)

Patterns often repeat multiple times in a sequence 
e.g., in program execution traces, sequences of 
words (text data), credit card usage histories. 
Given two sequences like S1 = AABCDABB, S2 = 
ABCD, is pattern AB more frequent then CD? To 
answer this question, one needs to define a notion 
of repetitive support, sup(P) as max{|INS|: INS is 
a set of non-overlapping instances of P}. The aim 
is to maximize the size of the non-overlapping 
instance set. Note that if P’ is a super-pattern of 
P, then sup(P’) ≤ sup(P).

To solve this problem, the authors propose a 
greedy instance-growth algorithm. The intuition 
is to extend each instance to the nearest possible 
event. Consider a database of two sequences as 
shown in Figure 7.

The algorithm uses a procedure INSgrow(P, 
INS, e) which does the following. Given a leftmost 
support set INS of P, with |INS| = sup(P), and 
event e, it extends each instance in INS to the 

nearest possible event e and returns a support set 
INS+ of pattern P○e (P concatenated with e). Thus, 
using this method, one can find all the frequent 
patterns by doing DFS in the pattern space.

Further, they define pattern extension as set 
of patterns with one more event. E.g., if P =e1e2 
…em, PExtension(P, e) = {ee1e2…em, e1ee2…em, 
…, e1e2…eme}. Pattern P is not closed iff sup(P) 
= sup(Q) for some Q ∈ Extension(P, e). Also 
note that it is possible that AB is not closed but 
ABAC is closed. To prune the search space, they 
propose the following instance-border checking 
principle. Pattern P is prunable if there exists Q 
∈ Extension(P, e) for some e such that sup(P) = 
sup(Q) (P is not closed) and for each (i, <k1, k2, 
…, k|P|>) ∈ INSP and (i, <k1’, k2’, …, k|Q|’>) ∈ 
INSQ: k|Q|’ ≤ k|P| where INSP and INSQ are (leftmost) 
support sets of P and Q respectively.

OTHER SEQUENTIAL PATTERN 
MINING METHODS

(Kum, Chang, & Wang, Sequential Pattern Min-
ing in Multi-Databases via Multiple Alignment, 
2006) proposed a new sequential pattern mining 
method based on multiple alignment (rather than 
the usual support-based approach) for mining 
multiple databases. Multiple databases are mined 
and summarized at the local level, and only the 
summarized patterns are used in the global min-
ing process. For summarization, they propose 
the theme of approximate sequential pattern 

Figure 7. Database of two sequences
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mining roughly defined as identifying patterns 
approximately shared by many sequences. They 
propose an algorithm, ApproxMAP, to mine ap-
proximate sequential patterns, called consensus 
patterns, from large sequence databases in two 
steps. First, sequences are clustered by similarity. 
Then, consensus patterns are mined directly from 
each cluster through multiple alignment.

Further, (Kum, Chang, & Wang, Benchmark-
ing the effectiveness of sequential pattern mining 
methods, 2007) benchmarked the effectiveness of 
sequential pattern mining methods by comparing 
a support-based sequential pattern model with an 
approximate pattern model based on sequence 
alignment using a metric that evaluates how well 
a mining method finds known common patterns 
in synthetic data. Their comparison study sug-
gests that the alignment model will give a good 
summary of the sequential data in the form of a 
set of common patterns in the data. In contrast, 
the support model generates massive amounts of 
frequent patterns with much redundancy. This 
suggests that the results of the support model 
require more post processing before it can be of 
actual use in real applications.

(Laur, Symphor, Nock, & Poncelet, 2007) 
introduced statistical supports to maximize min-
ing precision and improve the computational 
efficiency of the incremental mining process. As 
only a part of the stream can be stored, mining 
data streams for sequential patterns and updating 
previously found frequent patterns need to cope 
with uncertainty. They introduce a new statisti-
cal approach which biases the initial support for 
sequential patterns. This approach holds the advan-
tage to maximize either the precision or the recall, 
as chosen by the user, and limit the degradation 
of the other criterion. Moreover, these statistical 
supports help building statistical borders which 
are the relevant sets of frequent patterns to use 
into an incremental mining process.

(Lin, Chen, Hao, Chueh, & Chang, 2008) 
introduced the notion of positive and negative 
sequential patterns, where positive patterns in-

clude the presence of an item-set of a pattern, and 
negative patterns are the ones with the absence 
of an item-set.

Items sold in a store can usually be organized 
into a concept hierarchy according to some tax-
onomy. Based on the hierarchy, sequential patterns 
can be found not only at the leaf nodes (individual 
items) of the hierarchy, but also at higher levels 
of the hierarchy; this is called multiple-level 
sequential pattern mining. In previous research, 
taxonomies had crisp relationships between the 
categories in one level and the categories in another 
level. In real life, however, crisp taxonomies can-
not handle the uncertainties and fuzziness inherent 
in the relationships among items and categories. 
For example, the book Alice’s Adventures in 
Wonderland can be classified into the Children’s 
Literature category, but can also be related to the 
Action & Adventure category. To deal with the 
fuzzy nature of taxonomy, (Chen & Huang, A 
novel knowledge discovering model for mining 
fuzzy multi-level sequential patterns in sequence 
databases, 2008) apply fuzzy set techniques to 
concept taxonomies so that the relationships from 
one level to another can be represented by a value 
between 0 and 1. They propose a fuzzy multiple- 
level mining algorithm (FMSM) to extract fuzzy 
multiple-level sequential patterns from databases. 
In addition, another algorithm, named the CROSS-
FMSM algorithm, is developed to discover fuzzy 
cross-level sequential patterns.

(Kuo, Chao, & Liu, 2009) use K-means algo-
rithm to achieve better computational efficiency 
for fuzzy sequential pattern mining.

Many methods only focus on the concept of fre-
quency because of the assumption that sequences’ 
behaviors do not change over time. The environ-
ment from which the data is generated is often 
dynamic; the sequences’ behaviors may change 
over time. To adapt the discovered patterns to these 
changes, (Chen & Hu, Constraint-based sequential 
pattern mining: the consideration of recency and 
compactness, 2006) introduce two new concepts, 
recency and compactness and incorporate them 
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into traditional sequential pattern mining. The 
concept of recency causes patterns to quickly 
adapt to the latest behaviors in sequence databases, 
while the concept of compactness ensures reason-
able time spans for the discovered patterns. An 
efficient method is presented to find CFR-patterns 
(compactness, frequency, and recency).

CONCLUSION

We discussed basics of sequential pattern mining. 
We presented an exhaustive survey of different 
sequential pattern mining methods proposed in 
the literature. Sequential pattern mining methods 
have been used to analyze this data and identify 
patterns. Such patterns have been used to imple-
ment efficient systems that can recommend based 
on previously observed patterns, help in making 
predictions, improve usability of systems, detect 
events and in general help in making strategic 
product decisions. We envision that the power of 
sequential mining methods has not yet been fully 
exploited. We hope to see many more strong appli-
cations of these methods in a variety of domains in 
the years to come. Apart from this, new sequential 
pattern mining methods may also be developed 
to handle special scenarios of colossal patterns, 
approximate sequential patterns and other kinds 
of sequential patterns specific to the applications.
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ABSTRACT

Vast majority of successful drugs or inhibitors achieve their activity by binding to, and modifying the 
activity of a protein leading to the concept of druggability. A target protein is druggable if it has the 
potential to bind the drug-like molecules. Hence kinase inhibitors need to be studied to understand the 
specificity of a kinase inhibitor in choosing a particular kinase target. In this paper we focus on human 
kinase drug target sequences since kinases are known to be potential drug targets. Also we do a prelimi-
nary analysis of kinase inhibitors in order to study the problem in the protein-ligand space in future. The 
identification of druggable kinases is treated as a classification problem in which druggable kinases are 
taken as positive data set and non-druggable kinases are chosen as negative data set. The classification 
problem is addressed using machine learning techniques like support vector machine (SVM) and deci-
sion tree (DT) and using sequence-specific features. One of the challenges of this classification problem 
is due to the unbalanced data with only 48 druggable kinases available against 509 non-drugggable 
kinases present at Uniprot. The accuracy of the decision tree classifier obtained is 57.65 which is not 
satisfactory. learning approaches has not been reported in literature.
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PATTERN DISCOVERY IN KINASES

Human genome contains about 518 protein 
kinase genes, which constitute about 2% of all 
human genes (Vulpetti & Bosotti, 2004). Protein 
kinases regulate almost all biochemical pathways. 
They play a critical role in signal transduction, 
physiological responses, and in the functioning of 
nervous and immune systems. They also control 
many other cellular processes like metabolism, 
transcription, cell cycle progression, cyto-skeletal 
rearrangement and cell movement, apoptosis, and 
differentiation (Bakheet & Doig, 2009).

Kinases are enzymes which help in phos-
phorylation of substrates facilitating the transfer 
of phosphate group from ATP. They may phos-
phorylate up to 30% of the proteome (Manning 
et al., 2002), (Manning, 2005). Since kinases 
participate in signal transduction pathways of cell 
cycle and cell differentiation they are known to 
be targets for diseases. Abnormal phosphoryla-
tion of the protein kinases is a cause of disease 
and hence needs to be inhibited by small drug-
like molecules called kinase inhibitors. Some of 
the well-known inhibitors are Serine/Threonine 
kinase inhibitors and Tyrosine kinase inhibitors 
which are named on the basis of the amino acid 
whose phosphorylation is inhibited. Kinase inhibi-
tors are developed in the treatment of diseases like 
cancers, inflammatory disorders, neurological 
disorders, diabetes mellitus, heart disease etc. 
Some of the available kinase inhibitor drugs are 
Imatinib, Nilotinib and Gefitinib.

In this study we present two perspectives 
of drug discovery: one from the view point of 
kinase target and the other from kinase inhibitor. 
Even though kinases are known to be targets for 
diseases, not all kinases are druggable. Hence it 
is important to distinguish druggable kinase tar-

gets from non-druggable kinases. Further kinase 
inhibitors need to be studied to understand the 
specificity of a kinase inhibitor in choosing a 
particular kinase target. The ultimate goal, in some 
sense, is to predict the matching between a target 
and its corresponding inhibitor(s) with the help 
of target and ligand properties individually and 
together with protein-ligand interaction features. 
In this paper we restrict ourselves to addressing the 
problem of druggability of kinases and conduct a 
feature analysis of kinase inhibitors. The problem 
of matching will be taken up in future. In the next 
section we present a study of significant properties 
of kinase inhibitors.

BACKGROUND

Vieth et al., (2004) conduct a study of kinase tar-
gets and inhibitors in order to identify medicinally 
relevant kinase space. Using both sequence based 
information and the small molecule selectivity 
information, they presented the first dendogram 
of kinases based on small molecule data. This 
study concludes that the structural basis of kinase 
inhibitor selectivity will require knowledge of 
complexes of one ligand with multiple targets. 
Classification of kinase inhibitors with a bayesian 
model was studied by Xia et al., (2004). Using 
Bayesian statistics, a model for general and spe-
cific kinase inhibitors was proposed. They have 
considered serine/ threonine and tyrosine kinase 
inhibitors (Amgen compounds) from CORP data 
set. Kinase model was generated using properties 
like number of hydrogen bond donors, halogens, 
aromatic residues, value of AlogP and molecular 
weight. The general kinase model described was 
trained on tyrosine kinase inhibitors achieving 
prediction accuracy of 80%.

A two-tier architecture of decision trees is carefully designed such that recognition on the non-druggable 
dataset also gets improved. Thus the overall model is shown to achieve a final performance accuracy of 
88.37. To the best of our knowledge, kinase druggability prediction using machine
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In order to initiate the study of kinase inhibitors 
we need both kinase target and inhibitor features 
that are available in various databases.

Databases of Chemical Compounds

A drug molecule is required to satisfy the well-
known properties known as Lipinski’s rules 
(Lipinski et al., 1997). Drug Bank (http://www.
drugbank.ca) is a popular data base housing FDA 
approved drugs and the corresponding targets. 
We consider features of drug molecules that are 
available also in other data bases like Protein 
Data Bank (http://www.rcsb.org), ZINC (http://
www.zinc.docking.org) and Protein Ligand In-
teraction Database (PLID) (Reddy et al., 2008). 
We present here a study of kinase inhibitors and 
differentiate kinase from non-kinase inhibitors at 
the feature level.

Protein Data Bank (PDB) is a central reposi-
tory for all the structures of proteins, nucleic acids 
and other bio-macromolecules. PDB has been 
the main source of all protein structures identi-

fied either as complex with bound ligand or in 
uncomplexed form. A few structures of kinase 
inhibitors are shown in Figure 1. It is computation-
ally hard to extract features from a 3D structure 
and hence it is represented as a two dimensional 
structure. Further, the 2D-structure is represented 
in a one-dimensional string format. SMILES is a 
popular string format that is used to express the 
2-dimensional representation of protein structure. 
Many databases like ZINC and Drug Bank pro-
vide SMILES notation specification for chemical 
compounds.

For example, the formula of the kinase in-
hibitor IC261 is C18H17NO4 and the SMILES 
notation is COC1=CC(OC)=C(C=C2C(=O)
NC3=CC=CC=C23)C(OC)=C1. Extraction of 
relevant features using string algorithms is very 
fast and hence efficient.

The DrugBank database is a unique bioinfor-
matics and cheminformatics resource that con-
tains detailed drug and the corresponding target 
data with the sequence, structure, and pathway 
information. The database contains nearly 4800 

Figure 1. 2-dimensional representations of a few kinase inhibitors are shown
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drug entries including nearly one third of which 
are FDA-approved drugs. Further, protein drug 
target sequences which are linked to these FDA 
approved drug entries are present in the data base. 
Each drug contains more than 100 descriptors half 
of which correspond to drug descriptors and the 
other half being linked to target data.

Some of the features computed from SMILES 
notation in Drug Bank that are being used for the 
study are listed:

1.  Number of atoms (Carbon, Oxygen, 
Nitrogen)

2.  Number of non-metals (Phosphorous, 
Sulphur)

3.  Number of halogens (Chlorine, Bromine, 
Fluorine)

4.  Number of metal atoms (Gold, Silver, Iron, 
Selenium)

5.  Number of cyclic groups present (acyclic, 
bicyclic, tricyclic, tetracyclic, >5 cycles)

6.  Functional Groups

The functional groups that are extracted from 
Drug Bank are as follows: -N-H-R, Alkylamine, 
-N-R, dialkylamine, -COOH, Carboxylic acid, 
-COOR Ester, -COOCl, Acid chloride, -R-C-O=N, 
-CN, Cyano -N=C=Oisocyanate, -C=Cethylene, 
-C#Cacetylene, -N#NAzo, -CHO aldehyde, -C=O, 
Ketone, -C=S, thioketone, -NH-C=O, peptide, 
-O-N=ONitroso, -NO2, Nitro, thiophene, phenol, 
pyrolidini, phenyl furan, where # denotes triple 
bond.

ZINC Database (ZINC) is a free database of 
commercially available chemical compounds for 
virtual screening including drug-like compounds. 
ZINC contains a library of nearly 750,000 mol-
ecules, each with 3D structure and are annotated 
with molecular properties. The molecules are 
available in several common file formats including 
SMILES, mol2, 3D SDF etc. A Web-based query 
tool along with a molecular drawing interface 
enables the database to be searched and browsed. 
Currently ZINC provides 9 calculated properties 

- molecular weight, logP, De_apolar, De_polar, 
number of HBA, number of HBD, tPSA, charge 
and NRB for each molecule.

Kinase inhibitors can be characterized by the 
whole compound features as well as protein-ligand 
binding site. The binding site details are collected 
from Protein Ligand Database (PLID).

Protein Ligand Interaction Database (PLID) 
was built by Reddy et al., (2008) developed from 
PDB. PLID contains binding area residues for all 
the complexed proteins in the PDB. Addition-
ally, it consists of physico-chemical, thermal and 
quantum chemical properties of the ligands and 
the active site. The modules of Ligand Extrac-
tor and BERF ((Binding Environment Residue 
Finder) are developed to build the data base. 
Apart from identifying binding residues, BERF 
also calculates two important properties such as 
fraction of contact (f) and average tightness (g) 
which quantify the interaction between the protein 
and ligand as described in PLID. f = Na/N and g = 
Np/Na where Na = total number of ligand atoms 
in the binding environment, Np = total number of 
protein atoms in the binding environment and N = 
total number of ligand atoms. To summarize, the 
features extracted with regard to a protein ligand 
binding site are number of binding pockets, tight-
ness, fraction of contact and amino acid frequency 
at binding sites.

We begin the study by extracting and analyz-
ing some of the significant properties of kinase 
inhibitors that are discussed above.

Analysis of Features for Kinase 
vs. Non-Kinase Inhibitors

The structures for both kinase and non-kinase 
inhibitors are taken from Protein Data Bank. 1492 
available drug compounds were separated into 
47 kinase inhibitor drugs and 1445 non-kinase 
inhibitor drugs. Kinase and non-kinase inhibitors 
are seen to vary quite significantly in the bind-
ing site feature space. All the properties of these 
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drugs are extracted from PLID and Drug bank 
and tabulated in Table 1 (Priya, 2010).

Additionally, several specific functional groups 
like -COOR, N-R and peptide, amide and peptide 
were found to be significant for kinases whereas 
-COOR and ketone, -C#C-, Thioketone,-NHR 
and amide, -NHR and NR and amide and ketone 
and peptide etc are found to be abundant in non-
kinases, where # denotes triple bond.

It is clear from Table 1 that especially features 
that are extracted from PLID like fractions of 
contact and tightness as well as number of binding 
pockets are potentially useful for discrimination of 
kinase and non-kinase inhibitors. This classifica-
tion problem needs to be investigated further. In 
the next section, the problem of kinase druggability 
is now viewed from the kinase target perspective.

A target protein is druggable if it has the po-
tential to bind the drug-like molecules. Rest of the 
paper is devoted to address the binary classification 
problem of predicting a given kinase sequence as 
druggable or not.

DRUGGABILITY

Vast majority of successful drugs or inhibitors 
achieve their activity by binding to, and modifying 
the activity of a protein leading to the concept of 
druggability which was introduced by Hopkins 
and Groom (2002). Proteins that can bind drug-
like compounds with binding affinity below 10 
µM are considered druggable proteins.

Related Work

Hopkins and Groom describe a druggable genome 
as the genome which expresses the proteins that 
are able to bind the drug-like molecules. Approxi-
mately 10% of the human genome is involved in 
disease onset or progression (i.e ~3000 potential 
targets). The genes which are common to both 
druggable genome and involved in diseases are 
in between 600-1500. Russ and Lampel (2005) 
gave an update on the druggable genome and 
suggest that the count of the druggable genes is 
in between 2000 and 3000, coinciding with the 
previous estimates (~3000).

Hajduk, Huth and Tse (2005) predict druggabil-
ity by analyzing the 3D structures of the proteins. 
As a first step, they find true ligand-binding sites 
on the protein surface using geometry-based or 
energy-based algorithms. In the next step, in 
order to find the small drug- molecules which 
bind with high affinity and specificity, they used 
NMR-based screening. They also derive drug-
gable indices from the analysis of NMR data and 
the characteristics of known ligand-binding sites. 
Druggability indices can be used for computational 
assessment of proteins with known structure. 
Further, they indicate that about 44% of protein 
kinases contain a druggable pocket. They show 
high variability in conformations, several loop 
regions which suggest the use of multiple crystal 
structures and the conformational dynamics in 
druggability assessment.

Availability of experimental 3D-structures for 
the proteins is limited (Hajduk, Huth & Tse, 2005). 

Table 1. Summary of the features computed from 
various chemical databases. 

Feature 
(Normalized)

Kinase Non-kinase

Molecular weight range (g/mo l) 0.147-
3096.4

0.0186-29.49

Predicted logP range -0.117-
0.212

-0.00913-0.0064

Cyclic 0-0.83 0-0.95

Acyclic 0-0.08 0-0.18

Chiral 0-0.39 0-0.65

Heterocyclic 0-0.80 0-0.85

Monocyclic 0-0.20 0-0.16

Bicyclic 0-0.22 0-0.17

Tricyclic 0-0.20 0-0.18

Tetracyclic 0-0.05 0-0.2

>5 cycles 0-0.13 0-0.30

Fraction of Contact 0-0.01 0-0.000143

Fraction of Tightness 0-0.00238 0-0.0436

Number of Binding pockets 1-16 1-210
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So, we need to depend on the homology models 
for the druggability assessment. But the results 
are uncertain since there is no closely related pro-
tein with 3D structure that is available (Hillisch, 
Pineda & Hilgnefeld, 2004). For predicting the 
novel proteins that have no or low homology to 
known targets, Han et al. (2007) use machine 
learning method such as support vector machines. 
A protein sequence is classified as druggable or 
non-druggable. They obtain an average overall 
prediction accuracy of 83.6%, lower than the pre-
diction by BLAST search (http://blast.ncbi.nlm.
nih.gov) which was 96.3%. This may be due to the 
prediction of non-similar proteins as druggable. 
SVMs perform well for the proteins of less than 
20% sequence identity also. By selecting optimal 
set of descriptors using feature selection methods 
the performance of SVM is further improved.

More recently, Bakheet and Doig (2009) while 
analyzing human protein drug and non-drug targets 
list some properties as desirable in a human drug 
targets, namely: high hydrophobicity, high length, 
low pI etc and its participation in a crucial biologi-
cal pathway. They also identified some proteins in 
the non-target set that have target like properties.

In this paper we do not consider all human 
protein drug targets but focus on human kinase 
drug target sequences since kinases are known 
to be potential drug targets. The identification 
of druggable kinases is treated as a classification 
problem in which druggable kinases are taken as 
positive data set and non-druggable kinases are 
chosen as negative data set. The classification 
problem is addressed using machine learning 
techniques like support vector machine (Cortes & 
Vapnik, 1995) and decision tree (Mitchell, 1997). 
Firstly, feature extraction of the kinases and its 
analysis is carried out.

Data Set

Kinase sequences which are drug targets as well 
as kinase non-drug target sequences need to be 
collected. Drug Bank provides data for drug targets 

and Uniprot (http://www.uniprot.org) is utilized 
to extract non-drug target kinase sequences. Ap-
proved 1610 drug target protein sequences which 
are readily available in Drug Bank are taken. On 
redundancy removal of up to 95% similarity using 
PISCES software, drug target set count reduced 
to 1556 sequences. 52 human kinase drug targets 
were found in this data set. As EC classification 
number is required eventually, the proteins which 
contain the EC class information are only taken 
which were of 48 in number. Finally 48 human 
kinase drug target sequences are considered for 
positive data set. As for the negative data set, 
Uniprot contains more than 5 million protein se-
quences. Among these human kinase sequences are 
707 in number of which upon redundancy removal 
702 have remained. On removal of the identified 
human kinase drug target sequences, 650 kinase 
sequences can be considered as non-drug target 
sequences. Further 509 sequences are found to 
contain EC classification information. Thus 509 
human kinase non-drug target set was prepared. 
An analysis of amino acid composition is carried 
out on these data sets.

Amino Acid Feature Profile

Amino acid (AA) composition among druggable 
and non-druggable kinases is estimated and plot-
ted in Figure 2. It can be seen that AA profile is 
not significantly differentiating druggable from 
non-druggable kinases. On the other hand, as 
clearly shown in Figure 3 the variance of AA 
composition seems to distinguish druggable from 
non-druggable kinases. Alanine is found to be 
most varying followed by proline. Isoleucine is 
found to be least varying.

Conventional physico-chemical features re-
garding proteins considered in the literature are 
length of the protein sequence, average residue 
weight, charge, hydrophobicity, isoelectric point 
and EC class (Vulpetti & Bosotti, 2004, Sharma 
et al., 2004, Raja, Sobha Rani & Durga Bhavani, 
2004).
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We investigate druggability of kinases ex-
perimenting extensively with various features 
derived from physico-chemical properties of 
amino acid residues and amino acid composi-
tion. The physico-chemical properties include 
hydrobhobicity which is calculated using the table 
given by Kyte and Doolittle (1982). The differ-
ence in average feature values of other features 
like charge, hydrophobicity etc are found to be 
small in magnitude whereas the average length 
of druggable kinases is found to be significantly 
smaller than that of non-druggable kinases. The 
values are noted in the Table 2.

Figure 2. Amino acid frequency profile of druggable and non-druggable kinases

Figure 3. Variance of amino acid frequency distribution between druggable and non-druggable kinases

Table 2. Average feature values for druggable 
kinases and non-druggable kinases. 

Feature Average feature 
value for 

druggable kinases

Average feature 
value for 

non-druggable 
kinases

Charge 6.7 6.2

Hydrophobicity -0.38 -0.4

Isoelectric point 7.21 7.34

Length (AA) 620 740
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Classification Results

One of the challenges of this classification 
problem is due to the unbalanced data with only 
48 druggable kinases available against 509 non-
drugggable kinases present at Uniprot. Therefore 
there is a need for carefully designing the experi-
ments such that the non-druggable dataset does 
not dominate the classification task.

Identification of druggable kinases from non-
druggable kinases is carried out using decision 
tree classifiers. Though support vector machines 
are quite popular among bioinformatics com-
munity, the interpretation of the classification is 
non transparent. On the other hand, a decision tree 
classifier is based on deductive logic and rules can 
be derived from the decision tree. Performance of 
the classification results is discussed in this section.

Decision tree models the training data set by 
choosing an attribute that maximally discriminates 
positive from negative data set and applies this 
procedure recursively. The decision tree thus 
constructed is used to classify the instances of 
the test data set. Each path from the root to a leaf 
node corresponds to a decision rule. Efficient 
implementations of these classifiers are available 
in Weka (http://www.cs.waikato.ac.nz/~ml), an 
open source software developed by University 
of Waikato.

The druggable kinase data set considered as 
positive data set is small with 48 sequences and 
the non-druggable kinases as negative data set 
which is of size 500. We would like to choose 
2/3rd of the positive data set for training and the 
remaining for testing purposes. Since there is an 
imbalance in the data set sizes, different subsets 
of size 32 from the total negative set are chosen to 
train and test the classifier along with 32 sequences 
from the positive data set. These data sets thus 
built are denoted as Set1, Set2,…, Set6. During 
preliminary investigation, it was found that the 
physico-chemcial properties are not significantly 
contributing to the performance results. Hence the 
features that are considered for final experimenta-

tion are the 20 amino acid composition features 
together along with protein sequence length. We 
have constructed decision tree models for each of 
the data sets Set1, Set2,…, Set6. Average perfor-
mance accuracy of the six data sets for all feature 
sets is given in the Table 3.

It is clear from the experiments that unavail-
ability of enough positive data against a large 
negative data set is impacting the results nega-
tively. In order to tackle this issue, firstly we 
collect all the negative ‘difficult’ sequences those 
which are not correctly classified by a majority 
of the classifiers. Then we refine the classifier 
models by training them with difficult negative 
sequences and retaining the positive sets as in 
earlier experiments. In this second level of ex-
perimentation, we build again six models and 
using voting strategy, each test sequence is clas-
sified as positive or negative as per the number 
of votes for that decision is greater than or equal 
to 3. The results of the second level of experimen-
tation are given in Table 4. Table 5 gives the 
overall accuracies after the two-tier level of clas-
sification.

In this section we propose a general strategy 
on how to improve performance of a classifier. It 
is seen for this problem that the negative set is 
being poorly identified and many of its sequenc-
es occur as false positives during classification. 

Table 3. Druggable kinase prediction accuracies 
of decision tree classifier for different models 
constructed choosing different subsets from the 
negative data set. 

Model True Positives(%) True Negatives (%)

1 75 50.7

2 25 51.7

3 56 52.36

4 68.75 48.26

5 25 47.63

6 62.5 46

After 
Voting

68.75 57.1
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Hence we build a second level of classifiers to 
which only the sequences which are classified as 
positives in the first level are given as the test set. 
Therefore if the classifier is well-trained, we 
expect that the false positives of the first level 
would be recognized as negative which is their 
true identity. Thus the overall model of classifica-
tion is a two-tier model whose final performance 
accuracy has risen to 88.37 from the earlier preci-
sion of 57.65.

DISCUSSION AND CONCLUSION

Vulpetti and Bosotti (2004) define the ATP binding 
pocket of protein kinases as a set of 38 residues 
that can interact with inhibitors through side chain 
interactions. ATP binding pocket can be divided 
into adenine, sugar, phosphate and buried regions. 
The survey presented by Vulpetti and Bosotti 
(2004) supports the existence of aromatic C-H...O 
hydrogen bonds in kinase protein–ligand interac-

tions. The buried region on the other hand consists 
of hydrophobic amino acids. It is interesting that 
the decision tree classifier picks up hydrophobic 
amino acid residues like Metheonine, Histidine, 
Glycine and Leucine for high discrimination be-
tween druggable and non-druggable kinases. It is 
to be corroborated by the biologists of the specific 
role that these features and the length of a protein 
sequence play in the phosphorylation process.

From the drug perspective, the measures of 
fraction of contact and tightness seem to be impor-
tant and have to be investigated further. Existing 
work in literature concentrates on a higher level 
classification problem of discriminating druggable 
protein from a non-druggable protein (Han et al., 
2007). They obtain classification accuracies for 
druggable proteins in the range 64-71% and for 
non-druggable proteins it is of the order of 85-
85.8%. In this work we obtained an accuracy of 
nearly 62.5% for druggable kinases and 90.08% 
for non-druggable kinase prediction. To the best 
of our knowledge kinase druggability prediction 
is not reported in literature.

Of course the model built is limited to the 
available data set and the kinase data set is quite 
small having only 40 sequences. Hence the robust-
ness of the model needs to be validated through 
other methods. The bigger problem would be 
to predict the matching between a target and its 
corresponding inhibitor(s) with the help of target 
as well as ligand properties. Hence kinase inhibi-
tors and targets need to be studied to understand 
the specificity of a kinase inhibitor in choosing 
a particular kinase target which will be taken up 
in the future.
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KEY TERMS AND DEFINITIONS

Druggability: The ability of a portion of a 
genome to be targeted by a drug.

Drug-Target: The genome sequence that has 
the potential to bind the drug-like molecules.

Inhibitor: Any substance that interferes with a 
chemical reaction, biologic activity or that reduces 
the catalytic activity of an enzyme.

Kinase: An enzyme that catalyzes the trans-
fer of a phosphate group or another high-energy 
molecular group to an acceptor molecule.

Ligand: A ligand is a substance that is able to 
bind to and form a complex with a biomolecule 
to serve a biological purpose.

Machine Learning: Machine learning is a 
discipline of artificial intelligence that focuses on 
automatically learning to recognize complex pat-
terns and make intelligent decisions based on data.
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Chapter  10

INTRODUCTION

Numerous biological events are responsible for 
the gradual change in the genetic information of 
an organism over the course of time such as gene 
conversions, rearrangements (e.g., inversion or 

translocation), large-scale deletions and insertions 
of foreign DNA (e.g., plasmid integration, trans-
position) apart from point mutations. Horizontal 
Gene Transfer (HGT) is a major event responsible 
to cause significant alterations in the genome 
composition. It is defined as the transfer of DNA 
between diverse organisms by mechanisms other 
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Identification of Genomic 
Islands by Pattern Discovery

ABSTRACT

Pattern discovery is at the heart of bioinformatics, and algorithms from computer science have been widely 
used for identifying biological patterns. The assumption behind pattern discovery approaches is that a 
pattern that occurs often enough in biological sequences/structures or is conserved across organisms 
is expected to play a role in defining the respective sequence’s or structure’s functional behavior and/or 
evolutionary relationships. The pattern recognition problem addressed here is at the genomic level and 
involves identifying horizontally transferred regions, called genomic islands. A horizontally transferred 
event is defined as the movement of genetic material between phylogenetically unrelated organisms by 
mechanisms other than parent to progeny inheritance. Increasing evidence suggests the importance of 
horizontal transfer events in the evolution of bacteria, influencing traits such as antibiotic resistance, 
symbiosis and fitness, virulence, and adaptation in general. In the genomic era, with the availability 
of large number of bacterial genomes, the identification of genomic islands also form the first step in 
the annotation of the newly sequenced genomes and in identifying the differences between virulent and 
non-virulent strains of a species. Considerable effort is being made in their identification and analysis 
and in this chapter a brief summary of various approaches used in the identification and validation of 
horizontally acquired regions is discussed.
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than direct descent (vertical inheritance). The clus-
ters of genes acquired as a single unit by horizontal 
transfer are called ‘‘Genomic Islands (GIs)’’ and 
are typically 10 - 200 Kb in size. These horizon-
tally acquired regions are responsible in causing 
significant alterations in the genome composition 
and may provide the organism to carry out new 
functions resulting in adaptation to a changing 
environment. Any biological advantage provided 
to the recipient organism by the transferred DNA 
creates selective pressure for its retention in the 
host genome and several pathways of horizontal 
transfer have been established influencing traits 
such as antibiotic resistance, symbiosis and fitness, 
virulence and adaptation in general (Koonin et al, 
2001; Lawrence & Ochman, 2002; Andersson, 
2005; Gogarten & Townsend, 2005). For example, 
HGT has been demonstrated in many pathogenic 
strains of bacteria and shown to be responsible for 
its virulence. Thus, depending on their acquired 
functions these genomic islands are further clas-
sified as pathogenicity islands, metabolic islands, 
secretion islands, resistance islands and symbiosis 
islands (Lio & Vannucci, 2000).

General Characteristics of 
Genomic Islands (GIs)

The genomic islands are found to contain some 
characteristic features shown in Figure 1 which 
have been exploited for their identification (Do-
brindt et al, 2004; Juhas et al, 2009). They typi-
cally contain in their vicinity intact (or residual) 
mobile genetic elements, such as genes coding for 

integrases (Int) or transposases that are required 
for chromosomal integration and excision, are 
generally found to be flanked by direct repeats 
(DR) and are sometimes inserted in the vicinity 
of tRNAs and tmRNAs, commonly referred to 
as tRNA genes. Typically GIs also carry multiple 
functional and fragmented insertion sequence 
(IS) elements for carrying out the transposition 
event (Dobrindt et al, 2004). The identification 
of these elements basically involves searching 
various databases of these elements, viz., RepBase 
Update, tRNA database, etc. by pattern matching.

Apart from the structural features observed in 
the vicinity of a genomic island, these regions 
also exhibit bias in the nucleotide compositions. 
In any genome, ancestral (vertically transmitted) 
genes experience a particular set of directional 
mutation pressures mediated by the specific fea-
tures of the replication machinery of the cell, such 
as the balance of the dNTP pools, mutational 
biases of the DNA polymerases, efficiency of 
mismatch repair systems and so on (Lawrence, 
1999). As a result each genome exhibits its own 
unique signatures such as distinct variations in 
the GC content, dinucleotide relative abundance, 
variations in the usage of k-mer words, codon 
usage and amino acid usage. Thus, ‘foreign’ genes 
acquired through lateral transfer retain the char-
acteristics of the donor genome which may sig-
nificantly differ from that of the host genome (Lio 
& Vannucci, 2000, Lawrence & Ochman 1998). 
Thus variations in the occurrences of patterns of 
dinucleotides and oligonucleotides along the 
length of the genome, which capture the biases 

Figure 1. General characteristics of genomic islands (adapted from Dobrindt et al., 2004).
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in the nucleotide compositions are useful for the 
identification of genomic islands and are referred 
to as parametric methods.

The possibility of horizontal gene transfer usu-
ally emerges when a gene/protein sequence from a 
particular organism shows the strongest similarity 
to a homolog from a distant taxon. For example, 
in a phylogenetic tree construction, if a bacte-
rial protein groups with its eukaryotic homologs 
(of a particular eukaryotic lineage) compared to 
homologs from other bacteria, one can conclude 
the presence of a horizontal gene transfer event. 
Approaches based on comparative genomics and 
phylogenetic analysis are used to identify patterns 
of conserved genes between closely-related and 
distantly-related taxa.

Thus presence of mobile elements, repeats, 
tRNA genes, genes that form part of prophages, 
pathogenicity islands, transposases, integrases and 
recombinases are useful in the identification of 
GIs. Atypical sequence characteristics of acquired 
genes and restricted phylogenetic distribution 
in specific lineages are other features useful in 
their identification. Based on these characteristic 
features, various methods for identifying potential 
foreign genes can be categorized as follows:

• Parametric Methods: based on nucleo-
tide compositions,

• Signal-Based Methods: for analysis of 
the flanking regions of the GIs for tRNA 
genes, mobile elements, repeats, etc.

• Alignment-Based Methods: comparative 
genomics approach, and

• Clustering-Based Approach: phyloge-
netic analysis

However, no single method can reliably 
identify a genomic island and hence it would be 
advantageous to use number of measures exploit-
ing the characteristic features of genomic islands. 
A brief description of each of these approaches 
is discussed below.

APPROACHES FOR IDENTIFYING 
GENOMIC ISLANDS

Parametric Methods: Anomalous 
Nucleotide Composition

Measures based on anomalous nucleotide com-
position, called parametric methods, are the most 
widely used approaches for identifying recent 
horizontal transfers. The underlying assumption 
of this approach is that biased mutation pres-
sures, called A-T/G-C pressure, within bacterial 
genomes impart distinctive biases to the composi-
tion of long-term residents of the genome, such 
that recently acquired genes will appear deviant 
by comparison if they have evolved in a genome 
with different mutational biases (Muto and S. 
Osawa, 1987; Lawrence & Ochman, 1997). The 
bias in the nucleotide base composition of a 
genome results in variations in dinucleotide and 
higher oligonucleotide frequencies and biases in 
the usage of codons and amino acids within the 
genes. Various approaches have been proposed 
to identify a ‘typical’ gene based on nucleotide 
composition (Garcia-Vallve et al, 2000; Karlin, 
2001), dinucleotide frequencies (Jenks, 1998), 
codon usage biases (Garcia-Vallve et al, 2003; 
Karlin & Ladunga, 1994) or patterns inferred by 
Markov chain analysis (Campbell et al, 1999). 
An advantage of these parametric approaches is 
that putative transferred genes can be identified 
without relying on comparisons with other organ-
isms, thus providing an independent means of as-
sessing the impact of gene transfer across lineages 
(Hsiao et al, 2003). Some other characteristic 
measures include: dinucleotide relative abundance 
(genomic signature), amino acid usage, high AT 
content, k-mer (word) distribution and GC skew. 
The general approach involves computing these 
measures in a sliding window and comparing with 
the corresponding genomic average, whenever the 
complete genome sequences are available. The 
regions that deviate from the average genome 
values by a certain threshold may have a different 
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origin and are predicted as genomic islands. These 
measures can be classified into two major classes 
based on the analysis required at genome-level or 
at the gene-level and are briefly described below.

Measures Involving Analysis 
at the Genome Level

These approaches rely only on the availability of 
the complete genomic sequence and attempt to 
capture compositional deviation from the genome 
backbone. These measures are computed over the 
whole genome of the organism. These measures 
are based on word count of k-mers (words of 
size k), viz., di-nucleotides, tri-nucleotides, tetra-
nucleotides, etc. across the genome. The major 
advantage of these measures is that these do not 
require pre-existing annotation of the genome or 
the comparison of homologous sequences, and can, 
therefore, be applied directly to newly sequenced 
genomes. Some of the commonly used genome-
based measures are briefly described below.

GC content anomalies: Many evolutionary 
mechanisms have been proposed to explain GC 
content diversity among bacteria, and it is be-
lieved that a species’s genomic GC content is set 
by a balance between selective constraints at the 
level of codons and amino acids and directional 
mutational pressure at the nucleotide level (Yoon 
et al, 2005). Thus the GC content can be used as a 
signature of an organism. It is one of the simplest 
and most extensively used approaches for iden-
tifying genomic islands. It is computed as a ratio 
of the G+C content (i.e., frequency of G and C 
nucleotides) in non-overlapping sliding windows 
along the length of the genome by the overall GC 
content of the whole genome. If there is significant 
difference in the GC content of any window with 
the genomic average, the region is considered to 
be possibly horizontally transferred. However, this 
method fails to identify a horizontally transferred 
region if the donor and host genome both have 
similar GC content.

Genomic signature: It has been shown that 
the set of dinucleotide relative abundance values 
constitutes a “genomic signature” of an organism 
that may reflect the influence of factors such as 
DNA replication and repair machinery, context-
dependent mutation rates, DNA modifications, 
and base-step conformational tendencies that 
impose limits on the compositional and structural 
patterns of a genomic sequence (Karlin, 1998). 
The dinucleotide biases assess differences be-
tween the observed dinucleotide frequencies and 
those expected from random associations of the 
component mononucleotide frequencies (Karlin, 
2001). To identify genomic island, the average 
absolute abundance difference is computed which 
is defined as a measure of genomic signature dif-
ference between the sliding window (fw) and the 
whole genome value (g):

δ ρ ρ* * *( , ) / | ( ) ( ) |f g f g
w xy w xy
= −∑1 16  

where δ*(fw, g) is the di-nucleotide bias of window 
fw with respect to the whole genome g, 
ρ
xy xy x y

f f f* * * */=  where f
x
*  denotes the frequency 

of the mononucleotide X and f
xy
* that of the di-

nucleotide XY, both computed from the sequence 
concatenated with its inverted complement (Kar-
lin & Marzek, 1997). A major advantage of genome 
signature analyses is in their ability to identify 
anomalous DNA regions containing large stretch-
es of non-coding DNA or small putative genes.

k-mer Distribution: It has been proposed by 
Karlin that most horizontally acquired genomic 
regions have distinct word (k-mer) compositions. 
For k-mers of size k (k = 2 - 9), a total of 4k dif-
ferent possible k-mers are computed, both for 
the whole genome and for each non-overlapping 
sliding window. The average k-mer difference is 
then defined as
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where n = 4k, is the number of distinct k-words 
(words of length k), f

i
w is the frequency of the ith 

k-mer pattern in the window and f
i
g  the corre-

sponding value for the whole genome (Nag et al, 
2006; Jain et al, 2008). Windows exhibiting sig-
nificant deviation from the genomic average are 
identified as probable GIs. This measure is also 
useful to identify genomic islands devoid of genes. 
Utilizing higher order motifs is more likely to 
capture deviation from the genome background 
compositional distribution, as long as there is 
enough data to produce reliable probability esti-
mates. However, for k > 6, this measure becomes 
computationally very expensive.

Recently another method based on k-mer dis-
tribution, called the centroid method proposed by 
Rajan et al (2007). In this method, the genome 
is first partitioned into non-overlapping bins of 
equal size and frequencies of all possible words 
for a given word size are listed corresponding 
to each bin, considering words in both the DNA 
strands. This list represents the word frequency 
vector for the bin. The average frequency of each 
word across all bins is computed and is called the 
centroid. The distance from the centroid is used 
as the criterion for determining the outliers cor-
responding to the compositionally distinct bins.

The above measures are typically carried out 
in non-overlapping windows of a fixed size. If 
the window is too large, then the resolution of the 
output is low. If the window is too small, then the 
output is noisy and difficult to interpret. In either 
case, one is likely to miss regions where there is 
an abrupt change in the nucleotide composition. 
Also, in general, a window of a fixed size will 
not completely cover the whole genomic island; 
typically neighbouring windows may partially 
cover the horizontally acquired regions. This 
also poses the problem of identifying the true 
boundaries of the genomic islands. This problem 
can be addressed by considering overlapping 
sliding windows. The extent of overlap is then 
an important parameter as it will increase the 

computational effort required. An alternative 
approach would be to identify probable genomic 
islands by signal-based methods and analyze the 
regions between, say two transpoases, by the 
above measures; this would allow for variable 
length windows of genomic regions.

The measures at the genome level described 
above identify large genomic regions (~ 50KB) 
which may contain a number of genes. To identify 
the boundaries of the horizontally transferred 
regions and further confirm their foreign origin, 
one may explicitly perform analyses on the genes 
in this putative GI and its flanking regions. These 
measures, which involve analysis of only gene 
sequences or their translations, are also useful 
when the whole genome sequence of an organism 
is not available, but only a limited set of genes from 
the organism are available. Most commonly used 
measures at the gene level are discussed below.

Measures Involving Analysis 
at the Gene Level

Codon Usage Bias: Codon usage variation, i.e., 
unequal usage of synonymous codons, is a very 
well known phenomenon and has been studied 
in a wide diversity of organisms. Virtually every 
codon has been shown to be preferentially used 
in some organisms and rarely used in others. The 
causes of codon usage variation are many-fold. 
Mutational bias (the tendency displayed by some 
organisms to have unbalanced base composition) 
is frequently a contributing factor. Some organ-
isms have extremes of base composition and this 
can influence the selection of codons. Prokaryotes 
and also eukaryotes show preference for certain 
synonymous codons over others, despite all of 
them coding for the same amino acid. This un-
equal usage of synonymous codons is referred to 
as codon bias. There exists a correlation between 
taxonomic divergence and similarity of codon us-
age and hence it is now accepted as a signature of 
a particular taxonomic group. At the gene level, 
bias in codon usage is the most widely used 
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measure for the identification of horizontally 
transferred genes.

Codon frequencies for a set of genes lying 
within a particular window, F, is computed and 
its standard deviation from the complete gene set 
of the organism (or a second representative gene 
set), G, is obtained. The codon usage difference 
of the set of genes F relative to the genome (or 
second set of genes) G is given by

B F G p F f x y z g x y z
a

a x y z a
( | ) ( )[ | ( , , ) ( , , )|]

( , , )
= −∑∑

=
 

where pa(F) are the normalized amino acid fre-
quencies of the gene family F and f(x,y,z) are 
normalized average codon frequencies such that:

f x y z
x y z a

( , , )
( , , )

=
=
∑ 1  

where the sum extends over all synonymous co-
dons, i.e., coding for the same amino acid a (Karlin 
et al, 1998). If a gene’s codon usage difference 
relative to the average gene in the genome exceeds 
a threshold and if its codon usage also differs 
from highly expressed genes such as ribosomal 
protein genes, chaperone genes and protein syn-
thesis genes, then it is likely to be a horizontally 
transferred gene (Karlin, 2001).

Amino Acid Bias: This bias refers to the 
deviation in the frequency of usage of individual 
amino acids over the average usage of all 20 
amino acids. Similar to species-specific codon 
preference, preference of the usage of amino ac-
ids across the organisms has been observed. The 
amino acid bias between a set of genes F and the 
genome (or second set of genes) G is given by:
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where ai(F) is average amino acid frequency of 
ai in F (Karlin, 2001).

GC Content at Codon Positions: The com-
positional biases at the first and third positions 
have been reported to be positively correlated 
to expressivity and genomic G+C content, re-
spectively (Gutierrez et al, 1996). Hence the 
computation of GC content at each codon position 
is highly specific for each organism and acts as 
a unique signature to the organism (Yoon et al, 
2005). This involves computing the frequency of 
occurrence of G and C at the three codon posi-
tions, GC1, GC2 and GC3 respectively. The mean 
GC-content at the three codon positions for the 
set of genes belonging to a sliding window are 
compared with the corresponding values for the 
complete gene set (or a second gene set) of the 
organism. If this difference in the GC content at 
the first and third codon positions for any window 
and the genomic average (or second gene set) is 
larger than a certain threshold, the genes in that 
window are most likely horizontally transferred 
genes. Highly expressed genes such as ribosomal 
genes, chaperones, etc. also have their GC content 
different from the genomic average and need to 
be cross-checked to avoid false predictions. Thus, 
to confirm if the genes in a particular window are 
horizontally transferred, one need to compare these 
measures with a set of highly expressed genes and 
with a representative gene set of the organism. If 
the gene(s) under investigation deviates from both 
these sets, then it is likely to have a foreign origin.

Apart from only the horizontally transferred 
genes, many other genes in a genome may exhibit 
biases in their usage of codons and amino acids 
and also variations in the GC content at the codon 
positions. For example, the highly expressed genes 
in most prokaryotic genomes, viz., ribosomal pro-
tein genes, translation and transcription processing 
factors, and chaperone and degradation protein 
complexes exhibit properties deviating from the 
average gene. Hence, the horizontally transferred 
genes predicted by the above measures should 
also be compared with highly expressed genes, in 
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order to reduce the error in predictions. The major 
limitation of measures involving gene analysis is 
thus the requirement of a well-annotated genome.

The different methods may often give differ-
ent results; therefore a combination of parametric 
methods should be used to obtain a consensus for 
the detection of potential HGT. Providing a number 
of these approaches on a single integrated platform 
is desirous as this would improve the confidence 
of prediction. With this aim we have developed 
a web-based tool, an Integrated Genomic Island 
Identification Tool (IGIPT) where various mea-
sures discussed above have been implemented 
on a single platform (Jain et al, 2008). The major 
advantage of the tool is that it allows filtering of 
GIs by a user-defined threshold value and also 
allows extraction of the flanking regions of the 
predicted GIs for further analysis, such as presence 
of transposable elements, direct repeats, tRNA and 
tmRNAgenes, etc. These extracted contigs can be 
fed back to the tool for identifying true boundar-
ies, thereby reducing the effort of scanning the 
genome in multiple overlapping windows.

The parametric methods based on anomalous 
nucleotide composition are limited by the amelio-
ration of foreign genes (Garcia-Vallve et al, 2000); 
that is, newly acquired genes will experience the 
same mutational biases as long-term residents of 
the genome and will eventually fail to be recog-
nized as anomalous. These methods, thus, reliably 
detect only recently acquired genes. However, a 
significant fraction of prokaryotic genomes, up 
to 15%–20% of the genes, belong to this class of 
recent horizontal acquisitions, suggesting their 
importance. Another problem associated with 
these methods is that genes arriving from donor 
genomes experiencing similar mutational biases 
will not be detected, because the acquired sequence 
will not appear unusual in the recipient genome. 
For e.g., the average GC content of E. coli, Shi-
gella and Salmonella lineages is approximately 
50%, 51% and 52%, respectively, while for the 
Gram-positive Staphylococcus and Streptococ-
cus lineages the average GC content is 33% and 

38%, respectively. The parametric methods will 
fail to identify transfer of genetic material from 
one to another genome in the above groups. Also, 
genes might appear atypical owing to stochastic 
factors (especially if they are short) or as a result 
of various mutational and selection variations and 
hence may be misinterpreted as HGT regions. 
This suggests need for more sensitive measures 
of sequence composition for better prediction of 
HGT events. The highly expressed genes also 
exhibit codon usage and GC content deviating 
substantially from the average gene. Hence, 
putative alien genes identified by the parametric 
approaches need to be compared against these 
highly expressed genes of the acceptor (host) 
genome, to remove false predictions. It has been 
observed that these methods can predict very dif-
ferent classes of genes as HGT, hence using of a 
single method could give biased results (Ragan et 
al, 2006). The other limitation of the parametric 
approach is that the likely source of these alien 
genes cannot be identified since these measures 
do not rely on comparing genes between organ-
isms. Even with these limitations, the parametric 
approaches are popular because of their ease of 
implementation.

Signal-Based Methods for 
Analysis of Flanking Regions 
of Putative Genomic Islands

In Figure 1 the structural features of a typical 
genomic island is shown. Thus apart from an 
analysis of genes in a putative genomic island, 
regions in the vicinity of these regions can be 
searched for relics of sequences that might have 
helped in their integration, such as remnants of 
translocation elements, attachment sites of phage 
integrases, transfer origins of plasmids, presence 
of transposable elements, tRNA and tmRNA genes 
and direct repeats. Using tRNAscan-SE (Lowe & 
Eddy, 1997) in the vicinity or within the putative 
horizontally transferred region or searching for 
direct repeats and transposable elements against 
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the RepBase Update (Jurka et al, 2005) can help 
in improving the confidence of prediction. Look-
ing for at least one mobility genes in the vicinity 
of the putative GI provides more accuracy to the 
GI prediction than by parametric methods alone. 
Mobility genes can be identified by conducting 
an HMMer search of each predicted gene against 
PFAM mobility gene profiles and by searching the 
genome annotation for terms that are commonly 
used to describe mobility genes (Langille et al, 
2010). This requires the genome annotation to 
be complete and accurate. Thus, accuracy of the 
prediction of GIS can be increased by coupling the 
anomalous nucleotide composition analysis with 
the identification of these structural features. To 
facilitate such an analysis of the flanking regions, 
we have provided the option to download the 
predicted GI and its flanking regions in our tool, 
IGIPT (Jain et al, 2008).

Although genomic islands have these con-
served structures, they need not have all of these 
characteristics to be defined as genomic islands, 
making their identification a difficult task. Hence 
one needs to check for all these characteristic 
features and if more than of these elements are 
found in the vicinity of a probable GI, one could 
be more certain of the HGT event.

An alternative approach to detect GIs could be 
to divide the genome according to the presence of 
transposable elements: the stretch of a chromo-
some from the start of a transposon sequence to 
the start of the next transposon sequence. One 
may then use the parametric methods discussed 
above on this fragment to look for horizontally 
transferred genes (Nag et al, 2006).

Alignment-Based Methods: 
Comparative Genomics Approach

With the advent of large-scale genome sequenc-
ing projects, this approach is soon becoming the 
most useful approach for identification of an HGT 
event. It is an alternative approach to sequence-
composition based methods and involves compari-

son of multiple genome sequences, say, within a 
species or genus to look for clear phyletic patterns 
of non-vertical inheritance. Thus, by comparison 
of genomes of two strains of bacteria, if one can 
identify clusters of genes in one strain not pres-
ent in other closely related genomes, but found 
in very distantly related species (as judged by 
their degree divergence in 16S rRNAs or other 
orthologs), then a horizontally transferred event 
can be confirmed. In the case of comparison of 
virulent and non-virulent strinas, these genes may 
be responsible for the virulence of the organism 
and their identification is important for drug target-
ing. Whole-genome alignment methods such as 
Mauve (Darling et al, 2004) or MUMmer (Delcher 
et al, 2002) can be used for identification of GIs 
by comparative genomics approach.

The major limitation of this approach is the 
non-availability of genomic sequences of closely 
related species or strains. The other limitation of 
this approach is the selection of both the query 
and the comparative genomes, which may result 
in inconsistent selection criteria due to the unfa-
miliarity of different phylogenetic distances within 
genera (Langille et al, 2008). If the genomes being 
compared are very closely related, this approach 
will not be able to detect GIs acquired before 
speciation. On the other hand, if the genomes 
being compared include distantly related species, 
one may be lead to false-predictions as a result 
of rearrangements. IslandPick is a method that 
automatically selects genomes for comparison 
that are within a proper evolutionary distance and 
identifies regions that are unique to only a single 
genome (Langille et al, 2008).

The above discussed approaches can only 
indicate the presence of a horizontally transferred 
event, but cannot identify the source or origin. 
Phylogeny-based approach discussed below is 
the only approach which helps in validating the 
presence of a GI and may also identify the likely 
source of its origin.
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Clustering-Based Approach: 
Phylogenetic Analysis

The horizontally transferred genes exhibit an 
unusually high degree of similarity between the 
donor and the recipient strains. Furthermore, be-
cause each transfer event introduces a specific set 
of genes into a single lineage, the acquired trait 
will be limited to the descendents of the recipient 
strain and absent from closely related taxa, thereby 
producing a scattered phylogenetic distribution for 
genes with foreign origin (Ochman et al, 2000). 
Thus, in some cases, it may be possible to establish 
the evolutionary history of a gene by analyzing its 
distribution among various lineages. If a gene is 
confined to one taxon or species, it is more likely 
to have been acquired through gene transfer than 
to have been lost independently from multiple 
lineages. This is the only method which can help 
in identifying the likely source of the alien genes. 
However, one cannot rule out the possibility that 
a particular phenotypic trait such as resistance to 
certain antibiotics have evolved independently 
in diverse lineages through point mutations in 
existing genes (Ochman et al 2000). Hence, it 
may not always be possible to distinguish between 
convergent evolution and horizontal transfer on 
the basis of phylogenetic analyses alone. In both 
comparative genome analyses and phylogenetic 
analyses, the requirement of multiple genomes 
whose complete sequences are available, usually 
limits their application. An excellent review of 
detecting GIs by this approach is given by Koonin 
et al, 2001 and is summarized below. The presence 
of a HGT can be confirmed when one observes:

• Unexpected Ranking of Sequence 
Similarity Among Homologs: A gene se-
quence (or a protein sequence) from a par-
ticular organism shows the strongest simi-
larity to a homolog from a distant taxon.

• Unexpected Phylogenetic Tree Topology: 
In a well-supported tree, a bacterial protein 
groups with its eukaryotic homologs rather 

than homologs from other bacteria and 
shows a reliable affinity with a particular 
eukaryotic lineage.

• Unusual Phyletic Patterns: A phyletic 
pattern is basically the pattern of species 
present or missing in the given cluster of 
orthologs (COGs). This distribution of 
COGs by the number of represented spe-
cies suggests major roles of lineage-specif-
ic gene loss and horizontal gene transfer in 
evolution.

• Conservation of Gene Order between 
Distant Taxa--Horizontal Transfer of 
operons: The evolution of bacterial and 
archaeal genomes involves extensive gene 
shuffling, and there is little conservation of 
gene order between distantly related ge-
nomes. Thus, the presence of three or more 
genes in the same order in distant genomes 
is extremely unlikely unless these genes 
form an operon. Also, it has been shown 
that each operon typically emerges only 
once during evolution and is maintained 
by selection ever after. Therefore, when a 
(predicted) operon is present in only a few 
distantly related genomes, horizontal gene 
transfer seems to be the most likely scenar-
io. If such cases can be confirmed by phy-
logenetic tree analysis for multiple genes 
comprising the operon, they provide the 
strongest indications of horizontal transfer.

The major limitation of this approach is having 
a reference species tree which has been constructed 
using genes that have never been horizontally 
transferred. However, identifying such a gene(s) 
is not an easy task. AMPHORA (a pipeline for 
AutoMated PHylogenOmic inference) is a method 
that tries to construct a large genome tree, using a 
selected list of genes that are shared across most 
genomes (Wu & Eisen, 2008). It has an automated 
pipeline developed that uses 31 ‘marker’ genes, 
a hidden Markov model (HMM)-based multiple 
alignment program, and maximum likelihood to 
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construct an organism tree for 578 species. The 
phylogenetic based HGT prediction methods can-
not usually detect transfers between sister branches 
in a tree (very closely related species) and sparsely 
distributed genes may not be detected if the gene 
tree is consistent (or inconclusive) with the species 
tree. Future research may minimize these limita-
tions either through increased species sampling 
or by combining the power of phylogenetic and 
sequence composition based approaches.

WEB-BASED TOOLS 
AND DATABASES

A large number of tools and databases exist which 
use different properties of genomic islands for 
their identification. A few are based on the com-
positional bias measures, others involve stochastic 
and probabilistic measures, while few others 
use comparative genomics approach. A recent 
review on the various web-based resources for 
GI identification and their performance is given 
by Langille et al (2010).

PAI-IDA: (http://compbio.sibsnet.org/proj-
ects/pai-ida/) The method uses iterative discrimi-
nant analysis that combines three compositional 
criteria to distinguish PAIs/GIs from the rest of 
the genome: G+C content, dinucleotide frequency 
and codon usage (Tu and Ding, 2003). A small set 
of known PAIs from a few genomes were used 
as the initial training data to generate the param-
eters used in the linear functions to discriminate 
anomalous regions from the rest of the genome. 
Then, through iteration, the discriminant func-
tion is improved by taking additional predicted 
anomalous regions into account. The program can 
be used for searching virulence-related factors in 
newly sequenced bacterial genomes and is freely 
available for download.

GC-Profile: (http://tubic.tju.edu.cn/GC-
Profile/) It is an interactive web-based tool for 
visualizing and analyzing the variation of GC 
content in genomic sequences. It implements a 

segmentation algorithm based on the quadratic 
divergence, and integrates a windowless method 
for the G + C content computation, known as the 
cumulative GC profile which partitions a given 
genome or DNA sequence into compositionally 
distinct domains (Gao & Zhang, 2006; Zhang et 
al, 2005). The precise boundary coordinates given 
by the segmentation algorithm and the associated 
cumulative GC profile for analyzing the variation 
of GC content along the length of the genome or 
chromosome makes it a very useful tool.

SIGI-HMM: (www.tcs.informatik.uni-
goettingen.de/colombo-sigihmm) The program 
SIGI-HMM predicts GIs and the putative donor of 
each individual alien gene and is publicly available 
for download along with the program Artemis for 
visualizing its output (Waack et al, 2006). The 
algorithm exploits taxon specific differences in 
codon usage for the identification of putative alien 
genes and the prediction of their putative origin. 
Codon usage of each gene is compared against 
a carefully selected set of Codon Usage tables 
representing microbial donors or highly expressed 
genes. The product of the codon usage frequency 
for each gene is calculated using the host codon 
frequency table and all the frequency tables that 
are available for other organisms (donor tables). 
Based on certain cut-offs, it decides if each gene 
resembles another species (that is, a putative donor 
species) more closely than the host species and, 
if so, the gene is labelled as a putative foreign 
gene. An inhomogeneous hidden Markov model 
(HMM) is implemented on a gene level to distin-
guish between normal background variations in 
codon usage and variations that are due to genuine 
HGT events, and which incorporates the removal 
of highly expressed genes.

SWORDS: (http://www.isical.ac.in/~probal/
main.htm) The authors have proposed an unsuper-
vised statistical identification of genomic islands 
(Nag et al, 2006). SWORDS is a statistical tool for 
analyzing short oligonucleotide frequencies. As 
transposons are known to be involved in horizon-
tal acquirement into the genome, they divide the 
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genome according to the presence of transposable 
elements, from the start of a transposon sequence 
to the start of the next transposon sequence consid-
ered as a fragment. The frequencies of the k-words 
are computed for each fragment using SWORDS 
and standard hierarchical average linkage cluster 
analysis carried out among the chosen segments 
of a specific chromosome. The fragments having 
very different word usage compared to the other 
fragments of the same chromosome branch out 
and shows up as genomic island fragments in the 
dendrogram tree.

IslandPick: (http://www.pathogenomics.sfu.
ca/islandviewer/) IslandPick uses a comparative 
genomics approach to detect GIs by automatically 
identifying suitable genomes for comparison for 
a given query genome as input. This selection 
process allows GI predictions to be pre-computed 
for any genome without any bias from manual 
genome selection. Once the comparison genomes 
are selected, whole-genome alignments are con-
structed using Mauve, and BLAST is used as a 
secondary filter to ensure that the region is not a 
recent duplication that is not aligned by Mauve. 
IslandPick predictions are automatically updated 
monthly for all currently available genomes using 
default criteria, and unpublished genomes can be 
submitted privately for analysis (Langille et al, 
2008). Since IslandPick requires several phylo-
gentically related genomes to be sequenced to be 
able to make a prediction; therefore, predictions are 
not be available for many genomes. IslandViewer 
is available from the same site for visualization 
and download of the pre-computed GIs for all 
published sequenced genomes.

MobilomeFINDER: (http://mml.sjtu.edu.
cn/MobilomeFINDER) It as a comprehensive, 
comparative-genomics-based “mobile genome” 
(mobilome) discovery platform in bacterial 
strains allowing high-throughput genomic island 
discovery by using microarray-derived compara-
tive genomic hybridization data and comparative 
analysis of the contents and contexts of tRNA 
sites (tRNAcc) and/or other integration hotspots 

in closely related bacteria. It integrates ArrayOme 
and tRNAcc software packages for the discovery 
pipeline (Ou et al, 2007).

PredictBias: (http://www.davvbiotech.res.in/
PredictBias/) It is a web application for the iden-
tification of genomic and pathogenicity islands 
in prokaryotes based on composition bias (%GC, 
dincucleotide and codon bias), presence of inser-
tion elements (Transposase, Integrase, tRNA), 
presence of genes encoding proteins similar to 
known virulence factors (viz., adhesins, invasin, 
toxin & others) by searching against Virulence 
Factor Profile database (VFPD) and absence 
from closely related non-pathogenic species by 
using the ‘compare genome feature’ of the tool 
(Pundhir et al, 2008). An important feature of 
this tool is that it provides comparative analysis 
of an island in related non-pathogenic species 
which aids in validating the results and defining 
the boundaries of PAIs.

IGIPT: (http://ccnsb.iiit.ac.in/nita/IGIPT/srk/
index.php): Integrated Genomic Island Prediction 
Tool (IGIPT) is a web-based tool for identifying 
genomic islands (GI) in prokaryotic genomes 
(Jain et al, 2008). It provides six different mea-
sures which capture variations in the nucleotide 
composition of a region compared to that of the 
genomic average. Measures for analysis at the 
genome level include computing GC content, 
genomic signature based on dinucleotide biases 
and k-mer biases (k = 2 – 6) based on word bi-
ases, in sliding windows and comparing with the 
genomic average. These measures can be used in 
the absence of any annotation of the genomes. At 
the gene level, the three measures incorporated 
involve computing biases in codon and amino 
acid usages and GC content at the three codon 
positions. These measures can also be applicable 
when the complete genome of an organism is not 
available, but only few genes are available. The 
tool provides output in excel format, giving values 
of various measures in each window making it suit-
able for plotting purposes. The tool also provides 
option to screen the anomalous windows based 
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on user-defined cut-off based on standard devia-
tion. On the web-server, provision to extract the 
predicted GIs and its flanking region for further 
investigations facilitates screening of transposable 
elements, repeats, tRNA and mobility genes in the 
proximity of GIs.

A large number of pre-computed databases 
of Genomic Islands (GIs) and Pathogenecity 
Islands (PAI) are available on the web which can 
be used for further analysis. A few of these are 
summarized below.

IslandPath: (http://www.pathogenomics.sfu.
ca/islandpath/) It is a network service incorporat-
ing multiple DNA signals and genome annotation 
features into a graphical display of a bacterial or 
archaeal genome to aid the detection of genomic 
islands. It provides a list of bacterial genomes in 
which GIs have been identified based on G+C 
content in predicted ORFs (instead of sliding 
window), dinucleotide bias for gene clusters, the 
location of known or probable mobility genes, the 
location of tRNAs and with annotation features 
retrieved from public resources. It provides a 
whole-genome graphical web interface for con-
venient visualization and analysis of genomic 
islands highlighting features associated with GI 
(Hsiao et al, 2003).

HGT-DB: (http://genomes.urv.cat/HGT-DB) 
Under the hypothesis that genes from distantly 
related species have different nucleotide compo-
sitions, the Horizontal Gene Transfer DataBase 
(HGT-DB) includes statistical parameters such as 
G+C content, codon and amino acid usages, for 
identifying genes that deviate in these parameters 
for prokaryotic complete genomes. For each ge-
nome, the database provides statistical parameters 
for all the genes, as well as averages and standard 
deviations of G+C content, codon usage, relative 
synonymous codon usage and amino acid content, 
as well as lists of putative horizontally transferred 
genes, correspondence analyses of the codon usage 
and lists of extraneous groups of genes in terms 
of G+C content. For each gene, the database lists 
several statistical parameters, including total and 

positional G+C content, and determines whether 
the gene deviates from the mean values of its own 
genome (Garcia-Vallve et al, 2003).

PAIDB: (http://www.gem.re.kr/paidb) Patho-
genicity Island Database (PAIDB) is a relational 
database of all reported PAIs and potential PAIs 
regions predicted by a method that combines fea-
ture based and similarity based analyses. Due to 
the difficulty in assigning virulence features to a 
gene, a gene is considered a virulence gene in the 
database only if it was experimentally validated 
or reported in literature. Apart from the sequence 
exhibiting compositional bias, PAIDB provides 
GI information for these regions if they are found 
to be homologous to previously described PAIs. 
Using the PAI Finder search application, a multi-
sequence query can be analyzed for the presence 
of potential PAIs and the PAIs can be browsed by 
species, text searched or searched with BLAST 
(Yoon et al, 2007).

NMPDR: (www.nmpdr.org/) The National 
Microbial Pathogen Database Resource (NMPDR) 
contains the complete genomes of ~ 50 strains of 
pathogenic bacteria, and > 400 other genomes that 
provide a broad context for comparative analysis 
across the three phylogenetic domains (McNeil 
et al, 2007). The current edition of the NMPDR 
includes 47 archaeal, 725 bacterial, and 29 eu-
karyal genomes providing curated annotations for 
comparative analysis of genomes and biological 
subsystems, with an emphasis on the food-borne 
pathogens and STD pathogens.

Islander: (http://kementari.bioinformatics.
vt.edu/cgi-bin/islander.cgi) The Islander database 
is a comprehensive online resource of GIs in 
completely sequenced bacterial genomes identi-
fied using the algorithm by Mantri and Williams 
(2004). It exploits the feature that islands tend 
to be preferentially integrated within tRNA and 
tmRNA genes and identify the fragmented parts 
of the RNA genes using BLAST to mark the 
endpoints of the genomic islands.
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FUTURE RESEARCH DIRECTIONS

Since genomic islands contain genes responsible 
for the virulence, antibiotic resistance, ecological 
importance and responsible for the adaptability, 
improved prediction of such regions from primary 
sequence data is of significant interest. Integra-
tion of the various approaches is the need of the 
hour as it has been observed that various methods 
discussed above may result in different sets of 
genes as HGT. With large bacterial genomes now 
available, new algorithms based on biological 
insights from the large samples, especially from 
closely related organisms must be developed for 
improving the prediction of genomic islands and 
also understanding the mechanisms of transfer. 
More accurate bioinformatics tools are needed 
especially for precise identification of the bound-
aries of the genomic islands. Sequences from 
metagenomics projects provide another challenge 
since in these datasets the organism sources of 
the sequences are unknown and short sequence 
reads from next-generation sequencing further 
complicates the problem.

CONCLUSION

The identification of genomic islands (GIs) is a key 
task in annotation pipelines, especially in the case 
of pathogens since it helps in identifying virulent 
genes which can be potential drug targets. In this 
chapter we have discussed three main types of 
approaches used for the identification and valida-
tion of genomic islands. The parametric methods, 
based on anomalous nucleotide compositions are 
the most widely used method for detecting GIs 
because of the ease with which these can be used. 
These methods require only the genome (which 
may or may not be annotated) or a representative 
set of genes of an organism for detecting the GIs. 
Searching in the neighbourhood of the predicted 
GIs by any signal-based methods for the pres-
ence of tRNA or tmRNA genes, direct repeats, 

mobility genes, etc. can help in reducing the false 
predictions. Filtering of highly expressed genes 
such as ribosomal protein genes, and prophages 
can further improve the prediction accuracy of 
the parametric methods. The different methods 
may sometimes give different results; therefore 
a combination of parametric methods should 
normally be used to obtain a consensus for the 
detection of potential HGT. It should be noted 
that only recent horizontal acquisitions can be 
identified by the parametric methods as a result 
of the process called amelioration. Thus both 
parametric and signal-based methods extract the 
characteristic features within a genomic island 
for its identification. However, different regions 
in a genome may exhibit similar compositional 
biases, for e.g., highly expressed genes. Hence 
the predicted GIs must be confirmed by other 
approaches. If the genomes of the closely related 
species of the genome of interest are available, 
then these predictions should further be confirmed 
by comparative genomics approach. The choice 
of the genomes used for comparison is very 
crucial in this analysis, since comparison with 
very closely related genomes may not be able 
to detect GIs acquired before speciation. On the 
other hand, comparison with genomes of distantly 
related species may lead to false-predictions. To 
validate the GI and identify the source of the 
horizontal transfer event, phylogenetic analysis 
of all the genes in the predicted GI is essential. 
If all the genes in a neighbourhood show similar 
phylogenetic relationship, different from the 
average gene of the genome, then a GI can be 
confirmed. However care should be taken while 
analyzing the phylogenetic relationship since this 
approach may not be able to distinguish between 
convergent evolution and horizontal transfer. In 
both comparative genomics and phylogenetic 
analysis approaches, the requirement of multiple 
genomes from closely and distantly related spe-
cies is required. If genes in the predicted GIs by 
parametric or signal-based methods, exhibit either 
similarity to a homolog from a distant taxon, or 
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unusual phyletic patterns in clusters of orthologs, 
or presence of a conserved operon in a few dis-
tantly related organisms confirm their horizontal 
acquisitions. Each of the approaches discussed 
above has its strengths and weaknesses and a 
combination of methods is often most suitable.
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KEY TERMS AND DEFINITIONS

Comparative Genomics: Involves comparing 
whole genomes/chromosomes of two or more 
organisms.

Genomic Islands (GIs): The movement of 
genetic material between phylogenetically unre-
lated organisms by mechanisms other than parent 
to progeny inheritance.

Horizontal Gene Transfer (HGT): The 
transfer of genes by mechanisms other than direct 
descent (vertical inheritance) between diverse 
organisms.

Laterally Transferred Genes: Same as Hori-
zontally transferred genes.

Pathogenicity Islands (PAIs): The genomic 
islands containing genes responsible for the viru-
lence of the bacterial strains.

Phylogeny: The evolutionary relationship 
between taxonomic group of organisms (e.g., 
specis or population).
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Chapter  11

INTRODUCTION

The speed and precision of natural vision system 
for living beings (human, animal, birds or insects) 
is amazing, yet less explored because of complex-
ity involved in the biological phenomena. Every 
intelligent system (Intelligent robotics, Intelligent 
Traffic system, Interactive medical applications 

and human intension recognition in retail domain 
etc.) in many industries is attempting to simu-
late natural vision system. The major hurdles in 
such process are high computational complexity 
because of very high dimensional images data 
and the semantic gap between the image content 
and the observed concepts from natural images/
scenes. Recent progress in computational power 
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ABSTRACT

Traffic congestion problem is rising day-by-day due to increasing number of small to heavy weight 
vehicles on the road, poorly designed infrastructure, and ineffective control systems. This chapter ad-
dresses the problem of estimating computer vision based traffic density using video stream mining. We 
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and understanding of local and global concepts 
in images opens path for new line of work in 
dynamic automation. Table 1 summarizes some 
of the emerging applications in various domains 
and existing challenges in vision based solutions.

Video cameras are used in various industry 
segments for security, surveillance and object 
tracking purposes. Inferences derived from Video 
analytics systems will be of great importance for 
taking critical decisions and predictions in varied 
industry application scenarios. One such applica-
tion area is traffic and transport management by 
using video cameras installed at traffic posts in a 
city. The traffic can be congested in some areas 
and the vehicular flow towards that area still in-
creases the congestion. To avoid these types of 
issues, the area under congestion has to be esti-
mated and the vehicular flow has to be directed 
in other possible routes. Because of the difficulty 
faced in recent traffic management and suitabil-
ity of applying vision based approaches, it is of 
high interest in recent time. In the rest of this 

chapter, we focus on traffic density problems, 
issues and solution approach.

Traffic density and traffic flow are important 
inputs for an intelligent transport system (ITS) to 
manage traffic congestion better. Presently, this 
is obtained through loop detectors (LD), traffic 
radars and surveillance cameras. However, install-
ing loop detectors and traffic radars tends to be 
difficult and costly. Currently, more popular way of 
circumventing this is, to develop some sort of Vir-
tual Loop Detector (VLD) by using video content 
understanding technology to simulate behavior of 
a loop detector and to further estimate the traffic 
flow from a surveillance camera. But difficulties 
arise when attempting to obtain a reliable and 
real-time VLD under changing illumination and 
weather conditions.

In this work, we present an approach to esti-
mate on-road traffic density using texture analysis 
and Support Vector Machine (SVM) classifier, 
and analyze traffic density for on-road traffic 
congestion control and flow management. Our 
system provides an integrated environment for 

Table 1. Vision based application in different domain and issues 

Domain Applications General functions in computer 
vision systems

Issues of Computer vision 
Systems

1. Health Care Computer-aided diagnosis, surgical 
applications, Mammography Analysis, 
Detection of Carcinoma tissue, Re-
trieval of similar diagnosed images.

i. Image acquisition: (Sensors- 
light, ultra sonic, tomography, 
radar) 
ii. Pre-processing (Re-sampling, 
Noise reduction, Enhancement, 
Scale normalization) 
iii. Feature extraction (Lines, 
edges, interest points, corners, 
blobs, color, shape and texture) 
iv. Detection/Segmentation (re-
gion of interest, foreground and 
background separation, Interest 
points) 
v. High-level processing (Object 
Detection, Recognition, Clas-
sification and Tracking)

i. Various types of image and 
videos (binary, gray, color), 
different data types (GIF, BMP, 
JPEG and PNG), and sizes 
(SQCIF, QCIF, CIF, 4CIF). 
ii. Camera Sabotage (FOV 
obstruction, sudden pan, tilt, 
zoom) and Discontinuity in 
video streams 
iii. Illumination (varied intensity 
and multiple source of lights) 
iv. Blurring 
v. Occlusion 
vi. Different object size 
vii. Changing Field of View in 
moving cameras

2.Transport Small to large vehicle detection, Ve-
hicle count, Traffic density estimation, 
Incident detection, Traffic rule viola-
tion detection, Eye and head tracking 
for automatic drowsiness detection, 
Lane/Road detection etc.

3. Security 
Surveillance

People detection and tracking, Abnor-
mal behavior recognition, Abandoned 
Objects, Biometric pattern recognition 
(Face, Finger prints), Activity monitor-
ing in mines etc

4. Manufacturing Camber measurement, Item detection 
and classification, and Vision-guided 
robotics etc.

5. Retail Cart detection, Vegetable recognition 
etc.
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users to derive traffic status by mining available 
video camera signals. Proposed traffic decision 
support system process the video frames received 
from video cameras installed in traffic signals and 
classifies the frames according to traffic content 
at any particular instance. One of our goals is 
to classify each given frame into low, medium 
or high traffic density category with given ROI 
(Region of Interest). Secondly, we apply analyt-
ics on output of density estimator to manage and 
optimize the traffic flow within the city. Cameras 
installed at multiple locations of a city provide 
video sequences as frames to video analytics so-
lution. This solution classifies frames to provide 
the category information. Time series information 
available from the inputs sequence is combined 
with traffic video classification, and used in traffic 
trend estimation for any specified time interval. 
Our developed solution demonstrates the work-
ing model on various cameras placed at different 
location of the city.

The rest of the chapter is organized as fol-
lows. In the Background Section, we describe the 
basics of video streaming, video stream mining 
and SVM Classifier that are related to our work. 
Next, we briefly discuss existing approaches for 
estimating traffic density. In the Video Stream 
Mining for Traffic Density Estimation section, we 
describe our approach for specific traffic applica-
tion scenarios followed by the method of texture 
feature extraction to represent the local image 
patch and classification task. We also describe 
the data sets used and present the results obtained 
followed by discussion. We conclude the chapter 
with a summary.

BACKGROUND

Video Streaming

Streaming video is defined as continuous trans-
portation of images via internet and displayed at 
the receiving end which appears as a video. Video 

streaming is the process where packets of data in 
continuous form were given as input to display 
devices. The player takes the responsibility of 
synchronous processing of video and audio data. 
The difference between streaming and download-
ing video is that in downloading video, the video 
is completely downloaded and we cannot perform 
any operations on the file while it is being down-
loaded. The file is stored in the dedicated portion 
of memory. In streaming technology, the video is 
buffered and stored in a temporary memory, and 
once the temporary memory is cleared the file is 
deleted. Operations can be performed on the file 
even when the file is not completely downloaded.

The main advantage of video streaming is that 
there is no need to wait for the whole file to be 
downloaded and processing video can be started 
after receiving first packet of data. On the other 
hand, streaming a high quality video is difficult 
as the size of high definition video is huge and 
bandwidth may not be sufficient. Also, the band-
width has to be good so that there will not be any 
breaking in the video flow. It can be revealed 
that for video files of smaller size, downloading 
technology can be used; and for larger files stream-
ing technology is more suitable. Still there is a 
space for improvement in streaming technology, 
by finding an optimized method to stream a high 
definition video with smaller bandwidth through 
the selection of key frames for further operations.

Video Stream Mining

Stream mining is a technique to discover useful 
patterns or patterns of special interest as explicit 
knowledge from a vast quantity of data. A huge 
amount of multimedia information including 
video is becoming prevalent as a result of ad-
vances in multimedia computing technologies 
and high-speed networks. Due to its high informa-
tion content, extracting video information from 
continuous data packets is called as video stream 
mining. Video stream mining can be considered 
as subfields of data mining, machine learning and 
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knowledge discovery. In mining applications, the 
goal of a classifier is to predict the value of the 
class variable for any new input instance provided 
with adequate knowledge about class values of 
previous instances. Thus in video stream min-
ing, a classifier is trained using the training data 
(class values of previous instances). The mining 
process will be ineffective if samples are not a 
good representation of class value. To get good 
results from classifier, the training data should 
include majority of instance that a class variable 
can possess.

SVM-Based Classifier

Classifying data is a crucial task in machine 
learning. When an instance is given as input, the 
classifier should categorize to which class the input 
belongs. Classifier should know the boundaries 
and data points of its classes. In this work, we used 
SVM classifier for classifying the traffic density.

SVM’s (Cristianini & Shawe-Taylor, 2000; 
Vapnik 1998) are very effective than other con-
ventional non- parametric classifiers (e.g., the 
RBF Neural Networks, Nearest-Neighbor (NN), 
and Nearest-Center (NC) classifiers) in terms 
of classification accuracy, computational time, 

and stability to parameter setting. The theory of 
SVM is to create a hyper-plane which separates 
the classes with maximum accuracy. There can be 
many hyper-planes to separate the two categories. 
The largest separation between the two categories 
is considered as the best plane.

The hyper-plane is chosen such that the distance 
between the nearest different class points is 
maximum. This is called as the “maximum-
margin hyper plane”. The margin (γ) and hyper-
plane (w) for a non-linearly separable class is 
shown in Figure 1. A hyper-plane, which is de-
noted by ( , ) ,w b R Rn∈ ×  consists of all x  

satisfying w x b, + = 0 .
The problem thus can be formed as:

Minimize 1
2

2
w subject toy w x b

i i
( , ) .+ ≥ 1  

 (1)

The solution to this optimization problem of 
SVM’s is given by the saddle point of the Lagrange 
function. Let C be the upper bound of the Lagrange 
multipliersα

i
, and then equation (1) can be for-

mulated as

Figure 1. Margin and hyper plane classification problem
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with constraints α
i

i
i
y∑ = 0  and 0 ≤ ≤α

i
C .

TRAFFIC DENSITY ESTIMATION 
APPROACHES

Heavy traffic congestion of vehicles, mainly dur-
ing peak hours, creates a big problem in major 
cities all around the globe. The ever-increasing 
number of small to heavy weight vehicles on the 
road, poorly designed infrastructure, and ineffec-
tive traffic control systems are major causes for 
traffic congestion problem. Intelligent Transpor-
tation System (ITS) with scientific and modern 
techniques is a good way to manage the vehicular 
traffic flows in order to control traffic congestion 
and for better traffic flow management. For this 
ITS takes estimated on-road density as input and 
analyze the flow for better traffic congestion 
management.

One of the most used technologies for deter-
mination of traffic density is the Loop Detector 
(LD) (Stefano et al., 2000). These loop detectors 
are placed at the crossing and junctures. Once any 
vehicle passes over, it generates signals. Signals 
from all the LDs placed in crossing are combined 
and analyzed for traffic density and flow estima-
tion. Recently, more popular way of circumvent-
ing automated traffic analyzer is by using video 
content understanding technology to estimate the 
traffic flow from a set of surveillance cameras 
(Lozano, et. al., 2009; Li, et. al., 2008). Because 
of low cost and comparatively easier maintenance, 
video based system with multiple CCTV (Closed 
Circuit Television) cameras are also used in ITS, 
but mostly for monitoring purpose (Nadeem, et. 
al., 2004). Multiple screen displaying the video 
streams from different location are displayed 
at central location to observe the traffic status 

(Jerbi, et. al., 2007; Wen, et. al., 2005; Tiwari, et. 
al., 2007). Presently this monitoring system is a 
manual task of observing these videos continu-
ously or storing them for lateral use. In this set 
up it is very difficult to recognize any real time 
critical happenings (e.g., heavy congestions).

Recent techniques such as Loop detector have 
major disadvantages of installation and proper 
maintenance. Computer vision based traffic ap-
plication is considered as cost effective option. 
Applying image analysis and analytics for better 
congestion control and vehicle flow management 
in real time has multiple hurdles, and most of 
them are in research stage. Some of the important 
limitations for computer vision based technology 
are as follows:

• Difficulty in choosing the appropriate sen-
sor for deployment.

• Trade-off between computational com-
plexity and accuracy.

• Semantic gap between image content and 
perception poses challenges to analyze the 
images hence it is difficult to decide which 
feature extraction techniques to use.

• Finding a reliable and practicable model 
for estimating density and making global 
decision.

The major vision based approaches for traffic 
understanding and analyses are object detection 
and classification, foreground and back ground 
separation, and local image patch (within ROI) 
analysis. Detection and classification of moving 
objects through supervised classifiers (e.g. Ada-
Boost, Boosted SVM, NN etc.) (Li, et. al., 2008; 
Ozkurt & Camci, 2009) are efficient only when the 
object is clearly visible. These methods are quite 
helpful in counting the number of vehicles and 
tracking them individually, but in traffic scenario 
due to high overlapping of objects, most of the 
occluded objects are partially visible and very 
low object size makes these approaches imprac-
ticable. Many researchers have tried to separate 
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foreground from background in video sequence 
either by temporal difference or optical flow (Oz-
kurt & Camci, 2009). However, such methods are 
sensitive to illumination change, multiple sources 
of light reflections and weather conditions. So, 
vision based approach for automation has its own 
advantages over other sensors in terms of cost on 
maintenance and installment process. Still the 
practical challenges need high quality research 
to realize it as solution. Occlusion due to heavy 
traffic, shadows (Janney & Geers, 2009), varied 
source of lights and sometimes low visibility 
(Ozkurt & Camci, 2009) makes it very difficult 
to predict traffic density and flow estimation.

Given the fact that, low object size, high 
overlapping between objects and broad field of 
view in surveillance camera setup, estimation of 
traffic density by analyzing local patches within 
given ROI is an appealing solution. Further, levels 
of congestion constitute a very important source 
of information for ITS. This is also used for 
estimation of average traffic speed and average 
congestion delay for flow management between 
stations. In this work, we developed a solution 
to estimate vehicular traffic density and apply 
analytics to manage traffic flow.

VIDEO STREAM MINING FOR 
TRAFFIC DENSITY ESTIMATION

In a set up of multiple cameras placed at different 
location/junctions our target is to extract mean-
ingful insights from video frames grabbed from 
video streams. This is achieved by estimating 
traffic density at each of these junctions. Apply-
ing analytics on this time series data is useful 
for trend monitoring and optimal route finding. 
Since a very specific portion of whole image in 
the camera field-of-view is of our interest, first 
we provide an option for users to choose a flex-
ible convex polygon to cover the best location 
in the camera field view for density estimation. 
One such example is shown in Figure 2. Here, we 

first categorize each frame, from selected camera 
and its field of view, into different density classes 
(Low, Medium and High category) according to 
the traffic present in it by using supervised clas-
sification method. These classification results are 
archived in database for selected video frames. 
Database also contains time series information 
for each frame extracted from video sequence. 
Analyzer component will mine the time series 
data along with classification data to provide 
the traffic patterns. User will be given option to 
visualize the mined results to view average traffic 
condition in timely basis.

The presented system serves as automation 
for manual monitoring system by alert generation 
in critical situations. It can aid in traffic monitor-
ing system and reduces labor-intensive work. Our 
system can work in real time for multiple cam-
eras (e.g., 100 cameras at the same time). The 
output of the proposed method is further used for 
analytics in the traffic flow. Alarms generation 
for abnormal traffic condition, trend monitoring 
and route identification are the major use of traf-
fic density estimation. This helps in vehicular 
flow routing, shorted or less congested path find-
ing (Gibbens & Saacti, 2006).

The basic flow diagram of the proposed 
methodology is shown in Figure 3. The major 
modules are: Camera/ROI selection, Classifier, 
Traffic flow analyzer and Dashboard to show 
the output. The detail diagram for traffic density 
estimation is shown in Figure 4 and its components 
are explained below.

ROI (Region of Interest) Selection

In surveillance camera setup, the camera field-of-
view covers a very wide region. But the informa-
tive data lies only in small region. So it is better to 
remove the unnecessary information from image 
and process only useful information. Moreover, 
it is also important to select significant region 
of interest for effective analysis. The user has to 
select points (coordinates) in the image such that 
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Figure 2. Region of interest for traffic density estimation

Figure 3. Traffic density solution flow diagram
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the connection of these points form a closed region 
(convex polygon) on which the model classifier 
operates. The ROI can be of any shape but region 
should cover the view of entire traffic congestion.

Preprocessing

Lighting and illumination are very important fac-
tors while collecting clear images. Bad lighting, 
shadows due to buildings or obstacles and light 
variation from day to night etc. would hamper 
the precision of traffic density estimation. For 
the same density of traffic, the density estimation 
may vary from day to night because of variation in 
lighting. So there is a necessity to preprocess the 
image patches before estimation. This preprocess-
ing includes contrast enhancement which helps 
in processing the shadowed region adequately. 
Smoothing is another operation in the preprocess-
ing which cutoffs the major variation in the im-
age. Contrast enhancement as well as smoothing 
helps in better gradient feature extraction and it 
has following advantages:

• Robust system for variation of intensity of 
light source.

• Takes care for low visibility of objects.
• Tackle well in noisy scenarios.

Division into Sub Windows

An inherent problem with global feature extraction 
and representation approaches is that they are sen-
sitive to local image variations (e.g., pose changes, 
illumination changes, and partial occlusion). Local 
feature extraction methods, on the other hand are 
less sensitive to these effects. Moreover, utiliza-
tion of geometric information and constraints in 
the configuration of different local features make 
them robust (either explicitly or implicitly while 
constructing target object models). The entire 
image (within ROI) is not processed at a time as 
it can be of any shape and size (option given for 
users to select ROI). The image within the ROI 
is divided into small windows of size W x W 
with overlapping of D pixels (These W and D are 
parameters to find the best size and overlapping 
of windows) and the sub-windows are given as 
input to the classifier.

Figure 4. Block diagram of traffic density classification
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Texture Feature

The number of objects (e.g. vehicles) present in 
the ROI for density analysis is inversely propor-
tional to the sparseness of the edge component 
or pixels with higher gradient values. So, we use 
textural feature extraction technique to represent 
the variation (gradient) among the neighboring 
pixel values. To measure the traffic density, we 
used Histogram of Oriented Gradient (Dalal & 
Triggs, 2005) as the feature for each overlapping 
local patch. The sub-windows are converted into 
feature vectors and these feature vectors are fed 
to SVM classifier (Cristianini & Shawe-Taylor, 
2000) for classifying them into ‘Traffic’ class or 
‘No Traffic’ class as described below.

Classification

Each of the extracted feature vectors of the sub-
windows are classified by a trained classifier. This 
binary classifier is developed with large number 
of manually selected image data with and with-
out the presence of traffic objects. The classifier 
generates classification confidence which can be 
negative or positive. The positive output denotes 
the Traffic congestion in image patch and the nega-
tive represents no traffic or less traffic condition. 
The cumulative results from all the sub-windows 
are calculated as Percentage of Traffic Density. 
As camera field-of-view covers a wide range in 
ground (approximately from 2 meter to 100 meter 
view), the number of objects can be placed in 
the near field of view is comparatively smaller 
than the number of object in farther view. So, 
we considered weights (by linear interpolation) 
as higher weight for the farther patch decision 
than that of nearer patch while accumulating the 
global decision. The decision of classifier is based 
on weighted confidence which is computed ac-
cording to distance of the sub-windows from the 
camera field-of-view. That is, the percentage of 
global traffic density is obtained as:

Traffic Density
Noof subwindows with traffic

Total number of w
%

.
( ) =

iindows within ROI
* 100

 

(3)

Based on the percentage of traffic density 
with respect to the two user defined threshold 
values, the image is classified into low, medium 
or high density as follows. Let T1 and T2 be the 
two thresholds, T1 be the minimum threshold 
below which density is low and T2 be the maxi-
mum threshold above which density is consider 
being high. Let T be the traffic percentage of the 
image then,

• The image is ‘Low’ Density if T <= T1.
• The image is ‘Medium’ Density if T1 < T 

<= T2.
• The image is ‘High’ Density if T >T2.

The step wise algorithm is presented in Table 2.

Retraining the Classifier

The trained classifier may not be perfect and ac-
curate in decision making. To make the classifier 
robust and accurate, images which are wrongly 
classified have to be collected and use them to 
retrain the classifier. To make the trained classifier 
robust against the changing scenarios, different 
light sources and camera positioning, we have 
provided the option of retraining the classifier 
for better density estimation. Periodically the user 
can collect data which are wrongly classified and 
retrain classifier (with cross validation) to get 
appropriately trained for particular setting (e.g. 
view angle, distance and height).

Results and Observations

For our experiments and performance compari-
son of the proposed approach of traffic density 
estimation, we considered both synthetic as well 
as real world data sets.
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The synthetic data sets are prepared by plac-
ing segmented vehicles on the traffic images with 
different density patterns. To simulate on-road 
traffic with different densities (from 0 to 100%), 
we placed different number of vehicle samples 
on the empty road images. The manual way of 
creating synthetic data helps us to control the 
density amount in discrete state, which we used 
for performance evaluation.

Different kinds of traffic densities with mixed 
number of vehicles are shown in Figure 5. We 
created six different data set with 1, 3, 5, 10 
13 and 17 vehicles placed at random positions 
(within ROI) and each set contains 100 images. 
We categorized the first two types (images with 
1 and 3 vehicles) as low density, images with 5 
vehicles as medium density and the last two types 
as high density.

Table 2. Traffic density estimation algorithm 

Input

Image : Extracted Image frame from video stream
T1 & T2 : Threshold for categorization of Image frame density within ROI

W : Size of the local window patch
D : Overlapping Pixel width among the local window

Output Categorization of Image into Low, Medium or High traffic density

Steps:

1 Select a flexible convex polygonal region of interest (ROI), covering the complete expected traffic area.

2 Divide the image patch within the ROI into widows of size WxW with overlapping D pixels.

3 Extract texture feature for each of the image patch.

4 Classify each local window by using the extracted feature vector and trained binary classifier for presence of traffic or not

5 Compute the percentage of traffic density within ROI by using equation 1.

6 Apply threshold T1 and T2 to categorize the frame into low, medium or high.

Figure 5. Synthetic traffic data with different number of vehicles.(a)1, (b)3, (c)5,(d)10, (e)13 and (f)17



192

Video Stream Mining for On-Road Traffic Density Analytics

Real data sets are collected from the surveil-
lance cameras placed at the traffic posts. These 
data sets are collected with time stamp. For ex-
perimental purpose, we selected a set of images 
from the video sequence captured in 24x7 bases 
and labeled them as low, medium and high traffic 
density according to their vehicle occupancy. The 
experiment is done on bmp images of 24 BPP 
(bits per pixels) data and of 352x288 pixels in 
size.

Some of the classification results on real data 
representing three categories are shown in Figure 
6. It can be observed that the images with higher 
vehicle occupancy are classified as high or me-

dium than low density class. The performances 
of correct classification on both synthetic and real 
data are shown in Figure 7(a) and 7(b) respec-
tively. The percentages of density prediction are 
shown in Figure 8. From the annotated data we 
computed the thresholds for image categorization 
(threshold are shown in thick and dotted lines). It 
can be observed from the density curve that after 
smoothing the predicted density in time window, 
the abruptness of the density variation reduces and 
hence accuracy of correct classification increases 
for both the data sets.

The performance of correct classification in 
synthetic data is improved from 86.3% to 97.5% 

Figure 6. Results showing classification of image frames

Figure 7. Density estimation performance for (a) synthetic and (b) real world data
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by smoothening, and in the case of real data set 
we achieved 90.7% accuracy.

CONCLUSION

In this chapter, we described a computer vision 
based approach for on-road traffic density estima-
tion and analytics for flow control management. 
The efficacy of this method is supported with 
various experiments on synthetic and real world 
data sets. The performance of traffic analytics 
are presented for texture feature extraction tech-
niques. With extensive experiments, we show that 
the gradient features with contrast normalization 
and smoothing works reasonably well in the real 

life data sets. The presented work can be further 
enhanced by extending with reliable re-trainable 
model which is adaptive in changing scenarios 
and weather condition.
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INTRODUCTION

A successful business is often conditioned by its 
ability to identify, collect, process, and disseminate 
information for strategic purposes. However, a 
company can be over-informed, and not be able 
to search through all this information. Now, to be 
competitive it must know their environment. The 
establishment of a competitive intelligence (CI) 
approach is the inevitable answer to this challenge.

In the last few years, a lot of work has been 
done in order to ensure CI approaches. Discover-
ing weak signals and define new strategies have 
been the main motivation for applying them in 
company contexts. The CI approach can provide 
the company with detailed information about its 
environment through internal and external infor-
mation which it has access to. This environmental 
scanning is intended to assist decision makers in 
their choice of strategies.
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Discovering Patterns in Order 
to Detect Weak Signals and 

Define New Strategies

ABSTRACT

Competitive intelligence activities rely on collecting and analyzing data in order to discover patterns 
from data using sequence data mining. The discovered patterns are used to help decision-makers con-
sidering innovation and defining the strategy for their business. In this chapter we present four methods 
for discovering patterns in the competitive intelligence process: “correspondence analysis,” “multiple 
correspondence analysis,” “evolutionary graph,” and “multi-term method.”
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In our CI approach, we use techniques for 
extracting knowledge from textual data to study 
scalable relational data from the information 
environment of a company. In this context, 
we propose our competitive intelligence tools: 
“TETRALOGIE1” and “Xplor” (Web service of 
TETRALOGIE). These tools extract the weak 
signals and define new strategies using sequence 
data mining from a corpus. These patterns are 
used also in various areas: biology (Qindga and 
al., 2010; Shuang and Si-Xue, 2010), traffic pre-
diction (Zhou and al., 2009; Zhou and al., 2010), 
space research (Walicki and Ferreira, 2010; Yun 
and al., 2008), and so on.

In this chapter, a CI approach based on sequence 
data mining is detailed. It uses four methods:

• Correspondence Analysis (CA), which 
aims at detecting the evolution of a research 
area, authors, company’s, keywords, etc… 
or the temporal sequence, that allows us to 
have an overview of changes in very spe-
cific areas.

• Multiple Correspondence Analysis 
(MCA), which aims at detecting the time 
series for decision making.

• Multi-term Method, which aims at ex-
tracting the weak signals.

• Evolutionary Graph, which shows in de-
tail the structural changes of networks over 
time. For example, we detect the appear-
ance and changes in social networks.

This document is organized as follows. First, 
we identify in section 1 the knowledge extraction 
process in order to demonstrate our methodology 
of analysis, and various measures of information 
structure. In section 2, we explain extraction 
of strategic information and the discovery of 
patterns by correspondence analysis (CA). Sec-
tion 3 presents the patterns of weak signals, and 
describes methods to detect a pattern for new 

strategies in a company. In Section 4, we explain 
the methodology to detect “temporal,” “pattern” 
sequences using evolutionary graphs. And finally 
in section 5, to illustrate the methods presented in 
the previous sections, a presentation of a complete 
analysis of emerging field of agronomy in China 
is performed by our research team.

KNOWLEDGE EXTRACTION 
PROCESS IN CI

The key step of the CI process is the selection 
of information, which is to develop a “corpus”, 
depending on the target, which will be later ana-
lyzed through methods of text mining. We often 
use the term “corpus” to describe large sets of 
semi or fully-structured textual data available 
electronically.

Following predefined criteria, this step allows 
us to focus on data defined as “interpretable” and 
with high informative potential. Data is firstly 
prepared by selecting it according to objectives 
fixed using the techniques of information retrieval 
(Büttcher et al., 2010) (Croft et al., 2010). This 
process (Saltan & McGill, 1984) seeks to match 
a collection of documents and the user needs 
(Maniez et Grolier, 1991), translated in the form 
of a request (Kleinberg, 1999) through an infor-
mation system. This is composed of an automatic 
or semi-automatic indexing module, a module of 
document/request matching and possibly a module 
of query reformulation.

Different models are used in search engines 
to match the query with the document, such as 
the probabilistic model (Sparck-Jones, 2000), the 
connexionnist and genetic model (Boughanem et 
al., 2000), the flexible model (Sauvagnat, 2005), 
the language modeling (Ponte & Croft, 1998), etc.

Monitoring devices are based on two types on 
information: formal and informal.
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CONSTRUCTION OF THE 
CORPUS OF DATA

In the approach we propose, target data is selected 
according to the purpose of exploitation (Dkaki 
et al., 1997). Initially, these methods cut the data 
into units (words, dates or strings of characters), 
then they apply mathematical and statistical cal-
culations in order to obtain, in the form of graphs 
or charts, a representation of units according to 
relations or proximity that have been calculated.

The corpus is composed of ‘notes’, i.e docu-
ments structured in fields (Dkaki et al., 2000). The 
word, a unit which is too semantically poor, has 
been replaced by the notion of ‘term’ that can be 
associated to a concept in an ontology Hernandez 
et al., 2007).

A ‘field’, the basic unit, is the informational 
container identified by a tag and a piece of data, 
for example author, date, address, and organiza-
tion. An ‘item’ is the container of the field, i.e the 
data. It can be (Dousset, 2003):

• Mono-Valued: having only one pos-
sible value, such as date or language ex. 
PUBLICATION YEAR=2010 ;

• Multi-Valued: having multiple values, 
such as names of several authors for a co-
authored article, delimited by separators;

• Diversified: if the field contains several 
values representing different concepts. 
For example SOURCE=Lancet, 2010-01, 
-32p., This field can be decomposed into 
a magazine, a publication date: 2010-
01, which itself is divided into year and 
month, a reference: 32p. indicating the 
page number.

PROCESSING OF DATA STRUCTURE

Data processing (El Haddadi et al., 2010) has been 
used to treat data in its native form. The native 
format provides several advantages including bet-

ter responsiveness, an easier update of the corpus 
and a preservation of all information. However, 
to fit almost all structures, it is necessary to use 
meta-data which are tools of format description 
whose aim is to:

• find a technique to differentiate between 
documents (or textual units);

• identify markers of semantic fields in the 
database and give them a name and stan-
dard initials;

• determine their usefulness and their 
priority;

• determine judicious cutting techniques to 
extract each type of information.

We also noted that over 90% of cases en-
countered can be treated without reformatting. 
Indeed, it is possible to work simultaneously on 
different formats and different sources by devel-
oping correspondence rules between the relevant 
(or useful) fields using second-level meta-data. 
These can both orchestrate the synchronization of 
all formats, and interface with a unique semantic 
extraction tool. Each source has a specific format, 
which itself has a specific descriptor (first-level 
meta-data). A collection of formats is managed 
by a generic descriptor (second level meta-data: 
the conductor). For each database, structured or 
semi-structured, it is advisable to define its own 
specific format descriptor that allows interfac-
ing with our platform of information processing 
“TETRALOGIE”.

DATA CROSSBREEDING

Once the data corpus is built, information is 
crossed, either within the same type (associations) 
or between two different types in order to achieve 
a first static study of their mutual influences: 
contingency matrix, frequency matrix, matrix of 
presence-absence and co-occurrence matrix. It is 
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also possible to explode the obtained tables by the 
time (by homogeneous period): Cube.

Once the data corpus is built, information is 
crossed, either within the same type (associations) 
or between two different types in order to achieve 
a first static study of their mutual influences: 
contingency matrix, frequency matrix, matrix of 
presence-absence and co-occurrence matrix. It is 
also possible to split the obtained tables using time 
(organized by homogeneous period) to achieve 
scalable and prospective analysis which are the 
only ones to highlight the strategic dimension of 
a field, and detection of sequential pattern.

After this step, a set of analysis methods is 
deployed to extract information from these endog-
enous structures. Now, we can start the reporting 
for detecting pattern, or temporal sequence.

EXTRACTION OF STRATEGIC 
INFORMATION AND THE 
DISCOVERY OF PATTERNS BY THE 
CORRESPONDENCE ANALYSIS (CA)

CA can be applied to qualitative data: tables of 
individuals - qualitative modal variables, matrix 
of presence – absence, matrices of contingencies 
and correlations. Before the implementation of the 
CA, data preprocessing is necessary:

• Standardization of rows of the matrix (sum 
of unitary weight),

• Add at the bottom of the matrix, an identity 
matrix, to consider the pure variables (col-
umns) as additional individuals.

Below is an example of a factorial map ob-
tained after CA on a co-occurrence matrix Top-
ics - Authors for a large laboratory in research 
on computers. We can notice groups of authors 
correlated by the theme of their research, interface 
themes (between two groups of authors), experts 
of interfaces, interface themes, sequence varia-
tion of themes. After verification, the thematic 

teams detected correspond exactly to those of 
the publicity for that laboratory. This is like the 
discovery of a pattern sequence of a theme, i.e., 
the variation of a theme continues in a research 
laboratory. This allows assumptions about the 
trend of research in a laboratory.

Three observations are possible:

• The concerned laboratory has conducted 
an objective presentation of its structure,

• It is possible to obtain a perfect knowledge 
of this structure from the outside,

• Moreover, the qualities and imperfections 
of this structure are now known.

When we focus on a particular element (Pe-
riod, author, topic) or group, it is possible to 
highlight it using rotations, i.e. data mining se-
quences, choice of axes and zoom on one side of 
the view. In some cases (too many items to dis-
play), we can manipulate only the searched class 
of items. In the example shown below, we chose 
to manipulate the outcome of CA conducted on 
a matrix of co-occurrence between keywords and 
first authors.

THE PATTERNS OF WEAK SIGNALS

The method of extracting weak signals is based on 
data mining sequences (evolutionary analysis) and 
structural semantic fields. This method involves 
the following tools:

• Matrix of crossing semantic terms with 
time,

• Extraction of emerging terms (by normal-
ization, then by sorting the last column),

• Matrix of co-occurrence crossing emerg-
ing terms with themselves,

• Sort by diagonal blocks of this matrix,
• Extraction of blocks representing the 

emerging and consistent concepts.
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SORT METHOD FOR 
EXTRACTING WEAK SIGNALS

Sort by Blocks on the Absolute Links

This technique has many applications:

• Search for related classes,
• For each class, an internal block sorting 

brings directly together the most linked el-
ements (i.e. a pattern of sequence),

• Reorganization of a closely related matrix 
in diagonal blocks.

Its use in text analysis allows, as shown below, 
to detect emerging semantic classes which are the 
most pronounced. We therefore start by creating a 
crossing matrix of the new terms. This emergent 
terminology can eventually form groups corre-
sponding to emerging concepts. A single term is not 
enough because it may be a change in terminology 

which englobes an old concept, which now has a 
specific vocabulary (often a single word replaces 
an expression or a compound word).

Sort by Blocks on Relative Links

This technique is used when the crossed terms 
have very different frequencies. Indeed, in the 
texts, much used or common terms in the field 
are mixed with others that are more precise and 
target specificities. If we want to find groups that 
match these emerging semantic or rare issues, we 
must first go to the relative mode before doing 
the sorting. Note that for symmetric matrices of 
co-occurrence crossing exclusive modalities (e.g. 
authors or keywords), the diagonal elements are 
in fact the frequencies in the corpus.

We kept two techniques in TETRALOGIE.

• The first serves to normalize the matrix, 
i.e. to modify this matrix, then to sort it. It 

Figure 1. The factorial 4D map of CA topic
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has the advantage of the choice of normal-
ization, but it destroys the initial values of 
the matrix.

• The second is based on a compatible stan-
dard with the non symmetric matrices. It 
sorts the matrix based on new values, but 
keeps the old ones. So only the structure of 
the matrix changes, but not the values.

INTERACTIVE EXTRACTION 
OF INFORMATION: THE 
EMERGENCE PATTERN

The emergence pattern introduces the time vari-
able at many levels of the exploration in the level 
of multidimensional analysis methods. Below is 
a method of extracting emergence patterns using 

interactive manipulations on a CA made depend-
ing on the time variable:

• Cross the variable to be analyzed with time 
expressed in periods that have sufficiently 
homogeneous numbers (in a ratio of 1 to 2 
at most),

• Make a CA of the obtained matrix,
• Visualize the map of temporal modalities 

(columns only),
• Using rotations, process the cloud of data 

to isolate the last temporal component in a 
corner of the window (1997 at the top, on 
the left in the following figure),

• Visualize the global map (variable to be 
analyzed plus the time),

• Export onto this map the azimuth obtained 
in the first one,

Figure 2. Extraction of emergent elements basing on a CA Thematic - Time.
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• Extract items that are located beyond or 
near the icon associated with the last pe-
riod (in orange on the 4D map),

• Generate the filter containing all the emerg-
ing modalities of the analyzed variable.

This filter can then be reused to cross the 
emergences between themselves and to find the 
emerging concepts.

We will then extend this type of approach to 
other strategies for knowledge discovery based 
mainly on interactivity, detecting the emergence 
pattern: new semantic network, new innovation…

Detection of Weak Signals

This method is to extract an emerging semantic 
class that represents what happens repeatedly in 
a given field. So, we must:

• Start from a Keywords – Dates matrix or 
even better, from a Terms – Dates matrix,

• Extract the emergent sequence patterns 
terminology,

• Cross it with itself (square matrix of 
co-occurrence),

• Sort this matrix by diagonal blocs,
• Extract the more visible classes,
• Ask for details (list of words connected 

togeher).

The result often exceeds all expectations, 
because the underlying concepts are completely 
new. This destabilizes the experts who often de-
clare themselves incompetent in the matter. Of 
course, new subjects detected by this method must 
be subject to a more in-depth analysis, which can 
be obtained by crossing their specific terminol-
ogy with the actors in the field and other concepts. 

Figure 3. Illustration of the method of weak signal extracting
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It is also desirable to re-examine the origin of the 
information on this new theme (of which the re-
search equation is given to us) to complete its 
identity and to better understand its potential.

The Evolutionary Graphs 
and Patterns

The notion of graphical representation includes all 
the techniques to develop a visualization of data 
in the plan so as to make reading easier (Loubier 
& Dousset, 2007; Loubier, 2009). The graph 
presentation is intended to help explore data, the 
tasks encountered in information visualization are 
broadly related to Information Retrieval:

• Rapid exploration of unknown information;
• Demonstration of relationships, structures 

and sequence pattern in the information;
• Demonstration of paths to relevant 

information;
• Classifying interactive information.

TEMPORAL PLACEMENT 
ALGORITHM BASED ON FORCE 
DIRECTED PLACEMENT (FDP)

The data is represented in a graph G characterized 
by two sets: a set V = {v1,v2,…,vn} whose elements 
are called nodes and a set E = {e1,e2,…,em}, de-
rived from a set parts of V, whose elements are 
called arcs.

We note G = (V, E). G is an undirected graph 
(there is no distinction between (u, v) and (v, u) 
for u and v in V) and simple (no loops (v, v) into 
E and there exists at most one link between two 
vertices).

The temporal dimension is affected by the 
consideration of several periods distinguished in 
the form of co-occurrence matrix. For each period 
every node has a specific metric value.

Thus the global metric denoted Mg a node s, 
consisting of the sum of metric m for periods p1, 
p2,…pn, which will be marked as follows:

Msg= msp1+msp2+…+mspn

Each node is represented by a histogram where 
the size of each bar is relative to the value of the 
metric for the period.

However, it is important to characterize the 
temporal data to allow a more comprehensive 
analysis. To do this, for each period, we assimi-
lated a point of reference. For each period, if the 
node has a metric value greater than zero, then an 
invisible arc is created to reach the node to mark. 
We apply the algorithm of association between the 
nodes Sj and landmarks marki of periods:

For each period i{ 

          For each node j{ 

If m
spi
>0 then creat_arc(node1=s, 

node2=mark
i
, weight= m

spi
X2);

j++ ; 

} 

i++ ; 

}

TEMPORAL PLACEMENT 
ALGORITHM

To improve the graphical representation of graph 
and obtain a planar display (minimizing the num-
ber of intersected arcs) we rely on the analogy “arc 
= placement”. The system produces forces between 
the nodes, which naturally leads to displacement.

In a first step we propose a general algorithm 
allowing a better rendering for graphic representa-
tion, whatever the type of data (temporal or not), 
when: The attraction between two nodes u and v 
is defined by:
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f u v
d

Ka
uv

a

( , )=
×β α

 

β is a constant. duv is the distance between u and 
v. α

a
used to increase/decrease the attraction.

The K factor is calculated in terms of the area 
of design window and the number of nodes in the 
graph. For this, L is the length of the window, l 
the width and N is the number of the visible nodes 
in the graph.

K
Lxl
N

=  

If the nodes u and v are not connected by an 
arc then ƒa (u, v) = 0.

The repulsion between two nodes u and v is 
defined by:

f u v
a xK

dr
r

uv
c

( , )=
2

 

α
a

 used to increase/decrease the attraction and c 
is a constant.

The temporal placement algorithm based on 
the application of the repulsion between all nodes. 
In a second step, all attractions are taken into ac-
count, for any pair of nodes connected.

In this algorithm, the parameters were studied 
to obtain relevant results:

Thus, to calculate the attraction: is a constant, 
initialized to 2;

•  d
uv
αε  is the distance between u and v, where 

corresponds to the value of the slider can 
interact on the ride.

To calculate the repulsion:

Box 1.

For each node u {if u is visible 

          then { 

                Calculating distance d(u,v) ; 

                For each node v { 

                                 fr(u,v, d(u,v)); 

                          if there is an arc between u and v{ 

                                 fa(u, v); 

                             if (u ou v is a temporal mark) 

                        Slider
force_reperes_temporels

 X f
a
(u, v, d(u,v));

                                 } 

              }}} 

For each node u { 

     if (u is not a mark) 

          Moving nodes ; 

          }

/* *Verification of no-over lapping nodes by comparing position**/ 

For each node u{ 

For each node v{ 

                if(xu,yu) == (xv, xy)

                then change position of v. 

                }}
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• α
r

is the value of the slider, to interact on the 
repulsion ;

• c is a constant, initialized to 1,5.

In the example (cf. Figure 4), we study specific 
authors in the field of data mining within four pe-
riods: 2003, 2004, 2005, 2006-7. For each period, 
a mark is assigned, listed in red on the Figure 4 
and each node with a metric valuated for a period 
is then linked to a corresponding reference by an 
invisible arc. On the first graph of Figure 4, no 
force of attraction and repulsion has been applied. 
On the second, they are applied. It is noticeable 
that every part of the second graph is specific to 
a time characteristic called “temporal sequence”.

The nearer a node is to a landmark, the stron-
ger it is characterized by this period. The peaks 
located halfway between two markers reveal a 
part of the two periods. Thus, in the following 
figure, it is easy to distinguish the peaks specific 
to 2003 because it is the set of nodes located 

around the landmark. This reveals the presence 
of the node during the first period with a charac-
teristic metric value.

Similarly for other periods, the nearer a node is 
to the center of the figure, the greater the number 
of periods to which it belongs. Thus, the authors 
represented in the center of the Figure are the most 
persistent. Those represented near the landmark 
2003 are the oldest and those nearest to 2006-7 
are the most newly emerging authors.

Our experiences lead us to recommend a 
specific data mining sequence for a better visual 
result, regarding the setting of these three forces.

• Step 1: Apply a very high value of at-
traction in order to obtain a concentrated 
grouping of data. Apply the temperature up 
through the slider to enable rapid and ef-
ficient movement of nodes.

• Step 2: Reduce the force of attraction and 
repulsion increase, to get a readable graph. 

Figure 4. An evolving graph (left graph), application of temporal placement, parameterized using the 
slider «Force temporal» (right graph)(Loubier 2009).



205

Discovering Patterns in Order to Detect Weak Signals and Define New Strategies

Reduce temperature to avoid too abrupt a 
movement of vertices.

• Step 3: Adjust the three sliders substantial-
ly, lowering the temperature, until a satis-
factory result.

Analysis of Temporal Structure and 
Detection of “Temporal Sequence”

The visualization of temporal data should be able 
to provide the right information at the right time, 
for decision making. In this approach, a very 
important aspect is the dynamic surveillance of 
system “the temporal sequence, the pattern se-
quence, performance evolution, the detection of 
faint signals, changes collaborations, alliances, 
associations”.

From the results emerge a readability of temporal 
characteristics, simplifying decision-makers’ work 
on evolutionary data. Following the application of 

these forces, a typology appears significant and 
nodes neighboring a single landmark are character-
ized by the unique presence for that period (if the 
authors occasionally appear). These are located 
between several specific periods to which they 
are near. Thus, authors are pioneers in the central 
area of study, that is to say present for all periods.

The application of this algorithm allows to 
observe groups of data according the common 
temporal characteristics, allowing a temporal 
classification.

Thus, this proposal improves the performance 
by:

• Reducing cognitive resources mobi-
lized by the user to analyze the temporal 
information;

• Increasing opportunities for detection of 
evolutionary structures (changes between 

Figure 5. Social network analysis: Extraction of the main teams by authorship
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data relationships, significant consolida-
tion, strategic positions, centrality,...);

• Monitoring of events (changes in struc-
ture, appearance or movement patterns, 
clusters,...);

Analysing Emerging Field 
of Agronomy in China

To illustrate the methods presented in the previ-
ous sections, we present the evolution of author 
relationships and the weak signal of emerging 
field of agronomy in china, performed in (Dous-
set, 2009; Guenec, 2009). To do so, we use the 
scientific digital library (DL)2.

Social Network

Figure 5 presents the topology of the main teams. 
We can immediately see that there is very little 
co-authoring in the Chinese scientific publica-
tions we analyzed. A second observation is that 

the teams are generally directed by a main author 
who has control of 2, 3 or 4 distinct sub-teams.

Evolution of Author Relationships

The evolutionary graphs (section 4) and patterns of 
sequence method consist in using a three dimen-
sional cross referencing table where two dimen-
sions represent the authors (thus co-authoring is 
represented) and the third dimension corresponds 
to time. We can then visualize the evolution of the 
author network on a graph. Figure 6 displays this 
network. At the bottom left corner, for example, 
the authors associated with 2006-8 are the only 
ones to appear.

Figure 6 brings together the sequence pattern 
of the main Chinese teams in the emerging field 
of agronomy. Some collaboration continues 
whereas others can be seen as emergent, moreover 
there are collaborations that either finish for a 
period of time or stop altogether. It is easy to 
locate the leaders of the author groups; indeed the 

Figure 6. Networking and sequence pattern of the main teams (co-authoring).
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size of each histogram is proportional to the ap-
pearances of the author in the collection. It is also 
easy to extract the authors that appear in the end 
year only (green) or in the beginning year (red). 
Finally Figure 6 also shows the main authors who 
are responsible for the connections between teams, 
for example, the team represented at the center 
of Figure 6.

This analysis can be completed using a cor-
respondence analysis based on the same three 
dimensional cross referencing table. This shows 
the trajectories of the authors when they collabo-
rate with other authors. In the data we analysed, 
no such mobility could be extracted.

Detecting Weak Signals

To detect weak signals (section 3), we first extract 
the keywords and the known terms from the title 
and abstract. Then we detect the new sequences 
patterns that exceed a number of occurrences. 
Afterwards we cross reference these new n-grams 
with time and we keep only those which occur 
frequently during the end time period (here 2006-

2008). Finally these terms are cross referenced 
(co-occurrence) and we sort the subsequent matrix 
to obtain diagonal blocks. Each block represents 
an emergent concept identified by a new termi-
nology which does not exist in the keyword field 
and which only occurs in some documents. Weak 
signals can then be validated by cross referencing 
them with all the other fields and in particular 
the keywords. In Figure 7, part a) we represent 
the cross referencing matrix; each plot indicates 
a non-nil value for the cross referencing. Along 
the diagonal of the matrix, a certain number of 
clusters consist of new terms and correspond to 
a semantic group. Each cluster is extracted in a 
square sub-matrix and can be visualized in the form 
of a semantic graph (Figure 7b). This information 
should then be submitted to an expert in the field 
for validation.

CONCLUSION

Strategic analysis lies at the heart of any competi-
tive organization. There are many ways to perform 

Figure 7. Analysis of newly detected terms and their clusters
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an analysis of internal and external factors which 
bear an influence on the strategy of a company. 
In this chapter, we have suggested a CI approach 
based on sequence data mining for discovering 
weak signals, patterns, emergence patterns and 
define new strategies.

CI is expressed on the basis of a sequence data 
mining. Therefore, using the appropriate methods 
of mining and discovering is essential to decision 
makers in any business. Discovering weak signals 
and define new strategies suggests that companies 
have to use CI approaches. Thus, the companies 
have adopted this analysis approach of environ-
ment for strategy execution in order to achieve 
better performance. The sequence data mining 
and procedures described in this chapter provide 
a framework which companies can use to adopt 
good practices in competitive intelligence.

With the method presented here, the decision 
makers are able to clearly discover the com-
pany’s strategy. Moreover, they have a method 
for analyzing internal and external information. 
In addition, sequence patterns of strategy can be 
identified and monitored to reach the intended 
goals. Given a CI approach based on sequence 
data mining, companies can build good practices 
in strategic analysis.
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KEY TERMS AND DEFINITIONS

Sequence: A sequentially ordered set of related 
things or ideas.

Temporal Sequence: An arrangement of 
events in time.

Mining Sequence: Is concerned with find-
ing statistically relevant patterns between data 
examples where the values are delivered in a 
sequence. It is usually presumed that the values 
are discrete, and thus time series mining is closely 
related, but usually considered a different activity. 
Sequence mining is a special case of structured 
data mining.

Competitive Intelligence: Is a systematic 
and ethical program for gathering, analyzing, and 
managing external information that can affect your 
company’s plans, decisions, and operations. (De-
fined by the Society of Competitive Intelligence 
Professionals (SCIP)).

Weak Signals: Is a factor of change hardly 
perceptible at present, but which will constitute 
a strong trend in the future.

Social Network: Is a social structure made up 
of individuals (or organizations) called “nodes”, 
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which are tied (connected) by one or more specific 
types of interdependency, such as friendship, com-
mon interest, financial exchange, etc.

Decision Making: The thought process of 
select a logical choice from among the available 
options. When trying to make a good decision, a 
person must weigh up the positive and negative 
points of each option, and consider all the alter-
natives. For effective decision making, a person 
must be able to forecast the outcome of each option 
as well, and based on all these items, determine 
which option is the best for that particular situa-
tion. (from BusinessDictionary.com)

Innovation: The act of introducing something 
new (the american heritage dictionary); A new 
idea, method or device (Webster online); Change 
that creates a new dimension of performance (Peter 
Drucker); The introduction of new goods (…), 
new methods of production (…), the opening of 

new markets (…), the conquest of new sources 
of supply (…) and the carrying out of a new or-
ganization of any industry (Joseph Schumpeter); 
Innovation is a new element introduced in the 
network which changes, even if momentarily, the 
costs of transactions between at least two actors, 
elements or nodes, in the network (Regis Cabral); 
The three stages in the process of innovation: 
invention, translation and commercialization 
(Bruce D. Merrifield); The ability to deliver new 
value to a customer (Jose Campos); Innovation 
is the way of transforming the resources of an 
enterprise through the creativity of people into 
new resources and wealth (Paul Schumann); 
Innovation does not relate just to a new product 
that would come into the marketplace. Innova-
tion can occur in processes and approaches to the 
marketplace (David Schmittlen); http://atlas.irit.
fr; http://www.cqvip.com.
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INTRODUCTION

The goal of computer architecture research is to 
design and build high performance systems that 
make effective use of resources such as space and 
power. The design process typically involves a 
detailed simulation of the proposed architecture 
followed by corrections and improvements based 
on the simulation results. Both simulator develop-
ment and result analysis are very challenging tasks 
due to the inherent complexity of the underlying 
systems. In this chapter, we present our work on 
applying sequence mining algorithms (Mannila et 
al., 1997; Laxman et al. 2007) to the analysis of 
computer architecture simulations (Onder, 2008). 
Sequence mining is an important branch of data 
mining and was designed for data that can be 
viewed as a sequence of events with associated 
time stamps. Using sequence mining to analyze 
architectural simulations carries significant advan-
tages for three main reasons. First, a time based 
analysis is essential because events that repeat or 
certain events that are clustered temporally can 
affect processor performance. Second, automated 
and well-defined techniques give more profound 
insights as compared to manual analysis. In the 
literature, there are few studies that propose using 
data mining and machine learning for architecture 
simulation analysis. In (Hamerly, et. al., 2006), 
clustering is used as the basic method to find repeti-
tive patterns in a program’s execution. In another 
recent work (Akoglu & Ezekwa, 2009), the use of 
sequence mining for improving the prefetching 
techniques is investigated. The existence of a con-
siderable amount of unexplored uses of sequence 
mining for architecture simulation analysis is the 
third motivation for our study.

Our research methodology is as follows. We 
first take a micro-architecture definition developed 
using a special description language (Zhou & 
Onder, 2008). The definition includes a specifica-
tion of the micro-architectural components of a 
computer system, how these components interact, 
and how they are controlled. We then simulate the 

written specification on benchmark programs and 
record the behavior of the system using a micro-
architecture simulator (Onder, 2008). We finally 
feed the recorded results into the sequence based 
mining tool we developed. Our tool is called 
Episode Mining Tool (EMT) and consists of three 
modules. The first module is the data preproces-
sor which transforms the raw output data of the 
architecture simulation into processable data. The 
second module is the episode miner that takes the 
inputs along with the user specified options and 
applies sequence mining algorithms to generate 
the frequent episodes and rules seen in the data. 
The episode miner includes implementations of 
three algorithms, namely window based episode 
mining algorithm (Mannila et al., 1997), minimal 
occurrence based episode mining algorithm (Man-
nila et al., 1997), and non-overlapping occurrence 
based algorithm (Laxman et al, 2007). The third 
module of EMT is the visual analyzer, which 
produces graphical charts depicting the frequent 
episodes and rules.

In our experiments, the primary functionality 
of EMT is to generate a variety of patterns that 
show strong relationships between microprocessor 
events. In addition to this, relationship between 
event types and Instructions Per Cycle (IPC) 
changes can be investigated. Such an analysis pro-
vides information on how the particular software 
being run interacts with the processor and allows 
us to create concise information about the nature 
of the benchmark programs. As another analysis, 
it is possible to compare the patterns generated 
for two different architectures and to analyze the 
difference between them. Such a comparison pro-
vides helpful information to predict the behavior 
of new architectures without actually running 
simulations on them.

This chapter is organized as follows. In the 
Background Section, we describe the components 
of computer hardware that are related to this 
work, how processor performance is improved, 
and how simulation based techniques are used. 
In the Representation Section, we show how 
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micro-architectural events are represented as time 
sequence data. In the Episode Mining Section, we 
present the algorithms implemented and used. 
In the Empirical Work Section, we explain the 
experiments performed and their results. In the 
Episode Mining Tool Section, we describe the 
features and usage of our tool. We conclude with 
a summary, lessons learned, and further potential 
applications of our findings.

BACKGROUND

The section presents an overview of the research 
in computer processors. We explain the main fac-
tors that contribute to processor performance and 
the complexities involved in modern systems. We 
describe the role of micro-architecture simulators 
in assessing performance and use this to motivate 
our research. For more detailed information on 
mis-speculation, interested readers may refer to 
(Shen & Lipasti, 2005, Osborne, 1980, Hennessy 
& Patterson, 2007).

Fundamentals of Micro-
Architecture Research

The main driving force in computer architecture 
research is to improve processor performance. In 
computer architecture literature, the iron law of 
processor performance is given by the following 
equation (Shen & Lipasti, 2005):

The left hand side of the equation shows that a 
processor’s performance is measured in terms of 
the time it takes to execute a particular program. 
The first factor on the right hand side of the equa-
tion shows the number of instructions that will 
be executed. This refers to the dynamic count 
of instructions as opposed to the static count, 
where the former may involve many iterations 
of the instructions in the latter due to the loops. 
The second factor shows the average number of 
machine cycles required for each instruction. 
Similar to the first factor, this number is a feature 

of a particular program. The last factor refers to 
the length of time of each machine cycle and is 
a hardware feature. Obviously, decreasing one 
or more of the factors involved in the iron law 
will reduce execution time, and thus improve 
performance. In this work, we focus on the second 
factor, namely, how to reduce the average number 
of cycles each instruction takes.

The types of instructions that comprise a 
program are defined by the instruction set ar-
chitecture (ISA) of the machine. Widely known 
ISAs are IBM 360/370 and Intel IA32. An ISA 
constitutes a contract between the hardware and 
the software and consequently is the basis for 
developing system software such as operating 
systems and compilers. Computer architecture 
research usually does not involve changing ISAs 
because alterations require updating the system 
software, a process that can easily take in the order 
of 10 years (Shen & Lipasti, 2005). As a result, 
much of the research is devoted to developing 
new micro-architectures. In fact, the main fac-
tors that contributed to the significant speed up 
of computers during the recent decades are the 
advances in the chip manufacturing technology 
and the advances in the parallelism internal to the 
processor (Hennessy & Patterson, 2007).

The average number of machine cycles spent 
per instruction during the execution of a program 
is referred to as cycles per instruction (CPI). The 
fundamental technique to increase CPI is to use 
processor level parallelism through instruction 
pipelining and multiple instruction execution. 
Pipelining splits an instruction into stages each of 
which can be overlapped with different stages of 
other instructions. Multiple instruction execution 
means fetching multiple instructions at a time and 
executing them in parallel.

We illustrate the concept of pipelining in Figure 
1. The figure shows five instructions (I1 through 
I5) running on a pipelined processor. The five 
vertical bars represent the stages. In this case, 
there are five stages corresponding to a pipeline 
depth of five. The stages are the instruction fetch 
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stage (IF), instruction decode/register fetch stage 
(ID), execution/effective address stage (EX), 
memory access/branch completion stage (MEM), 
and write-back stage (WB).

A pipeline depth of five allows five instructions 
to be executed in parallel. In this case, instruction 
I1 is about to complete and is in the final stage of 
write-back, instruction I2 is in memory access 
stage, instruction I3 is in execution stage, instruc-
tion I4 is in decoding stage, and instruction I5 is 
starting at its fetch stage. In general, perfect par-
allelism cannot be achieved with pipelining be-
cause the pipeline might need to stall in order to 
avoid incorrect execution of dependent instruc-
tions. For example, if instruction I2 uses a value 
that is computed by instruction I1, then these two 
instructions cannot execute in parallel and instruc-
tion I2 must be stalled until I1 writes the value 
needed by I2 to memory. There is a vast body of 
research that is devoted to detecting and mitigat-
ing pipeline hazards.

While pipelining overlaps different phases of 
instruction execution, pipelined processors are 
limited to the completion of at most one instruc-
tion per cycle under ideal conditions. In other 
words, when there are no stalls in the pipeline, 

a pipelined processor can achieve a cycles per 
instruction (CPI) value of at most one. Modern 
processors exceed this limit by employing multiple 
instruction issue. Multiple instruction issue is the 
basic principle behind Instruction Level Parallel 
processors. Multiple instruction issue is almost 
always combined with instruction pipelining and 
allows simultaneous processing of many instruc-
tions where instruction execution is overlapped 
both in terms of distinct instructions as well as their 
phases such as fetch and decode. Such processors 
are called superscalar processors. For example, a 
dual issue superscalar pipeline can have at most 
two instructions at each stage.

Similar to the case with simple pipelining, haz-
ards occur both horizontally (between instructions 
in different stages) as well as vertically (between 
instructions in the same stage) in superscalar 
processors. For example, any two instructions 
which are simultaneously in the EX phase cannot 
be data-dependent on each other.

Pipelining of instruction steps and multiple 
instruction issue requires fetching new instruc-
tions into the pipeline at every clock cycle. For 
sequentially executing instructions, fetching a new 
instruction every cycle can easily be achieved by 
incrementing the program counter that is being 
used to fetch the current instruction so that at the 
beginning of the next cycle a new instruction can 
enter the pipeline. However, programs are not ex-

Figure 1. Five pipelined instructions
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ecuted sequentially because they contain decision 
instructions which alter the control flow of the 
program. Such instructions are called conditional 
branch instructions, or, shortly branch instruc-
tions. These instructions test a value and based 
on the outcome of the test, change the program 
counter to either the next sequential instruction 
(i.e., branch not taken) or to another target instruc-
tion (i.e., branch taken). Consider the following 
simple if-then-else statement:

    if (x > y) then 

      z = x - y    (instruction 1) 

    else 

      z = y - x    (instruction 2)

The instructions corresponding to the above 
statement consist of a branch instruction that 
jumps to the part containing instruction 1 if the 
condition x>y is true. The execution sequentially 
proceeds to the section containing instruction 2 if 
the condition is false. The layout of the machine 
instructions is as follows.

    branch if x>y to label 1 

    instruction 2 (a = y - x) 

    branch to label 2 

label 1:  instruction 1 (a = x - y) 

label 2:  the instructions following 

the if statement

Unfortunately, in a pipelined implementation, 
the value of the branch condition might not be read-
ily available because it is in the process of being 
computed. Therefore, instead of waiting for the 
outcome, contemporary processors employ branch 
prediction techniques. Without branch prediction, 
the next instruction to be fetched can only be 
determined after the value of the condition x > y 
is computed. With branch prediction, the circuit 
computes a prediction and fetches instruction 1, 
if the result of the prediction is ``branch taken’’, 
and fetches instruction 2 if the result is ``branch 

not taken’’. This is called speculative execution 
or control speculation.

The prediction is typically computed by ob-
serving the past behavior of branch instructions. 
If the prediction is correct, the new instructions 
fetched by using the predicted direction and 
target are correct and the execution can continue 
unhindered. On the other hand, if the prediction 
is wrong, the processor must undo the effects of 
the incorrectly fetched instructions. In computer 
architecture terminology, an incorrect prediction is 
called a mis-prediction. The cost of mis-prediction 
is dependent on the micro-architecture of the 
processor and it is a function of the number of 
stages between the execute stage of the pipeline 
and the fetch stage, as well as the mechanism for 
restoring the state of the processor to the point 
before the execution of the mispredicted branch 
instruction. Branch prediction can also be per-
formed statically, although this kind of prediction 
is currently used only by optimizing compilers, 
and not by contemporary processors (Hennessy 
& Patterson, 2007; Shen & Lipasti, 2005).

The processors of today are much faster than 
the memory. Therefore, most processors include 
multiple levels of data and instruction caches. A 
cache is a fast memory with a limited size. In this 
hierarchy, the processor is at the top and the cache 
it interacts with is called an L1 (level one) cache. 
Typically, an L1 cache is small and can run at a 
speed close to the processor’s speed. Below this, 
there can be an L2 caches and even an L3 cache. 
Each cache in this sequence is slower and bigger 
as one travels from the processor towards the 
memory. Each cache keeps most frequently refer-
enced items. If an item is not found in a particular 
cache, the cache is said to have missed. When a 
cache misses, it requests the item from the level 
below. Upon obtaining the value from the lower 
level, the cache discards some unused item, and 
replaces that position with the new one. Research 
in memory cache technology involves improving 
both the hardware speeds of memory units and the 
algorithms for dealing with cache misses.
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The Domain of Micro-Architecture 
Research and Data Mining

The domain of micro-architecture offers a very 
rich environment suitable for the application of 
data mining techniques. Advanced techniques 
such as control and data speculation, multiple 
instruction processing and pipelining create an 
environment where it becomes extremely difficult 
to detect and understand the interaction of various 
techniques. In addition to the difficulty brought in 
by the interaction of these advanced techniques, 
the picture is further complicated by out-of-order 
instruction execution.

In order to achieve a high degree of instruction-
level parallelism, contemporary processors find 
and execute instructions in a different order than 
the program specified order. This way, instructions 
are executed as early as possible based on the avail-
ability of data and resources they need. In many 
cases, instructions are executed speculatively as 
in the case of branch prediction before they are 
known that they should be executed. Furthermore, 
the order of memory operations might also be 
changed to facilitate the early execution of those 
which already have their data.

Such an approach results in a very dynamic 
environment in which many simultaneous events 
arise at any given clock cycle and these events 
interact with and affect each other. For example, 
the execution of a memory operation may result in 
a cache miss in a given cycle but modern proces-
sors do not wait for the cache miss to complete, 
but rather put the instruction that encountered the 
cache miss aside and continue executing other 
instructions. Note that an instruction that missed 
in the cache might actually be an instruction that 
has been executed speculatively and the cache 
miss event may be followed by a control mis-
speculation event. Similarly, a previous cache miss 
might just complete yielding a mixture of events 
within a window of execution that originated 
at different cycles. Furthermore, this behavior 
is a strong function of the implemented micro-

architecture as well as the program executing on 
this micro-architecture. For example, even if two 
micro-architectures differ simply in the number 
of buffered instructions or the number of avail-
able cache ports, the events observed during the 
execution of programs might differ significantly. 
Events such as a series of cache misses overlap-
ping with a branch mis-prediction might not oc-
cur in one of the micro-architectures because the 
branch instruction may not be within the buffered 
instructions, or, the maximum number of cache 
misses has been exceeded in the other.

In addition to the interaction of various events 
in this dynamic environment, there is great vari-
ability in terms of instantaneous performance. 
Because the branch instructions disrupt the nor-
mal fetch flow, a variable number of instructions 
can be fetched and executed in a given cycle. As 
a result, the observed IPC value changes from 
clock cycle to clock cycle and this change is 
a strong function of the program that is being 
executed. For example, floating point intensive 
scientific programs typically offer highly uniform 
sequential blocks of instructions resulting in less 
variability in the observed IPC in different parts 
of the execution of the program. Similarly, delays 
originating from memory hierarchy such as cache 
misses significantly affect the amount of available 
instruction-level parallelism, i.e., the potential 
overlap of instruction execution, and hence the 
IPC (Shen & Lipasti, 2005).

Because of the complexity of the interaction of 
these events, state-of-the-art research techniques 
rely on many time consuming simulations and trial-
and-error techniques. On the other hand, proper 
data mining driven analysis performed on the 
observed sequence of events, their interaction, and 
the effect of their interaction on performance, can 
present valuable hints to the micro-architect. In the 
next section, we illustrate how micro-architectural 
events can be efficiently represented and analyzed 
by using time sequence data mining.
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Representation of Architecture 
Events as Sequence Data

As previously pointed out, computer architecture 
studies rely on simulations without exception. 
These simulators range from simple functional 
simulators to detailed cycle-accurate simulators. 
A functional simulator typically only simulates 
the instruction set of a processor and focuses on 
correct execution of programs so that the compiler, 
system software and operating system related 
software development can be carried out. Cycle-
accurate simulators simulate the behavior of the 
hardware in sufficient detail so that the number of 
cycles observed during the simulation of a given 
program will be exactly the same as the number 
of cycles when the program is executed on a real 
processor.

In order to perform data mining, we use the 
results provided by the Flexible Architecture 
Simulation Toolkit (FAST) system, which is a 
cycle-accurate simulator developed by one of 
the authors (Onder, 2008). The FAST toolkit 
provides the means to describe and automati-
cally generate cycle-accurate simulators from a 
processor description. The tool has been in use for 
about a decade for advanced micro-architecture 
studies by academia and industry researchers. 
The specific case we used for this chapter is a 
dual core superscalar processor that enters the 
run-ahead mode upon encountering a L2 cache 
miss. In this mode, the instructions are executed 
but their results are not committed to the proces-
sor state. The goal is to execute as far as possible 
and reference the memory addresses so that the 
cache requests will be initiated early. The second 
processor serves as a state-recovery processor and 
the thread running in that processor updates the 
processor state to the correct values once the data 
from the cache is returned. In other words, the 
simulated architecture involves the interaction of 
two threads originating from the same program. 
The main-thread is the actual execution of the 
program. The recovery-thread is only responsible 

for repairing damaged values during the run-ahead 
mode. Further details of the micro-architecture 
are described in Zhou & Onder’s article on the 
use of fine-grained states (2008).

Because several events take place at each 
cycle, we have designed a simple data set in the 
form of a sequence of lines where each line is in 
the following format:

<cycle> <event> <inst-PC> <mem-addr> 

<block-addr> <replacement-block-addr>

In other words, our simulator writes a summary 
line for each event observed during the simula-
tion. In this data format, only the first two are 
useful for sequence mining as we are interested 
in the interaction of various events. The rest of the 
line has been used to validate, track, and debug 
the correctness of the collected information. For 
example, by observing the replacement address 
field, we can verify the cache accesses are being 
simulated correctly. The instruction program 
counter value (inst-PC) allows us to track which 
instruction has actually caused the event in ques-
tion. A good example is a cache miss triggered by 
an instruction must have the same value when the 
data has been loaded. For sequence mining, we 
filtered the data and used the format shown below:

<Time of occurrence> <Event type>

The time of occurrence value is simply the cycle 
number observed by the processor. Event type is 
represented by a number. The numbers denoting 
the events and the corresponding descriptions are 
listed in Table 1.

Prior to applying data mining algorithms, we 
frequently processed the original data sets mul-
tiple times for various reasons discussed in the 
following sections. The most important reason is 
the huge amount of data that results. For example, 
a few seconds of actual execution time for a pro-
gram typically results in billions of cycles and 
hence gigabytes of data. In the next section, we 



219

Discovering Patterns for Architecture Simulation by Using Sequence Mining

describe the algorithms we used and the results 
we obtained.

EPISODE MINING OF EVENT BASED 
ARCHITECTURE SIMULATION DATA

Computer architecture researchers are interested in 
identifying both expected and unexpected patterns 
in simulation data. The retrieval of expected pat-
terns increase the confidence in the methodologies 
used. The discovery of unexpected patterns reveals 
previously unknown features of the programs and 
micro-architectures that are being investigated. 
Of particular interest to our research are sequence 
data mining techniques that show the relations 
between groups of events along a time interval. 
In this context, an event is a simple happening 

that takes a unit amount of time. An episode is a 
partially ordered collection of events.

The data mining tool we developed is called 
Episode Mining Tool (EMT) and it incorporates 
three types of temporal data mining algorithms that 
were used for mining architecture simulation data:

1.  Window episode mining algorithms 
(WINEPI) for parallel and serial episodes 
developed by Mannila et al. (1997)

2.  Minimal occurrence based algorithms 
(MINEPI) for serial and parallel episodes 
developed by Mannila et al. (1997)

3.  Non-overlapping occurrence counting 
algorithms for parallel and serial episodes 
developed by Laxman at al. (2007)

Table 1. The events that take place during micro-architecture simulation 

Event ID Event

01 Main-thread branch mis-prediction

02 Main-thread L1-miss

03 Main-thread L2-miss

04 Main-thread load mis-speculation

05 Main-thread rollback due to branch mis-prediction

06 Main-thread rollback due to load mis-speculation

07 Main-thread enters runahead mode

08 Recovery-thread is forked

09 Main-thread is killed due to a branch mis-prediction’s rollback in recovery-thread

10 Main-thread is killed due to a load-wrong-value in recovery-thread

11 Main thread enters the blocking mode

12 Recovery-thread catches up the main-thread which is under runahead-mode. Kill the main thread.

13 Recovery-thread catches up the main-thread which is under blocking-mode. Recovery-T is done.

21 Recovery-thread branch mis-prediction

22 Recovery-thread L1-miss

23 Recovery-thread L2-miss

24 Recovery thread load

25 Recovery thread roll back due to branch missprediction

26 Recovery thread roll back due to load missprediction

100 L1 data cache: a block (block-addr) is fetched from L2, a victim (replacement-block-addr) block is kicked out if conflicted.

200 L2 data cache: a bloc k(block-addr) is fetched from memory, a victim (replacement-block-addr) block is kicked out if conflicted.
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In general, we directly employed the original 
pseudo code of these algorithms. However at 
certain points, we have made modifications due 
to the differences between the structure of our 
dataset and the reference dataset of these algo-
rithms. A detailed presentation of the tool we 
developed can be found in the section “Episode 
Mining Tool (EMT)”.

The WINEPI Approach

WINEPI is a window-based approach which 
counts the number of occurrences of episodes in 
a given dataset. The dataset is represented as an 
event sequence consisting of events with associ-
ated times of occurrence as shown in Figure 2. In 
this figure, there are 12 time points representing 
machine cycles and are labeled from C01 to C12. 
Five events take place within these 12 cycles, and 
no events happen during C04 through C08 and 
during C11 through C12. The figure also depicts 
sample windows of size four. The first window 
ends at cycle C01 and the last window begins at 
the last cycle (C12). A parallel episode is defined 
as a collection of events that are not ordered. 
For example, in Figure 2, the parallel episode 
consisting of events 1 and 5 appears at the time 
interval [C01, C02] and also at [C09, C10]. If the 
window size is eight or more, another occurrence 
in reverse order is observed at [C02, C09]. The 
occurrence at [C02, C09] is in reverse order. A 
serial episode is defined as a collection of events 

that are totally ordered. For example, [1 => 5] 
denotes an episode where event 1 is followed by 
event 5. In the figure, the interval [C02, C09] does 
not contain an occurrence of episode [1 => 5], 
whereas intervals [C01, C02] and [C09, C10] do.

The WINEPI algorithm works by generating 
all the episodes of length 1, keeping only those 
episodes with a frequency above a user defined 
threshold, using these to generate the episodes 
with length 2, and repeating this process as the 
episode set grows. The set of all length l+1 epi-
sodes that can be generated from the set of length 
l episodes is called a candidate set. An episode 
that meets or exceeds the frequency threshold is 
called a frequent episode. Retaining only the 
frequent episodes from the candidate set mini-
mizes the number of candidates, reduces the 
number of passes on the dataset and allows the 
algorithm to have a time complexity that is inde-
pendent of the length of the event sequence and 
is polynomial in the size of the collection of fre-
quent episodes. The candidate generation opera-
tions are very similar for parallel and serial epi-
sodes.

The frequency of an episode is defined as the 
ratio of the windows containing the episode to 
the total number of windows. For example, in 
Figure 2, there are 6 windows that contain the 
parallel episode consisting of events 1 and 5. 
Thus, the frequency of this episode is 6/15=0.4. 
An episode rule is defined as an expression α=>β, 
where β is a super episode of α. The confidence 

Figure 2. Windows of a time sequence
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of a rule is computed by dividing the frequency 
of the consequence (β) with the frequency of the 
premise (α). For example, if an episode α with a 
single event 2 (L1 cache miss) has a frequency 
of 0.02 and an episode β with two events 2,2 
has a frequency of 0.01, then the confidence of 
event 2 being followed by another event 2 is 
0.01/0.02=0.5. In other words, the rule [2 => 2, 
2] has a confidence of 0.5.

The process for finding the frequent episodes 
is remarkably different for parallel and serial 
episodes. Consider two consecutive windows w 
and w’ where w = (tstart, tstart + win-1) and w’ = (tstart 
+ 1, tstart + win). These two windows share the 
events between tstart + 1 and tstart + win - 1. There-
fore, after the episodes in w are recognized, the 
updates are done incrementally in data structures 
to shift the window w to get w’. In recognizing 
parallel episodes, a simple counter is sufficient. 
For each candidate parallel episode α, a counter 
α.event_count that holds the number of events of 
α that are present in the window. However, for 
serial episodes, a state automaton that accepts 
the candidate episodes needs to be used. There 
is an automaton for each serial episode denoted 
by α and there can be several instances of each 
automaton at the same time, so that the active states 
reflect the (disjoint) prefixes of α occurring in the 
window. For further details, the reader may refer 
to Mannila et al.’s description (1997).

The original algorithm has three input param-
eters: window width, frequency threshold and 
confidence threshold. We have added a fourth 

parameter, maximum length of the episodes to 
be generated. This addition is due to the fact that 
it may be necessary to concentrate on episodes 
much shorter than the window size, and helps 
constrain the size of the set of candidate episodes.

Although the basics of the algorithm have been 
followed in this work, we have made two more 
modifications in addition to the new parameter 
limiting the maximum length of episodes. The first 
one is that we have followed a different approach 
about processing the input dataset and avoided 
reading the entire data into memory. Reading the 
input file once into memory has the advantage of 
reducing the I/O operations. However, the simula-
tor produces huge datasets of size 10GB or more, 
and it is not possible to read it entirely into main 
memory. Therefore, we used an iterative technique 
for processing the input data and kept only one 
window in main memory. At each iteration, the 
program slides from one window to the next by 
dropping the first event and adding the incoming 
event, as shown in Figure 3.

As the second modification, we changed the 
process of recognizing the occurrences of serial 
episodes in the WINEPI approach. The original 
algorithm keeps a single automaton per episode. 
In the architecture domain, we need to count all 
possible occurrences of an episode. Therefore, 
we designed a straight-forward algorithm for 
recognizing the occurrences of the serial episodes, 
which uses the sliding window mechanism. In 
our approach, we get all the events into the win-
dow and check whether each candidate episode 

Figure 3. Window in memory
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occurs in this window or not. The important point 
is to check all combinations of the events because 
there may be multiple events in each cycle as 
shown in Figure 4. In such a situation, to check 
whether a candidate episode such as “{C,C,A,C}” 
occurs, we should check the following combina-
tions:

• {A,B,A,A,C}: Episode does not occur
• {B,B,A,A,C}: Episode does not occur
• {C,B,A,A,C}: Episode does not occur
• {A,B,C,A,C}: Episode does not occur
• {B,B,C,A,C}: Episode does not occur
• {C,B,C,A,C}: Episode occurs

The MINEPI Approach

In the WINEPI algorithm, the episode counting is 
done on a per window basis. The MINEPI approach 
uses the minimal occurrences of episodes as the 
basis. The minimal occurrence of an episode α is 
defined as a time interval T such that T contains 
α and there are no subintervals of T that also 
contain α. For example, in Figure 2, the minimal 
occurrences of parallel episode containing events 
1 and 5 are the time intervals: [C01, C02], [C02, 
C09], and [C09, C10]. Rather than looking at the 
windows and considering whether an episode 
occurs in a window or not, in this approach, we 
now look at the exact occurrences of episodes and 

the relationships between those occurrences. One 
of the advantages of this approach is that focus-
ing on the occurrences of episodes allows us to 
more easily find rules with two window widths, 
one for the left-hand side and one for the whole 
rule, such as “if A and B occur within 15 seconds, 
then C follows within 30 seconds” (Mannila et al., 
1997). Our implementation follows the original 
algorithm. For each frequent episode, we store 
information about the locations of its minimal 
occurrences. In the recognition phase we can then 
compute the locations of the minimal occurrences 
of a candidate episode α as a temporal join of the 
minimal occurrences of two subepisodes of α1 and 
α2 of α. To be more specific, for serial episodes the 
two subepisodes are selected so that α1 contains all 
events except the last one and α2 in turn contains 
all except the first one. For parallel episodes, the 
subepisodes α1 and α2 contain all events except 
one; the omitted events must be different.

The Non-Overlapping 
Episodes Approach

The WINEPI and MINEPI algorithms allow epi-
sodes to overlap and this results in observing more 
occurrences of a superepisode than the episode 
itself. To remedy this situation, Laxman et al. 
(2007) define non-overlapping episodes as two 
episodes that do not share any events and define 
algorithms that use this concept. Consider the 
example shown in Figure 5. In the given time se-
quence, two overlapping occurrences of the serial 
episode “1 followed by 2” can be observed. These 
two episodes overlap because they share event 1 
at cycle C01. In the same sequence, four overlap-
ping occurrences of the episode “1 followed by 
2, which is followed by 3” can be observed. As a 
result, the super-episode appears more frequently 
than the episode itself. When overlapping occur-
rences are disregarded, both episodes appear only 
once in the same time sequence.

The non-overlapping algorithm has the same 
worst-case time and space complexities as the 

Figure 4. Processing multiple events in a single 
cycle
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windows-based counting algorithms. However, 
empirical investigations reveal that the non-
overlapped occurrence based algorithm is more 
efficient in practice. Our implementation follows 
the basic algorithm (Laxman et al., 2007). In 
order to count the non-overlapped occurrences of 
an episode, we need only one automaton. Until 
the automaton reaches its final state, we do not 
need a new instance of this automaton after the 
initialization. The same methods in the WINEPI 
implementation have been used in order to gener-
ate candidate episodes in each iteration and rule 
generation process.

EXPERIMENTS AND RESULTS

We have conducted a series of experiments, which 
involve the steps of micro-architecture develop-
ment, simulation data collection, data mining tool 
runs, filtering and analysis by the domain experts. 
During this endeavor, we have collected about 25 

gigabytes of data using the Spec 2000 benchmark 
suite. The benchmarks have been simulated for 
about 10 million cycles. In all runs, window sizes 
of 4, 8, 16 and 32 events have been used with 
very low threshold values ranging from 0.1 to 10-9 
with the purpose of capturing rare episodes. After 
analyzing the results of hundreds of runs during 
the exploration phase, we focused on three sets of 
experiments. In the first and the second sets we 
analyzed the episode rules mined from unfiltered 
and filtered datasets, respectively. In the third set, 
we used datasets that were generated from program 
structure rather than micro-architecture event 
sequences and explored the resulting patterns.

The first set of experiments was conducted 
using the simulator results on a superscalar micro-
processor with dual processors. The original data 
set contained 12,377,038 cycles corresponding to 
the execution of the program and had a size of 
about 25 GB. We applied the WINEPI algorithm 
with a window size of 4 and used 0.00 for the 
frequency threshold in order to obtain all the pos-

Figure 5. Non-overlapping occurrences
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sible rules. We generated both parallel and serial 
episodes and the interpreted the results in two 
categories, namely, rules with high confidence 
and rules with low confidence.

In the high confidence category, we thoroughly 
scanned the rules with top confidence values and 
we discovered “expected and present,” “coinciden-
tal,” “expected but not present,” and “unexpected” 
rules. In Table 2, we present a subset of the rules 
generated by our tool where the rule confidence 
is equal to 1.0 and the rules are “expected and 
present”.

Some rules appeared to be coincidental, even 
with a confidence of 1.0. For example rules [1 => 
1, 7], [7 => 1, 7], [1 => 1, 8] and [8 => 1, 8] bear 
no significance from an architectural perspective. 
Event 1 denotes a branch mis-prediction and does 
not have a causal relationship to events 7 (enter-
ing run-ahead mode) or 8 (forking the recovery 
thread). Other examples of coincidental rules are 
[3, 26 => 1, 3, 26], [4, 26 => [1, 4, 26] and [5, 
200] => [5, 200, 100]. In the first two, events 3 
and 4 refer to events in the main-thread, whereas 
event 26 is a recovery-thread event. In the last 
rule, event 5 is main-thread rollback due to branch 
mis-speculation and events 100 and 200 are re-
lated to cache fetches.

Notably missing from the set of expected rules 
are rules such as [7 => 8, 11, 13] indicating that 
once the main-thread enters run-ahead mode (7), 
it should fork the recovery thread (8), the main-
thread should enter blocking mode where it is 
waiting for the recovery thread to finish (11) and 
the recovery thread catches up the main-thread 
(13). This rule is not found by the WINEPI algo-
rithm because there are hundreds or thousands of 

events between the beginning and the ending of 
such sequences. With the limited window sizes 
that can practically be used, the sequence never 
resides in the window completely. We tackle this 
problem through filtering and discuss the results 
later in this section.

We observed a number of rules which were 
not readily obvious to the micro-architect (“unex-
pected” rules). The rule [3, 26 => 1, 3, 26] is quite 
interesting because it indicates that whenever the 
main thread L2 miss (3) coincides with a recov-
ery thread load mis-speculation (26), this always 
happens when there is a branch mis-prediction 
(1). This is a consequence of the features of the 
micro-architecture used in the study. In the micro-
architecture implementation, the processor never 
speculates a load instruction again if the particular 
load instruction has been misspeculated in the past. 
For the recovery thread to misspeculate the load, 
it should not have seen the load instruction before; 
for the main thread, a branch mis-prediction shows 
that the main thread is executing a piece of code it 
should not have been executing. In this case, it is 
likely that the code contains data references that 
have not been touched before, which explains the 
L2 miss. Since the recovery thread is following 
main-thread’s branch predictions, it in turn means 
the code area is new to the recovery thread as well 
and this results in a load mis-speculation in the 
recovery thread. The rule [4, 26 => 1, 4, 26] is the 
sister rule to [3, 26 => 1, 3, 26], this time the same 
phenomenon happening in the main-thread only. 
These rules show that branch mis-predictions, load 
mis-speculations and cache misses are inherently 
related with each other. Although this relationship 
is known to exist, the WINEPI results strongly 

Table 2. Sample high-confidence rules out of WINEPI which were expected

Rule Explanation

[7 => 7, 8] Run-ahead mode main thread always forks the recovery thread.

[25 => 25, 9] When the recovery thread gets a branch mis-prediction, the main thread is killed.

[3, 200 => 3, 200, 100] Main thread L2 miss, L2 data fetch coincides with L1 misses.

[1 => 1, 5] Branch mis-prediction leads to rollback.
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confirm that the relationship is stronger than what 
is believed in the domain.

The rule [5, 200 => 5, 200, 100] indicates that 
a roll-back after a branch mis-prediction (5) that 
coexists with an L2 data fetch event (200) will 
result in an L1 fetch event (100) as well. This rule 
indicates that some of the data fetches initiated 
during a mispredicted branch will arrive after the 
mis-prediction has been detected. The studied 
micro-architecture follows the common practice 
and does not tag data requests to the memory with 
respect to branch instructions. Further investiga-
tion of benefits of such tagging is necessary, 
nevertheless the observation is quite interesting.

Besides these high confidence rules which were 
found through the WINEPI experimentation, lower 
confidence, yet significant observations have 
also been made. During the program execution 
in a speculative processor, multiple branch mis-
predictions may be observed in rapid succession. 
One of the main reasons behind this observation 
is the exploitation of instruction-level parallelism. 
The processor issues multiple instructions at each 
cycle and never waits for the resolution of branches 
as long as pending branch instructions continue 
to resolve correctly, i.e., predictions continue to 
be correct. As a result, at any given time there are 
many branch instructions waiting for resolution. 
When one of these branch instructions is mis-
predicted, several others preceeding this branch 
might have been mispredicted as well. This fact 
is supported through a rule [1 => 1, 1]: a branch 
mis-prediction (1) leads to multiple branch mis-
predictions (1, 1).

On a few occasions, similar to the phenomenon 
discussed above branch mis-predictions (1) may 
lead to additional cache misses (3). The rule [1 => 
1, 3] shows such expected clustering of events.

Rule [4 => 1, 4] indicates that an incorrect 
load value obtained from a load speculation may 
trigger branch mis-speculations, obviously un-
expectedly. This rule is another example which 
yields information that is not common knowledge 
in computer architecture. Although a deeper 

analysis of the processor behaviour is needed to 
assess the frequency and the importance of the 
phenomenon, it clearly is a case which indicates 
that there is merit in investigating architectural 
simulation data using data mining techniques.

In order to understand this particular case bet-
ter, consider the process of load speculation in an 
ILP processor. Load speculation is the process of 
executing load instructions out of program order, 
before preceeding store instructions complete. 
Consider the following code:

I1:         SW  $8, a1 

I2:         LW  $4, a2

If I2 is executed before I1 and a1 != a2, this 
will lead to improved performance because the 
instructions waiting for the value of register 4 can 
proceed sooner. If a1 = a2, the load instruction 
will obtain the stale value from the memory and 
a load mis-speculation will result. We reason that 
the observed case arises because of the interaction 
of load mis-speculation with branch prediction 
and validation. Consider the sequence:

I1:         SW  $8, a1 

I2:         LW  $4, a2 

I3:         Beq $4, $8, L1

and assume that I3 has been correctly predicted. 
However, if the load has been speculatively ex-
ecuted and the speculation is not successful the 
load will obtain the wrong value. The branch 
instruction, although correctly predicted, may be 
considered an incorrect prediction because the 
processor upon verifying the values of $4 and 
$8 does not find them to be equal. Note that the 
processor would correctly conclude that the branch 
was correctly predicted had the memory operations 
been executed in program order. As a result, we 
observe [4 => 1, 4], i.e., a load mis-speculation 
(4) leads to a branch mis-prediction (1) as well as 
an additional load mis-speculation (4).
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Each set of experiments clearly indicates the 
need to apply domain specific information and 
filter the data as necessary. This is a necessity due 
to several reasons. First of all, the sheer size of the 
collected event data makes it very difficult to seek 
relationships among events which are too far away 
from each other. The required window size and the 
resulting computational needs are very difficult 
to meet, even with a well thought-out and effi-
cient implementation of the existing algorithms. 
Second, some of the architectural events are rare 
and their observation requires very low settings of 
threshold values. This in turn results in unaccept-
ably high computational times. It is much more 
efficient to filter the information from the dataset 
which is known to be unnecessary or unrelated, 
based on the domain knowledge. As a result, in 
our second set of experiments we progressively 
applied filtering as data mining results showed 
both known and unknown relationships among the 
micro-architectural events. In these experiments, 
we extracted the rules for parallel episodes using 
0.0005 for frequency and confidence thresholds, 
and varying window sizes of 4, 8, 16, and 32.

In order to observe the effects of window size 
on the results, we have filtered event sequences 
which have an opening and closing event associ-
ated with them. One such example was discussed 
previously, after going into the run-ahead mode, 
a certain sequence of events should happen and 
eventually, the run-ahead mode should terminate. 
Removing these event sequences from the input 
file enabled the WINEPI algorithm discover 
relationships among events separated from each 
other by long distances. In this respect, one well-
known fact in computer architecture research is 
that cache misses are clustered. In other words, 
when the processor experiences a cache miss, it is 
followed by a sequence of additional cache misses. 
This is because, when there is a cache miss for a 
particular item that is part of the program’s work-
ing set, the rest of the working set is also not in 
the cache. What is not known clearly is how these 
clusters are related to each other. In the following 

experiment, we have collected data and listed 
those with the highest confidence. Rules [7 => 
7, 8] and [8 => 7, 8] had been explained before. 
Rule [3, 3, 2 => 3, 3, 2, 2] illustrates the cluster-
ing effect. Both L1 and L2 cache misses rapidly 
follow each other. This local cluster is easily seen 
by even a small window size, but all such rules 
indicate an interesting behavior. As shown in Table 
3 and Figure 6, as the window size is increased, 
the confidence also increases. Although further 
analysis would make a better case, it is quite likely 
that the observed behavior is due to encountering 
clusters of cache misses which are close to each 
other. Such inter-cluster formation is difficult to 
see in smaller window sizes, but as the window 
size gets bigger, additional cache misses from the 
following cluster also can be seen and analyzed 
by the episode miner.

Table 3 indicates the results of filtering in this 
manner. Each row indicates the confidence values 
observed at the given window size indicated by 
the column. Events 5, 6, 9, 10, 11, 12, 13, 25, 26, 
100 and 200 have been removed from the data 
set. These events are closing events for micro-
architecture events that have a beginning and 
ending. The corresponding graph is plotted in 
Figure 6. Observe that rules such as [7 => 7, 8] 
have very little variation as a function of window 
size since their occurrence is in close proximity 
always, whereas rules which have events sepa-
rated far from each other demonstrates consistent 
increase in confidence values as the window size 
is increased.

Using data mining in the computer archi-
tecture domain is not limited to analyzing the 
relationship among events observed through the 
micro-architecture studies. In fact, programs and 
their behavior can also be analyzed using episode 
mining. In order to illustrate the concept, we have 
modified our micro-architecture simulator so 
that upon seeing certain types of instructions, it 
generates a corresponding event. By representing 
critical instructions as events, it becomes possible 
to see how the interaction of various instructions 
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relate to observable performance criteria such as 
IPC. For this purpose, we focus on instructions 
that change the program’s control flow: function 

calls, function returns, backward and forward 
branch instructions. Each of these instructions is 
assigned an event id as given below:

Figure 6. Graph plot for the effect of window size on rule quality

Table 3. Effect of window size on rule confidence

Rules 4 8 16 32

[7 => 7, 8] 1 1 1 1

[8 => 7, 8] 1 1 1 1

[3, 3, 2 => 3, 3, 2, 2] 0.947425 0.952256 0.953822 0.95738

[3, 23, 23 => 3, 3, 23, 23] 0.938679 0.956189 0.973992 0.97849

[3, 23 => 3, 3, 23] 0.938033 0.953017 0.966461 0.965144

[3, 2, 2 => 3, 3, 2, 2] 0.930421 0.942661 0.950478 0.96378

[2 => 2, 2] 0.925434 0.942002 0.948303 0.95308

[3, 3, 23 => 3, 3, 23, 23] 0.920951 0.951008 0.95706 0.969514

[3, 23 => 3, 23, 23] 0.920318 0.947853 0.94966 0.956289

[3, 2 => 3, 2, 2] 0.913168 0.938552 0.946946 0.954705
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Event ID  Instruction 

1     backward branch 

2     forward branch 

3     function return 

4     function call 

5      load 

6     store

We have analyzed the resulting data set using 
our tool with WINEPI for serial episodes. Table 4 
shows a summary of the highest confidence rules.

In architectures which use load and store in-
structions to access memory, every function starts 
with a series of store instructions to save the 
contents of the register and they reload the values 
of the register before returning. It is highly likely 
that most store clustering (rule 7) occurs because 
of this phenomenon. Although, this is common 
knowledge in the domain, data mining results 
point to new micro-architecture designs can exploit 
the fact that multiple store instructions would be 
forth-coming once a function call is detected. A 
very frequent type of operation in most programs 
is to test a value, and conditionally load a value, 
or, modify a storage location’s value.

For example:

if (a < b) 

{      

z= 5;         

// this really becomes a store     

}

is captured by rule 5 and it is quite frequent. 
Similarly, consider the same piece of code, this 
time slightly modified:

if (a < b) 

    { 

     z=x; //this may be a load and a 

store, or no store, or no load,  

          // depending on the avail-

ability of the values in registers.  

     } 

Such code is responsible for rule 5, and possibly 
10. One of the most interesting observations is the 
capture of the program’s structure through rule 1:

if (foo() < 1) 

    { 

          // this really is a forward 

branch 

    } 

The high confidence value indicates that most 
function calls in these set of programs actually 
test the function’s return value.

Table 4. Summary of highest confidence rules for WINEPI serial episodes 

Rule number Confidence Rule Explanation

1 0.67 [3 => 3, 2] Function return is followed by a forward branch.

2 0.67 [4 => 4, 6] Function call is followed by a store.

3 0.63 [5 => 5, 5] Loads are clustered.

4 0.57 [6 => 6, 6] Stores are clustered.

5 0.56 [2 => 2, 5] Forward branches are followed by a store.

6 0.52 [6, 6 => 6, 6, 6] Stores are clustered.

7 0.50 [4, 6 => 4, 6, 6] Same as (6)

8 0.50 [5, 4 => 5, 4, 6] Load, function call is followed by store.

9 0.50 [6, 4 => 6, 4, 6] Store, function call is followed by store.

10 0.37 [5, 2 => 5, 2, 5] Load followed by forward branch is followed by further loads.
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Our results demonstrate that the application 
of data mining in the computer architecture and 
compiler domain enhances the analysis capabili-
ties beyond what is typically achieved through 
profiling. While profiling can provide exact in-
formation about a particular point in the program, 
data mining provides global knowledge about the 
structure of the program.

EPISODE MINING TOOL (EMT)

General Properties

Episode Mining Tool (EMT) is a tool developed 
to investigate the relationships between events in 
a given event sequence. It was designed to incor-
porate a variety of sequence mining algorithms for 
parallel and serial episodes, to provide support in 
the domain of micro-architecture simulations, and 
to facilitate ease of use by researchers. The tool was 
implemented in Java programming language and 
includes specific features for mining architectural 
events. However, it is general purpose, provides 
fundamental functionalities, and can be used for 
episode mining in other domains. Interested us-
ers can access the EMT site through the authors’ 
websites at http://www.cs.mtu.edu and http://
ceng.metu.edu.tr.

The main features of EMT are as follows:

• Before processing the input data, the event 
types can be filtered in order to concentrate 
on certain event types.

• The tool supports the analysis of input data 
containing IPC values with the events.

• It is possible to analyze the input data in 
unconventional formats such as an input 
file containing several event sequences 
where each one is written in a separate line. 
In such a case, these lines are processed as 
if they are separate input files.

• Users can analyze the event sequences 
with any of the three episode mining tech-

niques in the tool under window width, 
minimum support threshold and minimum 
confidence threshold parameters.

• The patterns generated by episode min-
ing can be visually analyzed with respect 
to support, confidence and length of the 
patterns.

• Multiple output files can be analyzed in a 
single step and they can be grouped with 
respect to the common rules or episodes.

Components of EMT

There are three main components in EMT:

• Data pre-processor: This component in-
cludes pre-processing operations that can 
be applied on dataset and generates a new 
input file with a postfix “_processed”. The 
supported pre-processing operations are as 
follows:
 ◦ Event types that will not be included 

in the analysis and thus will be fil-
tered can be specified.

 ◦ If there are IPC values in the input 
sequence, the pre-processor can com-
pute the changes in the IPC values 
and produce a new input file contain-
ing the “delta-IPC” values.

 ◦ If the input file includes a set of se-
quences where each one is repre-
sented with a line, the pre-processor 
generates a new input files for each 
sequence.

• Episode miner: This component provides 
the core data mining functionalities of 
EMT. It provides window based, minimal 
occurrence based and non-overlapping oc-
currence based episode mining for serial and 
parallel episodes. The selected technique 
generates frequent patterns for the input data 
(after pre-processing if necessary) under the 
provided parameters. The generated output 
file includes frequent episodes with their 
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frequency values and strong rules with their 
confidence values.

• Visual analyzer: This component is the vi-
sualization part of EMT. Extracted frequent 
episodes and rules can be presented in the 
form of various types of graphs. In addi-
tion, multiple output files can be analyzed 
together and grouped with respect to support 
or confidence values in a single step.

Usage

EMT has two usage modes: command line mode 
and GUI mode. The command line mode was 
designed to facilitate automated processing of 
the results. In this mode, the results are written 
into a file that becomes an input file for further 
analysis. The pre-processor and episode miner 
components, which are actually two separate 
executable files, can be used in the command line 
mode. The visual analyzer component, on the other 
hand, contains the GUI modules and presents the 
resulting patterns in the form of human friendly 
charts. Therefore, in the GUI mode, in addition 
to pre-processor and episode miner components, 
output analyzer is also available.

• The GUI Mode: When EMT starts running 
in GUI mode, the very first screen presents 
the operations menu, from which the user 
can either select pre-processing, episode 
mining or output analysis as the operation.

If pre-processing operation is selected, the user 
is firstly asked to specify the file to be worked on 
through the browser. As the first pre-processing 
task, the user can specify the event types to be 
filtered as depicted in Figure 7.

Once this specification is completed, accord-
ing to the structure of the input file, the type of 
pre-processing operation is selected and applied. 
If the dataset contains IPC values, a new input is 
generated according to the changes in IPC values. 
If the input dataset contains unique sequences, 
new input files can be generated for each of the 
line in dataset. The pre-processing method selec-
tion interface is presented in Figure 8.

For investigating the relationships between 
the rules of unique sequences and IPC changes, 
we should first provide an input file in an appro-
priate form. To this aim, another operation called 
“Process Unique Sequence Lists with IPC chang-
es” is provided. In addition, the user can enter 
IPC change level. Another operation available 

Figure 7. Filtering event types in GUI mode
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under the pre-processing component is filtering 
the results obtained from episode mining opera-
tion.

If episode mining operation is selected, user 
is firstly asked to select the technique to be ap-
plied for each type of episodes from the algorithm 
menu, which includes the following menu items:

• WINEPI Parallel Episodes
• WINEPI Serial Episodes
• Non-overlapping Parallel Episodes
• Non-overlapping Serial Episodes
• MİNEPI Parallel Episodes
• MINEPI Serial Episodes

According to the selected algorithm, the user 
provides the relevant parameters such as window 
width, minimum frequency threshold, minimum 
confidence threshold, maximum episode length 
and input types of events to be ignored, through 
the dialog boxes of EMT. Then, the user selects 
the input file containing the dataset to be processed 
according to the chosen method. Finally, the user 
gives the name of the output file where the results 

to be written and when the execution is completed, 
the user is notified.

If the output analyzer operation is selected, 
the results of episode mining operations can be 
visualized in different types of charts. As the first 
step, the user should specify whether the output 
analysis would be done on single or multiple 
outputs. The user interface for this selection is 
shown in Figure 9.

Once this selection is completed, the user is 
prompted for file selection through the browser. 
As the next step, the user specifies whether to 
analyze episodes or rules. Afterwards, in order to 
limit the number of items to be visualized, user 
can select the length of rules or episodes. Lastly, 
the chart type for visualization is selected through 
the GUI. In Figure 10, a sample visual analysis 
is shown in which the grouping of rules from 
multiple outputs are represented as a bar chart 
with respect to their confidence values.

The command-line mode: In command line, 
the user gives the necessary parameters to run 
pre-processor and the results are printed to the 

Figure 8. Selecting the pre-processing method in GUI mode
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specified output file. Here, the parameters should 
be given in the following format:

DataPreProcessor.jar <input file> 

<outputFile> <option>

The option can be “--IPC” to process the input 
containing IPC values, “--unique-sequence” to 
process the input file containing unique sequences 
in its each line, “--AnalyseRulesWithIPC” to gen-
erate rules obtained from unique sequences and 

Figure 9. Output analysis on single or multiple outputs

Figure 10. Resulting chart after grouping the output files in GUI mode
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IPC changes in given files and “--filterAnalysis” 
to filter the rules containing only a rule and an IPC 
level value. A sample command is given below:

D:\>DataPreProcessor.jar input.dat 

output.txt --IPC 

For episode mining, the user supplies the 
parameters in the following format:

EpisodeMiner.jar <input file> <win-

dow width> <min frequency> <max epi-

sode length> <min confidence> <algo-

rithm string> <output file> <window 

width-2>

Here, the parameter “window width-2” is used 
only for MINEPI algorithm and the parameter 
algorithm string is an option string containing 6 
characters where each of these characters represent 
an implemented algorithm and must be either 0 
or 1. The order of the algorithms to be specified 
is as follows:

• WINEPI for parallel episodes
• WINEPI for serial episodes
• Non-overlapping counts for parallel 

episodes
• Non-overlapping counts for serial episodes
• MINEPI for parallel episodes
• MINEPI for serial episodes

Below we show a sample episode miner call. 
In this example, the command line with the algo-
rithm string as “000001” denotes selecting only 
“MINEPI for serial episodes”.

D:\>EpisodeMiner.jar input.dat 3 0.01 

4 0.05 000001 output.txt 5

CONCLUSION

Data mining is an important tool for data-rich 
domains. One of the branches of data mining is 
mining sequence data where the data can be viewed 
as a sequence of events each having a time of oc-
currence. Sequence and episode mining techniques 
and algorithms have been applied to various do-
mains such as medicine or telecommunications. 
The motivation of this work is to apply episode 
mining algorithms to a new domain, architecture 
simulation, and to prepare an environment to make 
predictions about the performance of programs 
in different architectures. In micro-architecture 
research, the behavior of designed architectures 
are observed through simulations on benchmark 
programs. These simulations generate outputs 
consisting of sequence of program execution 
events occurring at each clock cycle. This provides 
a very rich environment for applying sequence 
mining techniques. Extracting patterns about the 
behavior of the designed architecture can facilitate 
the process of improving the design in two ways. 
First, in addition to expected patterns, sequence 
mining can reveal previously undetected behav-
ior patterns. Second, this automated approach 
shortens the analysis of simulation results, which 
is conventionally held manually. Furthermore, it 
may even be possible to make predictions about 
behavior without simulation.

Within the scope of this study, we have devel-
oped an analysis tool named Episode Mining Tool 
(EMT), in order to analyze the architecture simula-
tion results. The tool includes the implementation 
of three different episode mining techniques: 
window-based episode mining, non-overlapping 
occurrence based episode mining and minimal oc-
currences based episode mining. In addition to the 
episode mining module, EMT includes modules 
for pre-processing and visualization of the gener-
ated patterns. The pre-processing module supports 
several features that are specific to the domain, 
such as handling the IPC values in the data set.
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We have conducted several analyses on bench-
mark results by using EMT. As the first analysis 
task, we have found patterns involving a limited 
set of events that are accurate for architecture 
simulation. Therefore, we have accomplished 
our first goal for finding patterns supporting the 
expected behaviors and some general rules for 
the computer architecture by using sequence 
mining techniques. In order to discover new pat-
terns that can facilitate predicting the behavior of 
programs, we have further analyzed the program 
executions and we have observed that the program 
blocks can be summarized and represented by 
a set of unique sequences. Therefore, we have 
analyzed these unique sequences, and generated 
rules showing the characteristic behavior of the 
program blocks. In addition, we have analyzed the 
IPC changes between the executions of blocks in 
different architectures and extracted relationships 
between IPC change values and the rules. As a 
result, these relationships discovered in EMT may 
help predicting the performance of a program in a 
given architecture without running or simulating 
the program.

This work provided invaluable experiences 
to the collaborators who had very diverse back-
grounds:

• Several trials were needed to understand 
and select the most suitable algorithms and 
parameters. We ran the experiments many 
times to understand the effects of window 
size and frequency thresholds.

• We learned to deal with huge datasets by 
restricting the event types and number of 
episodes. This helped keep experiment run 
times reasonable but most were still in the 
range of several days.

• The analysis of the mining results required 
several iterations. Most of the applica-
tion domains in the literature reviewed are 
suitable for finding the rules with highest 
frequencies. In our micro-architecture do-
main, we are also interested in the patterns 

of rule occurrence such as, where are the 
cache misses are clustered, how do the rule 
confidences change within different sec-
tions of the program, or can any anomalies 
be observed in the processor’s behavior. As 
a result, we had to set very low values for 
frequency thresholds and had to deal with a 
plethora of rules that looked identical.

The work described in this chapter lays the 
foundation for future work in a number of direc-
tions. For example, in this work, instance based 
events are considered and the duration of the 
events are not analyzed. In order to extend this 
approach, continuous events having duration 
values may be evaluated by using temporal data 
mining techniques. Therefore, more interesting 
and hidden relations between sequences and 
subsequences of events might be discovered. The 
visualization module can be further improved to 
facilitate effective communication of the results 
to the domain experts in micro-architecture or 
other domains. Especially, the output analyzer 
component can be considered as a starting point 
and more visual features such as time series charts 
containing frequent episodes or confident rules 
generated from program blocks can be added to 
aid with the analysis of results. In the future, it 
will be interesting to relate the performance of 
the program to its structure through the use of 
data mining.

REFERENCES

Akleman, L., & Ezekwa, C. U. (2009). FREQuest: 
Prefetching in the light of frequent episodes. Re-
trieved from http://www.cs.cmu.edu/~lakoglu/
classes/arch_paper.pdf

Hamerly, G., Perelman, E., Lau, J., Calder, B., & 
Sherwood, T. (2006). Using machine learning to 
guide architecture simulation. Journal of Machine 
Learning Research, 7, 343–378.



235

Discovering Patterns for Architecture Simulation by Using Sequence Mining

Hennessy, J. L., & Patterson, D. A. (2007). Com-
puter architecture: A quantitative approach (4th 
ed.). Amsterdam, Holland: Elsevier.

Laxman, S., Sastry, P. S., & Unnikrishnan, K. P. 
(2007). A fast algorithm for finding frequent epi-
sodes in event streams. In P. Berkhin, R. Caruana, 
& X. Wu (Eds.), Proceedings of the Thirteenth 
ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining (KDD-
07) (pp. 410-419).

Mannila, H., Toivonnen, H., & Verkamo, A. I. 
(1997). Discovery of frequent episodes in event se-
quences. Data Mining and Knowledge Discovery, 
1(3), 259–289. doi:10.1023/A:1009748302351

Onder, S. (2008). ADL++: Object-oriented 
specification of complicated instruction sets and 
micro-architectures. In P. Mishra and N. Dutt 
(Eds.), Processor description languages, volume 
1 (systems on Silicon) (pp. 247-274). Burlington, 
MA: Morgan Kaufmann (Elsevier) Publishers.

Osborne, A. (1980). An introduction to microcom-
puters, vol 1: Basic concepts (2nd ed.).

Rau, B. R., & Fisher, J. A. (1993). Instruction-
level parallel processing: History, overview and 
perspective. The Journal of Supercomputing, 
7(1-2), 9–50. doi:10.1007/BF01205181

Shen, J. P., & Lipasti, M. H. (2005). Modern 
processor design: Fundamentals of superscalar 
processors. New York, NY: McGraw-Hill Com-
panies.

Zhou, P., & Onder, S. (2008). Improving single-
thread performance with fine-grain state mainte-
nance. In A. Ramirez, G. Bilardi, & M. Gschwind 
N (Eds.), Proceedings of the 5th Conference on 
Computing Frontiers (CF-08) (pp. 251-260). New 
York, NY: ACM.

ADDITIONAL READING

Data Mining Agrawal, R., Imielinski, T., & Swami, 
A. N. (1993). Mining Association Rules between 
Sets of Items in Large Databases (pp. 207–216). 
SIGMOD.

Fang, W., Lu, M., Xiao, X., Hel, B., & Luo, Q. 
(2009). Frequent Itemset Mining on Graphics 
Processors, Data Management On New Hardware, 
Proceedings of the Fifth International Workshop 
on Data Management on New Hardware, Session: 
Exploiting parallel hardware, pages: 34 – 42.

Hand, D., Mannila, H., & Smyth, P. (2001). Prin-
ciples of Data Mining, Massachusetts Institute of 
Technology, 2001, ISBN 0-262-08290-X.

Jin, R., & Agrawal, G. (2005). An Algorithm for 
In-Core Frequent Itemset Mining on Streaming 
Data. Fifth IEEE International Conference on 
Data Mining (ICDM’05), pages:210-217.

Keogh, E., Lonardi, S., & Ratanamahatana, C. A. 
(2004). Towards Parameter-Free Data Mining. In 
R. Kohavi, J. Gehrke, & W. DuMouchel (Eds.) 
Proceedings of the 10th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and 
Data Mining (KDD-04) (pp. 205-215).

Kotsiantis, S., & Kanellopoulos, D. (2006). As-
sociation Rules Mining: A Recent Overview. 
International Transactions on Computer Science 
and Engineering, vol:32 pages:71-82.

Margahny, M. H. & and Mitwaly, A. A. (2007). 
Fast Algorithm for Mining Association Rules. 
International Journal of computer and software, 
vol:2 No:1.

Nanyang, Q. Z. (2003). Sequential Pattern Mining: 
A Survey. Technical Report 2003118, Nanyang 
Technological University, Singapore.

Ramakrishnan, N. (2009). The pervasiveness of 
data mining and machine learning. IEEE Com-
puter, 42(8), 28–29.



236

Discovering Patterns for Architecture Simulation by Using Sequence Mining

Seifert, J. W. (2004). Analyst in Information 
Science and Technology Policy Resources, CRS 
Report RL31798, Data Mining: An Overview.

Usama, F., Piatetsky-Shapiro, G, & Smyth, 
P. (1996). From Data Mining to Knowledge 
Discovery in Databases, AI Magazine, vol:17 
pages:37-54.

Wang, J., & Han, J. (2004). BIDE: Efficient Mining 
of Frequent Closed Sequences. ICDE, Proceed-
ings of the 20th International Conference on Data 
Engineering, page:79, ISBN:0-7695-2065-0.

Wojciechowski, M., &Maciej Zakrzewicz, (2004). 
Data Mining Query Scheduling for Apriori Com-
mon Counting. 6th Int’l Baltic Conf. on Databases 
and Information Systems.

Yun, U., & Leggett, J. J. (2005), WFIM: Weighted 
Frequent Itemset Mining with a weight range 
and a minimum weight, SIAM International Data 
Mining Conference.

Zaïane, O. R. (1999). CMPUT690 Principles of 
Knowledge Discovery in Databases, University of 
Alberta, Chapter-1. Introduction to Data Mining.

Zaki, M. J., & Ching-Jui H. (2005). CHARM: 
An Efficient Algorithm for Closed Itemset Min-
ing. IEEE Transactions on Knowledge and Data 
Engineering, vol:17 issue:4, pages: 462-278.

Agarwal, B. (Fall 2004). Instruction Fetch Execute 
Cycle. CS 518 Montana State University.

Jimenez, D. A. (2003). Reconsidering Complex 
Branch Predictors. In Proceedings of the 9th 
International Symposium on High-Performance 
Computer Architecture, page:43.

Johnson, J. D. (1992, December). Branch Predic-
tion Using Large Self History. Stanford University, 
Technical Report No. CSL-TR-92-553.

Laplante, P. A. (2001). Dictionary of Computer 
Science, Engineering and Technology. CRC Press, 
2001, ISBN 0849326915.

McKee, S. A. (2004). Reflections on the memory 
wall. Conference On Computing Frontiers, Special 
session on memory wall, page: 162.

Murdocca, M., & Vincent Heuring, V. (2007). 
Computer Architecture and Organization, An 
Integrated Approach. Wiley.

Shen, J. P., & Lipasti, M. (2005). Modern processor 
design: Fundamentals of Superscalar Processors. 
ISBN 0-07-057064-7.

Thisted, R. A. (1998). Computer Architecture, 
Encyclopedia of Biostatistics. Wiley (5th ed.). 
New York: Kip Irvine, Assembly Language for 
Intel-Based Computers.

Tullsen, D. M., Eggers, S. J., & Levy, H. M. 
(1995). Simultaneous multithreading:maximizing 
on-chip parallelism. International Symposium on 
Computer Architecture, pages: 392-403.

Yeh, T., & Yale, N. Patt, Y. N. (1991). Two-level 
adaptive training branch prediction. International 
Symposium on Micro-architecture, pages: 51 – 61.



237

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  14

DOI: 10.4018/978-1-61350-056-9.ch014

INTRODUCTION

Finding frequent sequence pattern from large 
transactional databases is one of the successful 
data mining endeavors introduced by Agarwal 
and Srikant (1995). It obtains frequent sequential 
patterns of items satisfying the condition that the 
number of their occurrences, called support, in 
the item sequence, called transaction database, is 
greater than or equal to a given threshold, called 

minimum support. The obtained frequent patterns 
could be applied to analysis and decision making 
in applications like time-series stock trend, web 
page traversal, customer purchasing behavior, 
content signature of network applications, etc.

The task of sequence pattern mining is to dis-
cover the frequently occurring subsequences from 
the large sequence database. Regardless of how 
frequent these sequences occur it is also required 
to exploit the relationships among the sequences.

One of the challenging problems with se-
quence generating systems is the large number 
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ABSTRACT

Interestingness measures play an important role in finding frequently occurring patterns, regardless 
of the kind of patterns being mined. In this work, we propose variation to the AprioriALL Algorithm, 
which is commonly used for the sequence pattern mining. The proposed variation adds up the measure 
interest during every step of candidate generation to reduce the number of candidates thus resulting in 
reduced time and space cost. The proposed algorithm derives the patterns which are qualified and more 
of interest to the user. The algorithm, by using the interest, measure limits the size the candidates set 
whenever it is produced by giving the user more importance to get the desired patterns.
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of sequences being generated. These generated 
rules may be of no practical value or interest to 
the analyst. To overcome the problem researchers 
have started using to measure the usefulness or 
interestingness of rules. Whenever a interesting-
ness measure is applied, there is clear tradeoff 
between accuracy and the coverage of knowledge.

Interestingness decreases with coverage for 
a fixed number of correct responses (remember 
accuracy equals the number of correct responses 
divided by the coverage).

In this chapter our focus is to mine sequential 
patterns from sequence database. For this work 
we choose web usage mining domain is used to 
demonstrate our approach. The current approach 
is highly applicable in any domain where data 
exhibits sequentiality in nature.

In this chapter we introduce a general frame-
work of mining sequential patterns using inter-
est measure. The sequential patterns obtained 
due to the modified algorithm are compared to 
the original sequence pattern mining algorithm, 
AprioriALL (Agarwal &Agarwal, 1995).

Our research is motivated by following two 
observations:

• Limited customization, the user has no op-
tion to choose the type of pattern catering 
to his need depending on his interest.

• The patterns derived are not interesting as 
Support is not a good interestingness mea-
sure for either association rules or sequen-
tial patterns.

Now we formally define our research problem 
addressed in this work. The problem of Sequential 
Pattern Mining in general to web mining can be 
stated as “Given a set of user sessions,, with each 
session consisting of a list of elements and each 
element consisting of a set of items and given user 
specified minimum interest value, min_support, 
the problem is to generate all candidates which 
satisfy the minimum interest value and to find all 

the sequences whose occurrence frequency in the 
set of sequences is no less than min_support “

Mining sequential patterns has become an 
important data mining task with broad applica-
tions in business analysis, career analysis, policy 
analysis, and security. Many papers on sequential 
pattern mining focus on specific algorithms and 
evaluating their efficiency (Ayers et al, 2002, Pei 
et al 2001, Srikant & Agarwal, 1996).

In this work, we focus on the problem of 
mining sequential patterns. Sequential pattern 
mining finds interesting patterns in sequence of 
sets. Mining sequential patterns has become an 
important data mining task with broad application 
areas. For example, supermarkets often collect 
customer purchase records in sequence databases 
in which a sequential pattern would indicate a 
customer’s buying habit.

Currently after many years of research in the 
Market basket analysis through Sequence Pattern 
Mining problem (Agarwal & Agarwal 1995, Pei 
et al 2001, Srikant & Agarwal, 1996) the trend 
is shifting to the other areas of application of 
sequence pattern mining. One such area is web 
mining. Lot of research has been done to make the 
process of finding useful information and (Inter-
esting) knowledge from web data more efficient.

The current work is motivated by the candi-
date set and the test approach used in the basic 
AprioriAll algorithm (Agarwal & Agarwal, 1995). 
Similar to AprioriAll algorithm traversal of se-
quences takes place using the breadth first search 
technique. All the combinations of candidate set 
and frequent itemset takes place at the K-Level. 
As we are concentrated on web user traversals 
i.e, the user can visit back and froth a sites, the 
proposed algorithm considers the combinations 
of back and forth nature ((1,2) and (2,1)).Web 
data exhibit sequentiality in nature. The inter-
relationship among the web-pages visit with in 
a session can be used to predict the navigational 
behavior of the user.
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SEQUENCE PATTERN 
MINING USING SUPPORT-
INTEREST FRAMEWORK

The effectiveness of a set of Web pages depends 
not only on the content of individual web pages, 
but also on the structure of the pages and their ease 
of use. The most common data mining technique 
used on click-stream-data is that of uncovering 
traversal patterns. A traversal pattern is a set of 
pages visited by a user in a session. The knowl-
edge gained from the frequently references of 
the contiguous pages is useful to predict future 
references and thus can be used for prefetching 
and caching purposes. The knowledge acquired 
from the backward traversals of the set of contigu-
ous pages is used to improve the quality of web 
personalization by adding new links to shorten 
web page traversals in future.

In context to web usage mining the sequential 
pattern is defined as an ordered set of pages that 
satisfies a given support and is maximal (i.e., it has 
no subsequence that is also frequent). Support is 
defined not as the percentage of sessions with the 
pattern, but rather the percentage of the customers 
who have the pattern. Since a user may have many 
sessions, it is possible that a sequential pattern 
should span a lot of sessions. It also needs not be 
contiguously accessed pages. A k-sequence is a 
sequence of length k (i.e., is it has k pages in it).

Support is the basic (monotonic) measure to be 
used in the sequence pattern mining for pruning and 
reducing the candidates to be generated. In order 
to incorporate any new measure in the existing 
sequence pattern mining framework we need to 
prune and reduce the candidate generation. This 
can be done at post processing phase i.e, after the 
pruning phase using support measure. Thus, any 
interestingness measure can be used in the existing 
algorithm framework. Interest measure can be used 
to prune the candidate set of un-interestingness 
in nature. The measure can be incorporated in the 
preprocessing phase in the algorithm. Measure is 
used in the candidate generation phase to prune 

the candidate set. In the modified algorithm we 
have used the interest measure for pruning the 
redundant patterns.

The main aim of modifying the AprioriAll 
algorithm is to reduce the size of the candidate 
sets at every iteration thus, reducing the time 
needed for scanning the database. The reduced 
time needed in scanning the database results in 
improved efficiency. From the set of candidate set 
generated not all the candidate set is interesting 
and useful. There may be two possible reasons for 
the same. Firstly, the algorithm considers only the 
time order into account during a candidate genera-
tion phase and does not consider the user property 
and secondly while pruning the candidate set the 
algorithm generates lot of candidate sets which 
are not interesting in nature hence, the time and 
space requirement is high.

In the modified algorithm, in every step to gen-
erate a candidate set the candidate set elements of 
the previous step which satisfies the user specified 
interest value should be taken over in the next step 
and the remaining set should be left out. On the 
other hand, the candidate sets generated at every 
step is pruned in the light of the property of Aprio-
riALL algorithm and the result is called C’k. Thus, 
we can reduce the size of candidate set generated 
sharply at each iteration. This, results in reduced 
complexity of the time and space. The particular 
change in the phase of the candidate generation 
helps us to reduce the time and space require-
ment as only the required interested candidates 
are generated and passed on for the candidate test 
phase to qualify by support. There by giving the 
user a qualified interestingness pattern as sought 
or required by the user. Algorithm 1 details the 
complete modified algorithm.

The algorithm starts with a database D consist-
ing of sequences. Since the current work focuses 
on web usage mining here sequences refers to 
web user sessions. Each user session consists of 
sequence of web pages. The user specified support 
value is supplied as a input to prune the candidate 
set. In order to have only the useful and interest-
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ing patterns the algorithm takes IT as a input to 
further prune the candidate set. The algorithm 
outputs the largest sequence which satisfies both 
the user specified support and interest measure. 
The algorithm begins with generating the can-
didate set using a procedure Apriorimodgen(). 
The pruning of sequential patterns is done using 
following definition.

Definition 1

If a sequential pattern S1 contains another pat-
tern S2, and the interestingness value of S2 is not 
significantly better than S1, then S2 is redundant 
and are pruned. A sequential pattern <A1A2...
Am> contains another sequential pattern <B1B2...
Bn> if there exist integers i1 < i2 <... < in such 
that B1 ⊆ Ai1, B2 ⊆ Ai2,..., Bn ⊆ Ain, where Ai 
(i = 1,...,m) and Bi (i = 1,...,n) are sets of objects.

Definition 2

If a sequential pattern consists of repeated occur-
rences of the same set of objects, the pattern is 
pruned. For example, pattern <AAAAA> contains 
the same set of objects A and is thus pruned ac-
cording to this rule.

The algorithm proposed is naïve approach to 
get the sequence of particular interest to the user. 
For high min_support value the algorithm per-
forms well as the ranking of the patterns is per-
formed at each iteration. As the number of can-
didates generated is less hence time and space is 
also saved.

EXPERIMENTAL RESULTS

We implemented our approach using Java and 
performed experiments on a 2.4 GHz, 256 MB, 
and Pentium-IV machine running on Microsoft 
Windows XP 2002. We collected data from the 
UCI dataset repository (http://kdd.ics.uci.edu/).

In our experimentation we evaluated the time 
requirements and the quality of pattern generated 
due to both the AprioriALL algorithm and the 
modified algorithm. In the modified algorithm 
the patterns generated by the qualification from 
interest measure reduces the number of candidate 
set generated. Hence the candidate set generated 
due to the user specified support value is less. 
Hence, incorporating interest measure in the 
AprioriALL algorithm resulted in only interest-
ing rules and pruning of uninteresting rules. The 
modified algorithm uses the concept of extract-
ing subsequence information. Since the support 
needed in sequence generation is calculated at 
the subsequence generation it results in saving 
the time to generate the maximal sequence. In 
our experimentation we used the minimum sup-
port of 10%. Figure 1 shows the sequence length 
generated for different size of databases. As can 
be observed from the figure that ApioriALL 
algorithm generates the subsequences of length 
5 where as the modified algorithm generates the 
subsequences of lengths 3.

In the modified algorithm, the number of pat-
terns generated is more than the patterns gener-
ated in candidate generation phase. The modified 
algorithm finds an edge over any level based al-
gorithm in the way that it keeps track of the 
subsequences information. We also noted down 
the time required by the AprioriAll algorithm and 
modified algorithm. Figure 2 shows the time re-
quired by both the algorithms. In Figure 2 the 
curve represented by Apriori-All shows the time 
taken(in milliseconds) for deriving the sequences 
by the original algorithm (Apriori-All) and the 
other curve depicts the time taken by the modified 
algorithm to get in the user specified interesting-
ness pattern. We use the condition for interest 
satisfying join from the candidate generation phase 
of length three.

As can be noted from the figure 2, initially for 
both the algorithms (AprioriAll and modified 
algorithm) time requirements are almost the same. 
But as the number of customers increases the 
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Algorithm 1. The Modified Algorithm

Input:  
D = {t1, t2, t3, …, tn}where t1, t2, …,tn are user sessions. 
S = Minimum Support threshold value 
IT= Minimum interest value (0 < IT <= 1) 
Output: 
Sequential Patterns qualified with interestingness measure. 
Begin 
L1 = large 1-Itemsets; 
For (k = 2; Lk-1! = 0; k++) do 
  Begin 
          Ck= Apriorimodgen(Lk-1,S) 
          For each transaction ti ∈  D
                  do  
                 Ci =subset (Ck, ti); 
                 For all candidate  c ∈  Ci do
                            c.count++; 
                                  Lk={c Ck| c.count > S) 
     End 
Find all maximal reference sequences from L; 
End 
Procedure Apriorimodgen (Lk-1,  S) 
Begin 
Ck= null; 
      For each Itemset Li  to Lk-1 
         For each Itemset Lj to Lk-1 
                    If (Interest (Li, Lj) > IT) 
                    Begin  
                          C = Li join Lj 
                          has Infrequent –Subset (c, Lk-1) 
                     End 
For each Itemset Li  L1 // to give identity sequences of length 
                          Li → Li   
                          Return Ck; 
End  
Procedure Apriorimodgen (Lk-1, S) in turn uses the procedure has Infrequent 
Subset(c, Lk-1) to prune the candidate set using interest measure. 
Procedure has Infrequent-Subset(c,Lk-1) 
Begin  
For each (k-1) subset s of c 
        If s ∈  Lk-1 then
        return false; 
 Else true; 
End 
Procedure Interest(Li, LJ) 
Begin 
For each (Li, Lj) 

End
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modified algorithm takes less time in comparison 
to the AprioriALL algorithm. The patterns due to 
the modified algorithm are only the ones which 
are really meaningful and interesting. It was also 
observed that the patterns derived form the pro-
posal is of length three but is of more interest to 
user requirements.

The main motivation for adding the interest 
measure in AprioriALL algorithm is due to the 
patterns obtained from the AprioriAll algorithm. 
In the original AprioriAll algorithm the change 
in the candidate generation phase resulted in 
reduced time and space since the required inter-

ested candidates are generated and passed on for 
the candidate test phase to qualify the minimum 
support value. Thus, the user gets only those pat-
terns which qualify the interestingness pattern. 
The modified algorithm is well when the user 
transactions are huge in size.

CONCLUSION

Sequence pattern mining is a heavily researched 
area in the field of data mining with wide range 
of application areas. One of them is to use find 

Figure 1. Sequence length derivation of the original algorithm vs. variation one

Figure 2. Performance evaluation of the AprioriALL and modified algorithm
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the maximal length pattern from large collection 
of web log data. Discovering hidden information 
from Web log data is called Web usage mining. 
The aim of discovering large sequential patterns 
in Web log data is to obtain information about 
the navigational behavior of the users. This can 
be used for advertising purposes, for creating 
dynamic user profiles etc.

In this work, we modified the AprioriAll al-
gorithm to obtain the patterns of more interest. 
We demonstrated that the proposed algorithm 
generates the only interesting set of patterns as 
compared over the original algorithm. The pro-
posed algorithm scales well over the large dataset. 
We also demonstrated the time requirement of the 
proposed algorithm. The proposed algorithm takes 
less time as compared to the original algorithm. 
The viability of our approach was shown over the 
msnbc web log dataset consisting user transactions.

The Preprocessing pruning of candidates is 
novel approach and can be extended in the post 
processing phase to select out the largeitemset 
sequences generated.

The minimum interest value specification can 
also be used to get the pruning of candidates is to 
be given by user who has good domain knowledge 
about the dataset. This is one area which can be 
looked in for future enhancement to get the au-
tomated interested values by the use of genetic 
algorithms.
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