

Pradeep Kumar
Indian Institute of Management Lucknow, India

P. Radha Krishna
Infosys Lab, Infosys Limited, India

S. Bapi Raju
University of Hyderabad, India

Pattern Discovery Using
Sequence Data Mining:
Applications and Studies

Pattern discovery using sequence data mining : applications and studies / Pradeep Kumar, P. Radha Krishna, and S. Bapi
Raju, editors.
 p. cm.
 Summary: “This book provides a comprehensive view of sequence mining techniques, and present current research and
case studies in Pattern Discovery in Sequential data authored by researchers and practitioners”-- Provided by publisher.
 Includes bibliographical references and index.
 ISBN 978-1-61350-056-9 (hardcover) -- ISBN 978-1-61350-058-3 (print & perpetual access) -- ISBN 978-1-61350-057-6
(ebook) 1. Sequential pattern mining. 2. Sequential processing (Computer science) I. Kumar, Pradeep, 1977- II. Radha
Krishna, P. III. Raju, S. Bapi, 1962-
 QA76.9.D343P396 2012
 006.3’12--dc22
 2011008678

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Senior Editorial Director: Kristin Klinger
Director of Book Publications: Julia Mosemann
Editorial Director: Lindsay Johnston
Acquisitions Editor: Erika Carter
Development Editor: Joel Gamon
Production Editor: Sean Woznicki
Typesetters: Jennifer Romanchak, Lisandro Gonzalez
Print Coordinator: Jamie Snavely
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2012 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

List of Reviewers
Manish Gupta, University of Illinois at Urbana, USA
Chandra Sekhar, Indian Institute of Technology Madras, India
Arnab Bhattacharya, Indian Institute of Technology Kanpur, India
Padmaja T Maruthi, University of Hyderabad, India
T. Ravindra Babu, Infosys Technologies Ltd, India
Pratibha Rani, International Institute of Information Technology Hyderabad, India
Nita Parekh, International Institute of Information Technology Hyderabad, India
Anass El-Haddadi, IRIT, France
Pinar Senkul, Middle East Technical University, Turkey
Jessica Lin, George Mason University, USA
Pradeep Kumar, Indian Institute of Management Lucknow, India
Raju S. Bapi, University of Hyderabad, India
P. Radha Krishna, Infosys Lab, Infosys Limited, India

Table of Contents

Preface ..vii

Section 1
Current State of Art

Chapter 1
Applications of Pattern Discovery Using Sequential Data Mining .. 1

Manish Gupta, University of Illinois at Urbana-Champaign, USA
Jiawei Han, University of Illinois at Urbana-Champaign, USA

Chapter 2
A Review of Kernel Methods Based Approaches to Classification and Clustering of Sequential
Patterns, Part I: Sequences of Continuous Feature Vectors .. 24

Dileep A. D., Indian Institute of Technology, India
Veena T., Indian Institute of Technology, India
C. Chandra Sekhar, Indian Institute of Technology, India

Chapter 3
A Review of Kernel Methods Based Approaches to Classification and Clustering of Sequential
Patterns, Part II: Sequences of Discrete Symbols ... 51

Veena T., Indian Institute of Technology, India
Dileep A. D., Indian Institute of Technology, India
C. Chandra Sekhar, Indian Institute of Technology, India

Section 2
Techniques

Chapter 4
Mining Statistically Significant Substrings Based on the Chi-Square Measure 73

Sourav Dutta, IBM Research Lab, India
Arnab Bhattacharya, Indian Institute of Technology Kanpur, India

Chapter 5
Unbalanced Sequential Data Classification Using Extreme Outlier Elimination and Sampling
Techniques .. 83

T. Maruthi Padmaja, University of Hyderabad (UoH), India
Raju S. Bapi, University of Hyderabad (UoH), India
P. Radha Krishna, Infosys Lab, Infosys Limited, India

Chapter 6
Quantization Based Sequence Generation and Subsequence Pruning for Data Mining
Applications .. 94

T. Ravindra Babu, Infosys Limited, India
M. Narasimha Murty, Indian Institute of Science Bangalore, India
S. V. Subrahmanya, Infosys Limited, India

Chapter 7
Classification of Biological Sequences ... 111

Pratibha Rani, International Institute of Information Technology Hyderabad, India
Vikram Pudi, International Institute of Information Technology Hyderabad, India

Section 3
Applications

Chapter 8
Approaches for Pattern Discovery Using Sequential Data Mining .. 137

Manish Gupta, University of Illinois at Urbana-Champaign, USA
Jiawei Han, University of Illinois at Urbana-Champaign, USA

Chapter 9
Analysis of Kinase Inhibitors and Druggability of Kinase-Targets Using Machine Learning
Techniques .. 155

S. Prasanthi, University of Hyderabad, India
S. Durga Bhavani, University of Hyderabad, India
T. Sobha Rani, University of Hyderabad, India
Raju S. Bapi, University of Hyderabad, India

Chapter 10
Identification of Genomic Islands by Pattern Discovery .. 166

Nita Parekh, International Institute of Information Technology Hyderabad, India

Chapter 11
Video Stream Mining for On-Road Traffic Density Analytics ... 182

Rudra Narayan Hota, Frankfurt Institute for Advanced Studies, Germany
Kishore Jonna, Infosys Lab, Infosys Limited, India
P. Radha Krishna, Infosys Lab, Infosys Limited, India

Chapter 12
Discovering Patterns in Order to Detect Weak Signals and Define New Strategies 195

Anass El Haddadi, University of Toulouse III, France & University of Mohamed V, Morocco
Bernard Dousset, University of Toulouse, France
Ilham Berrada, University of Mohamed V, Morocco

Chapter 13
Discovering Patterns for Architecture Simulation by Using Sequence Mining 212

Pınar Senkul, Middle East Technical University, Turkey
Nilufer Onder, Michigan Technological University, USA
Soner Onder, Michigan Technological University, USA
Engin Maden, Middle East Technical University, Turkey
Hui Meen Nyew, Michigan Technological University, USA

Chapter 14
Sequence Pattern Mining for Web Logs ... 237

Pradeep Kumar, Indian Institute of Management Lucknow, India
Raju S. Bapi, University of Hyderabad, India
P. Radha Krishna, Infosys Lab, Infosys Limited, India

Compilation of References ... 244

About the Contributors .. 264

Index ... 270

vii

Preface

A huge amount of data is collected every day in the form of sequences. These sequential data are valu-
able sources of information not only to search for a particular value or event at a specific time, but also
to analyze the frequency of certain events or sets of events related by particular temporal/sequential
relationship. For example, DNA sequences encode the genetic makeup of humans and all other species,
and protein sequences describe the amino acid composition of proteins and encode the structure and
function of proteins. Moreover, sequences can be used to capture how individual humans behave through
various temporal activity histories such as weblog histories and customer purchase patterns. In general
there are various methods to extract information and patterns from databases, such as time series ap-
proaches, association rule mining, and data mining techniques.

The objective of this book is to provide a concise state-of-the-art in the field of sequence data min-
ing along with applications. The book consists of 14 chapters divided into 3 sections. The first section
provides review of state-of-art in the field of sequence data mining. Section 2 presents relatively new
techniques for sequence data mining. Finally, in section 3, various application areas of sequence data
mining have been explored.

Chapter 1, Approaches for Pattern Discovery Using Sequential Data Mining, by Manish Gupta and
Jiawei Han of University of Illinois at Urbana-Champaign, IL, USA, discusses different approaches for
mining of patterns from sequence data. Apriori based methods and the pattern growth methods are the
earliest and the most influential methods for sequential pattern mining. There is also a vertical format
based method which works on a dual representation of the sequence database. Work has also been done
for mining patterns with constraints, mining closed patterns, mining patterns from multi-dimensional
databases, mining closed repetitive gapped subsequences, and other forms of sequential pattern mining.
Some works also focus on mining incremental patterns and mining from stream data. In this chapter,
the authors have presented at least one method of each of these types and discussed advantages and
disadvantages.

Chapter 2, A Review of Kernel Methods Based Approaches to Classification and Clustering of
Sequential Patterns, Part I: Sequences of Continuous Feature Vectors, was authored by Dileep A. D.,
Veena T., and C. Chandra Sekhar of Department of Computer Science and Engineering, Indian Institute
of Technology Madras, India. They present a brief description of kernel methods for pattern classifica-
tion and clustering. They also describe dynamic kernels for sequences of continuous feature vectors.
The chapter also presents a review of approaches to sequential pattern classification and clustering using
dynamic kernels.

viii

Chapter 3 is A Review of Kernel Methods Based Approaches to Classification and Clustering of
Sequential Patterns, Part II: Sequences of Discrete Symbols by Veena T., Dileep A. D., and C. Chandra
Sekhar of Department of Computer Science and Engineering, Indian Institute of Technology Madras,
India. The authors review methods to design dynamic kernels for sequences of discrete symbols. In their
chapter they have also presented a review of approaches to classification and clustering of sequences of
discrete symbols using the dynamic kernel based methods.

Chapter 4 is titled, Mining Statistically Significant Substrings Based on the Chi-Square Measure,
contributed by Sourav Dutta of IBM Research India along with Arnab Bhattacharya Dept. of Computer
Science and Engineering, Indian Institute of Technology, Kanpur, India. This chapter highlights the chal-
lenge of efficient mining of large string databases in the domains of intrusion detection systems, player
statistics, texts, proteins, et cetera, and how these issues have emerged as challenges of practical nature.
Searching for an unusual pattern within long strings of data is one of the foremost requirements for
many diverse applications. The authors first present the current state-of-art in this area and then analyze
the different statistical measures available to meet this end. Next, they argue that the most appropriate
metric is the chi-square measure. Finally, they discuss different approaches and algorithms proposed for
retrieving the top-k substrings with the largest chi-square measure. The local-maxima based algorithms
maintain high quality while outperforming others with respect to the running time.

Chapter 5 is Unbalanced Sequential Data Classification Using Extreme Outlier Elimination and
Sampling Techniques, by T. Maruthi Padmaja along with Raju S. Bapi from University of Hyderabad,
Hyderabad, India and P. Radha Krishna, Infosys Lab, Infosys Technologies Ltd, Hyderabad, India. This
chapter focuses on problem of predicting minority class sequence patterns from the noisy and unbal-
anced sequential datasets. To solve this problem, the atuhors proposed a new approach called extreme
outlier elimination and hybrid sampling technique.

Chapter 6 is Quantization Based Sequence Generation and Subsequence Pruning for Data Mining
Applications by T. Ravindra Babu and S. V. Subrahmanya of E-Comm. Research Lab, Education and
Research, Infosys Technologies Limited, Bangalore, India, along with M. Narasimha Murty, Dept. of
Computer Science and Automation, Indian Institute of Science, Bangalore, India. This chapter has high-
lighted the problem of combining data mining algorithms with data compaction used for data compression.
Such combined techniques lead to superior performance. Approaches to deal with large data include
working with a representative sample instead of the entire data. The representatives should preferably
be generated with minimal data scans, methods like random projection, et cetera.

Chapter 7 is Classification of Biological Sequences by Pratibha Rani and Vikram Pudi of International
Institute of Information Technology, Hyderabad, India, and it discusses the problem of classifying a newly
discovered sequence like a protein or DNA sequence based on their important features and functions,
using the collection of available sequences. In this chapter, the authors study this problem and present
two techniques Bayesian classifiers: RBNBC and REBMEC. The algorithms used in these classifiers
incorporate repeated occurrences of subsequences within each sequence. Specifically, RBNBC (Repeat
Based Naive Bayes Classifier) uses a novel formulation of Naive Bayes, and the second classifier,
REBMEC (Repeat Based Maximum Entropy Classifier) uses a novel framework based on the classical
Generalized Iterative Scaling (GIS) algorithm.

Chapter 8, Applications of Pattern Discovery Using Sequential Data Mining, by Manish Gupta and
Jiawei Han of University of Illinois at Urbana-Champaign, IL, USA, presents a comprehensive review
of applications of sequence data mining algorithms in a variety of domains like healthcare, education,
Web usage mining, text mining, bioinformatics, telecommunications, intrusion detection, et cetera.

 ix

Chapter 9, Analysis of Kinase Inhibitors and Druggability of Kinase-Targets Using Machine Learn-
ing Techniques, by S. Prashanthi, S. Durga Bhavani, T. Sobha Rani, and Raju S. Bapi of Department
of Computer & Information Sciences, University of Hyderabad, Hyderabad, India, focuses on human
kinase drug target sequences since kinases are known to be potential drug targets. The authors have also
presented a preliminary analysis of kinase inhibitors in order to study the problem in the protein-ligand
space in future. The identification of druggable kinases is treated as a classification problem in which
druggable kinases are taken as positive data set and non-druggable kinases are chosen as negative data set.

Chapter 10, Identification of Genomic Islands by Pattern Discovery, by Nita Parekh of International
Institute of Information Technology, Hyderabad, India addresses a pattern recognition problem at the
genomic level involving identifying horizontally transferred regions, called genomic islands. A horizon-
tally transferred event is defined as the movement of genetic material between phylogenetically unrelated
organisms by mechanisms other than parent to progeny inheritance. Increasing evidence suggests the
importance of horizontal transfer events in the evolution of bacteria, influencing traits such as antibiotic
resistance, symbiosis and fitness, virulence, and adaptation in general. Considerable effort is being made
in their identification and analysis, and in this chapter, a brief summary of various approaches used in
the identification and validation of horizontally acquired regions is discussed.

Chapter 11, Video Stream Mining for On-Road Traffic Density Analytics, by Rudra Narayan Hota of
Frankfurt Institute for Advanced Studies, Frankfurt, Germany along with Kishore Jonna and P. Radha
Krishna, Infosys Lab, Infosys Technologies Limited, India, addresses the problem of estimating computer
vision based traffic density using video stream mining. The authors present an efficient approach for
traffic density estimation using texture analysis along with Support Vector Machine (SVM) classifier, and
describe analyzing traffic density for on-road traffic congestion control with better flow management.

Chapter 12, Discovering Patterns in Order to Detect Weak Signals and Define New Strategies, by
Anass El Haddadi of Université de Toulouse, IRIT UMR France Bernard Dousset, Ilham Berrada of
Ensias, AL BIRONI team, Mohamed V University – Souissi, Rabat, Morocco presents four methods
for discovering patterns in the competitive intelligence process: “correspondence analysis,” “multiple
correspondence analysis,” “evolutionary graph,” and “multi-term method.” Competitive intelligence
activities rely on collecting and analyzing data in order to discover patterns from data using sequence
data mining. The discovered patterns are used to help decision-makers considering innovation and de-
fining business strategy.

Chapter 13, Discovering Patterns for Architecture Simulation by Using Sequence Mining, by Pınar
Senkul (Middle East Technical University, Computer Engineering Dept., Ankara, Turkey) along with
Nilufer Onder (Michigan Technological University, Computer Science Dept., Michigan, USA), Soner
Onder (Michigan Technological University, Computer Science Dept., Michigan, USA), Engin Maden
(Middle East Technical University, Computer Engineering Dept., Ankara, Turkey) and Hui Meen Nyew
(Michigan Technological University, Computer Science Dept., Michigan, USA), discusses the problem
of designing and building high performance systems that make effective use of resources such as space
and power. The design process typically involves a detailed simulation of the proposed architecture fol-
lowed by corrections and improvements based on the simulation results. Both simulator development
and result analysis are very challenging tasks due to the inherent complexity of the underlying systems.
They present a tool called Episode Mining Tool (EMT), which includes three temporal sequence mining
algorithms, a preprocessor, and a visual analyzer.

Chapter 14 is called Sequence Pattern Mining for Web Logs by Pradeep Kumar, Indian Institute of
Management, Lucknow, India, Raju S. Bapi, University of Hyderabad, India and P. Radha Krishna,

x

Infosys Lab, Infosys Technologies Limited, India. In their work, the authors utilize a variation to the
AprioriALL Algorithm, which is commonly used for the sequence pattern mining. The proposed varia-
tion adds up the measure Interest during every step of candidate generation to reduce the number of
candidates thus resulting in reduced time and space cost.

This book can be useful to academic researchers and graduate students interested in data mining
in general and in sequence data mining in particular, and to scientists and engineers working in fields
where sequence data mining is involved, such as bioinformatics, genomics, Web services, security, and
financial data analysis.

Sequence data mining is still a fairly young research field. Much more remains to be discovered in
this exciting research domain in the aspects related to general concepts, techniques, and applications.
Our fond wish is that this collection sparks fervent activity in sequence data mining, and we hope this
is not the last word!

Pradeep Kumar
Indian Institute of Management Lucknow, India

P. Radha Krishna
Infosys Lab, Infosys Limited, India

S. Bapi Raju
University of Hyderabad, India

Section 1
Current State of Art

1

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

DOI: 10.4018/978-1-61350-056-9.ch001

HEALTHCARE

Patterns in healthcare domain include the common
patterns in paths followed by patients in hospitals,
patterns observed in symptoms of a particular
disease, patterns in daily activity and health data.
Works related to these applications are discussed
in this sub-section.

Patterns in patient paths: The purpose of the
French Diagnosis Related Group’s information
system is to describe hospital activity by focusing
on hospital stays. (Nicolas, Herengt & Albuisson,
2004) propose usage of sequential pattern mining
for patient path analysis across multiple healthcare
institutions. The objective is to discover, to classify
and to visualize frequent patterns among patient
path. They view a patient path as a sequence of

Manish Gupta
University of Illinois at Urbana-Champaign, USA

Jiawei Han
University of Illinois at Urbana-Champaign, USA

Applications of Pattern
Discovery Using Sequential

Data Mining

ABSTRACT

Sequential pattern mining methods have been found to be applicable in a large number of domains.
Sequential data is omnipresent. Sequential pattern mining methods have been used to analyze this data
and identify patterns. Such patterns have been used to implement efficient systems that can recommend
based on previously observed patterns, help in making predictions, improve usability of systems, de-
tect events, and in general help in making strategic product decisions. In this chapter, we discuss the
applications of sequential data mining in a variety of domains like healthcare, education, Web usage
mining, text mining, bioinformatics, telecommunications, intrusion detection, et cetera. We conclude
with a summary of the work.

2

Applications of Pattern Discovery Using Sequential Data Mining

sets. Each set in the sequence is a hospitaliza-
tion instance. Each element in a hospitalization
can be any symbolic data gathered by the PMSI
(medical data source). They used the SLPMiner
system (Seno & Karypis, 2002) for mining the
patient path database in order to find frequent
sequential patterns among the patient path. They
tested the model on the 2002 year of PMSI data at
the Nancy University Hospital and also propose
an interactive tool to perform inter-institutional
patient path analysis.

Patterns in dyspepsia symptoms: Consider
a domain expert, who is an epidemiologist and
is interested in finding relationships between
symptoms of dyspepsia within and across time
points. This can be done by first mining patterns
from symptom data and then using patterns to
define association rules. Rules could look like
ANOREX2=0 VOMIT2=0 NAUSEA3=0 AN-
OREX3=0 VOMIT3=0 ⇒ DYSPH2=0 where
each symptom is represented as <symptom>N=V
(time=N and value=V). ANOREX (anorexia),
VOMIT (vomiting), DYSPH (dysphagia) and
NAUSEA (nausea) are the different symptoms.
However, a better way of handling this is to de-
fine subgroups as a set of symptoms at a single
time point. (Lau, Ong, Mahidadia, Hoffmann,
Westbrook, & Zrimec, 2003) solve the problem
of identifying symptom patterns by implement-
ing a framework for constraint based association
rule mining across subgroups. Their framework,
Apriori with Subgroup and Constraint (ASC), is
built on top of the existing Apriori framework.
They have identified four different types of phase-
wise constraints for subgroups: constraint across
subgroups, constraint on subgroup, constraint on
pattern content and constraint on rule. A constraint
across subgroups specifies the order of subgroups
in which they are to be mined. A constraint on
subgroup describes the intra-subgroup criteria
of the association rules. It describes a minimum
support for subgroups and a set of constraints for
each subgroup. A constraint on pattern content
outlines the inter-subgroup criteria on association

rules. It describes the criteria on the relationships
between subgroups. A constraint on rule outlines
the composition of an association rule; it describes
the attributes that form the antecedents and the
consequents, and calculates the confidence of an
association rule. It also specifies the minimum
support for a rule and prunes away item-sets that do
not meet this support at the end of each subgroup-
merging step. A typical user constraint can look
like [1,2,3][1, a=A1&n<=2][2, a=B1&n<=2][3,
v=1][rule, (s1 s2) ⇒s3]. This can be interpreted
as: looking at subgroups 1, 2 and 3, from subgroup
1, extract patterns that contain the attribute A1
(a=A1) and contain no more than 2 attributes
(n<=2); from subgroup 2, extract patterns that
contain the attribute B1 (a=B1) and contain no
more than 2 attributes (n<=2); then from subgroup
3, extract patterns with at least one attribute that
has a value of 1 (v=1). Attributes from subgroups
1 and 2 form the antecedents in a rule, and at-
tributes from subgroup 3 form the consequents
([rule, (s1 s2) ⇒ s3]). Such constraints are easily
incorporated into the Apriori process by pruning
away more candidates based on these constraints.

They experimented on a dataset with records
of 303 patients treated for dyspepsia. Each record
represented a patient, the absence or presence of
10 dyspepsia symptoms at three time points (initial
presentation to a general practitioner, 18 months
after endoscopy screening, and 8–9 years after
endoscopy) and the endoscopic diagnosis for the
patient. Each of these symptoms can have one
of the following three values: symptom present,
symptom absent, missing (unknown). At each of
the three time points, a symptom can take any of
these three possible values. They show that their
approach leads to interesting symptom pattern
discovery.

Patterns in daily activity data: There are also
works, which investigate techniques for using
agent-based smart home technologies to provide
at-home automated assistance and health moni-
toring. These systems first learn patterns from
at-home health and activity data. Further, for any

3

Applications of Pattern Discovery Using Sequential Data Mining

new test cases, they identify behaviors that do not
conform to normal behavior and report them as
predicted anomalous health problems.

EDUCATION

In the education domain, work has been done
to extract patterns from source code and student
teamwork data.

Patterns in source code: A coding pattern is
a frequent sequence of method calls and control
statements to implement a particular behavior.
Coding patterns include copy-and-pasted code,
crosscutting concerns (parts of a program which
rely on or must affect many other parts of the
system) and implementation idioms. Dupli-
cated code fragments and crosscutting concerns
that spread across modules are problematic in
software maintenance. (Ishio, Date, Miyake, &
Inoue, 2008) propose a sequential pattern min-
ing approach to capture coding patterns in Java
programs. They define a set of rules to translate
Java source code into a sequence database for
pattern mining, and apply PrefixSpan algorithm
to the sequence database. They define constraints
for mining source code patterns. A constraint for
control statements could be: If a pattern includes
a LOOP/IF element, the pattern must include its
corresponding element generated from the same
control statement. They classify sub-patterns into
pattern groups. As a case study, they applied their
tool to six open-source programs and manually
investigated the resultant patterns.

They identify about 17 pattern groups which
they classify into 5 categories:

1. A boolean method to insert an additional
action: <Boolean method>, <IF>, <action-
method>, <END-IF>

2. A boolean method to change the behavior
of multiple methods: <Boolean method>,
<IF>, <action-method>, <END-IF>

3. A pair of set-up and clean-up: <set-up
method>, <misc action>, …, <clean-up
method>

4. Exception Handling: Every instance is in-
cluded in a try-catch statement.

5. Other patterns.

They have made this technique available as
a tool: Fung(http://sel.ist.osaka-u.ac.jp/~ishio/
fung/)

Patterns in student team-work data: (Kay,
Maisonneuve, Yacef, & Zaïane, 2006) describe
data mining of student group interaction data to
identify significant sequences of activity. The goal
is to build tools that can flag interaction sequences
indicative of problems, so that they can be used
to assist student teams in early recognition of
problems. They also want tools that can identify
patterns that are markers of success so that these
might indicate improvements during the learning
process. They obtain their data using TRAC which
is an open source tool designed for use in software
development projects. Students collaborate by
sharing tasks via the TRAC system. These tasks
are managed by a “Ticket” system; source code
writing tasks are managed by a version control
system called “SVN”; students communicate by
means of collaborative web page writing called
“Wiki”. Data consist of events where each event
is represented as Event = {EventType, Resour-
ceId, Author, Time} where: EventType is one of
T (for Ticket), S (for SVN), W (for Wiki). One
such sequence is generated for each of the group
of students.

The original sequence obtained for each group
was 285 to 1287 long. These event sequences
were then broken down into several “sequences”
of events using a per session approach or a per
resource approach. In breakdown per session ap-
proach, date and the resourceId are omitted and
a sequence is of form: (iXj) which captures the
number of i consecutive times a medium X was
used by j different authors, e.g., <(2T1), (5W3),
(2S1),(1W1)>. In breakdown per resource ap-

4

Applications of Pattern Discovery Using Sequential Data Mining

proach, sequence is of form <iXj, t> which captures
the number of i different events of type X, the
number j of authors, and the number of days over
which t the resource was modified, e.g., <10W5,
2>. In a follow-up paper (Perera, Kay, Yacef, &
Koprinska, 2007), they have a third approach,
breakdown by task where every sequence is of
the form (i,X,A) which captures the number of
consecutive events (i) occurring on a particular
TRAC medium (X), and the role of the author (A).

Patterns observed in group sessions: Better
groups had many alternations of SVN and Wiki
events, and SVN and Ticket events whereas
weaker groups had almost none. The best group
also had the highest proportion of author ses-
sions containing many consecutive ticket events
(matching their high use of ticketing) and SVN
events (suggesting they committed their work to
the group repository more often).

A more detailed analysis of these patterns
revealed that the best group used the Ticket
more than the Wiki, whereas the weakest group
displayed the opposite pattern. The data sug-
gested group leaders in good groups were much
less involved in technical work, suggesting work
was being delegated properly and the leader was
leading rather than simply doing all the work. In
contrast, the leaders of the poorer groups either
seemed to use the Wiki (a less focused medium)
more than the tickets, or be involved in too much
technical work.

Patterns observed in task sequences: The two
best groups had the greatest percentage support
for the pattern (1,t,L)(1,t,b), which were most
likely tickets initiated by the leader and accepted
by another team member. The fact this occurred
more often than (1,t,L)(2,t,b), suggests that the
better groups were distinguished by tasks being
performed on the Wiki or SVN files before the
ticket was closed by the second member. Notably,
the weakest group had higher support for this latter
pattern than the former. The best group was one of
the only two to display the patterns (1,t,b)(1,s,b)
and (1,s,b)(1,t,b) – the first likely being a ticket

being accepted by a team member and then SVN
work relating to that task being completed and the
second likely being work being done followed
by the ticket being closed. The close coupling of
task-related SVN and Wiki activity and Ticket
events for this group was also shown by relatively
high support for the patterns (1,t,b)(1,t,b)(1,t,b),
(1,t,b)(1,s,b)(1,t,b) and (1,t,b)(1,w,b)(1,t,b). The
poorest group displayed the highest support for
the last pattern, but no support for the former,
again indicating their lack of SVN use in tasks.

Patterns observed in resource sequences: The
best group had very high support for patterns
where the leader interacted with group members
on tickets, such as (L,1,t)(b,1,t)(L,1,t). The poorest
group in contrast lacked these interaction patterns,
and had more tickets which were created by the
Tracker rather than the Leader, suggestive of
weaker leadership. The best group displayed the
highest support for patterns such as (b,3,t) and
(b,4,t), suggestive of group members making at
least one update on tickets before closing them.
In contrast, the weaker groups showed support
mainly for the pattern (b,2,t), most likely indicative
of group members accepting and closing tickets
with no update events in between.

Web Usage Mining

The complexity of tasks such as Web site design,
Web server design, and of simply navigating
through a Web site has been increasing continu-
ously. An important input to these design tasks
is the analysis of how a Web site is being used.
Usage analysis includes straightforward statistics,
such as page access frequency, as well as more
sophisticated forms of analysis, such as finding
the common traversal paths through a Web site.
Web Usage Mining is the application of pattern
mining techniques to usage logs of large Web
data repositories in order to produce results that
can be used in the design tasks mentioned above.
However, there are several preprocessing tasks that

5

Applications of Pattern Discovery Using Sequential Data Mining

must be performed prior to applying data mining
algorithms to the data collected from server logs.

Transaction identification from web usage data:
(Cooley, Mobasher, & Srivastava, 1999) present
several data preparation techniques in order to
identify unique users and user sessions. Also, a
method to divide user sessions into semantically
meaningful transactions is defined. Each user
session in a user session file can be thought of in
two ways; either as a single transaction of many
page references, or a set of many transactions each
consisting of a single page reference. The goal of
transaction identification is to create meaningful
clusters of references for each user. Therefore,
the task of identifying transactions is one of
either dividing a large transaction into multiple
smaller ones or merging small transactions into
fewer larger ones. This process can be extended
into multiple steps of merge or divide in order to
create transactions appropriate for a given data
mining task. Both types of approaches take a
transaction list and possibly some parameters as
input, and output a transaction list that has been
operated on by the function in the approach in
the same format as the input. They consider three
different ways of identifying transactions based
on: Reference Length (time spent when visiting a
page), Maximal Forward Reference (set of pages
in the path from the first page in a user session up
to the page before a backward reference is made)
and Time Window.

By analyzing this information, a Web Usage
Mining system can determine temporal relation-
ships among data items such as the following
Olympics Web site examples:

• 9.81% of the site visitors accessed the
Atlanta home page followed by the
Sneakpeek main page.

• 0.42% of the site visitors accessed
the Sports main page followed by the
Schedules main page.

Patterns for customer acquisition: (Buchner &
Mulvenna, 1998) propose an environment that al-
lows the discovery of patterns from trading related
web sites, which can be harnessed for electronic
commerce activities, such as personalization,
adaptation, customization, profiling, and recom-
mendation.

The two essential parts of customer attraction
are the selection of new prospective customers and
the acquisition of the selected potential candidates.
One marketing strategy to perform this exercise,
among others, is to find common characteristics in
already existing visitors’ information and behavior
for the classes of profitable and non-profitable
customers. The authors discover these sequences
by extending GSP so it can handle duplicates in
sequences, which is relevant to discover naviga-
tional behavior.

A found sequence looks as the

 following:

{ecom.infm.ulst.ac.uk/, ecom.infm.

ulst.ac.uk/News_Resources.html, ecom.

infm.ulst.ac.uk/Journals.html, ecom.

infm.ulst.ac.uk/, ecom.infm.ulst.

ac.uk/search.htm} Support = 3.8%;

Confidence = 31.0%

The discovered sequence can then be used
to display special offers dynamically to keep a
customer interested in the site, after a certain
page sequence with a threshold support and/or
confidence value has been visited.

Patterns to Improve Web Site Design

For the analysis of visitor navigation behavior
in web sites integrating multiple information
systems (multiple underlying database servers
or archives), (Berendt, 2000) proposed the web
usage miner (WUM), which discovers naviga-
tion patterns subject to advanced statistical and
structural constraints. Experiments with a real web
site that integrates data from multiple databases,

6

Applications of Pattern Discovery Using Sequential Data Mining

the German SchulWeb (a database of German-
language school magazines), demonstrate the ap-
propriateness of WUM in discovering navigation
patterns and show how those discoveries can help
in assessing and improving the quality of the site
design i.e. conformance of the web site’s structure
to the intuition of each group of visitors accessing
the site. The intuition of the visitors is indirectly
reflected in their navigation behavior, as repre-
sented in their browsing patterns. By comparing
the typical patterns with the site usage expected
by the site designer, one can examine the quality
of the site and give concrete suggestions for its
improvement. For instance, repeated refinements
of a query may indicate a search environment that
is not intuitive for some users. Also, long lists
of results may signal that sufficiently selective
search options are lacking, or that they are not
understood by everyone.

A session is a directed list of page accesses
performed by a user during her/his visit in a site.
Pages of a session are mapped onto elements
of a sequence, whereby each element is a pair
comprised of the page and a positive integer. This
integer is the occurrence of the page in the session,
taking the fact into account that a user may visit the
same page more than once during a single session.
Further, they also define generalized sequences
which are sequences with length constraints on
gaps. These constraints are expressed in a mining
language MINT.

The patterns that they observe are as follows.
Searches reaching a ‘school’ entry are a dominant
sub-pattern. ‘State’ lists of schools are the most
popular lists. Schools are rarely reached in short
searches.

Pattern Discovery for
Web Personalization

Pattern discovery from usage data can also be used
for Web personalization. (Mobasher, Dai, Luo, &
Nakagawa, 2002) find that more restrictive pat-
terns, such as contiguous sequential patterns (e.g.,

frequent navigational paths) are more suitable for
predictive tasks, such as Web pre-fetching, which
involve predicting which item is accessed next by
a user), while less constrained patterns, such as
frequent item-sets or general sequential patterns
are more effective alternatives in the context of
Web personalization and recommender systems.

Web usage preprocessing ultimately results
in a set of n page-views, P = {p1, p2... pn}, and a
set of m user transactions, T = {t1, t2... tm}. Each
transaction t is defined as an l-length sequence of
ordered pairs: t = <(pt

1, w(pt
1)), (pt

2, w(pt
2)),...,(pt

l,
w(pt

l))> where w(pt
i) is the weight associated with

page-view pt
i. Contiguous sequential patterns

(CSPs -- patterns in which the items appearing
in the sequence must be adjacent with respect
to the underlying ordering) are used to capture
frequent navigational paths among user trails.
General sequential patterns are used to represent
more general navigational patterns within the site.

To build a recommendation algorithm using
sequential patterns, the authors focus on frequent
sequences of size |w| + 1 whose prefix contains an
active user session w. The candidate page-views
to be recommended are the last items in all such
sequences. The recommendation values are based
on the confidence of the patterns. A simple trie
structure is used to store both the sequential and
contiguous sequential patterns discovered during
the pattern discovery phase. The recommendation
algorithm is extended to generate all kth order
recommendations as follows. First, the recom-
mendation engine uses the largest possible active
session window as an input for recommendation
engine. If the engine cannot generate any recom-
mendations, the size of active session window is
iteratively decreased until a recommendation is
generated or the window size becomes 0.

The CSP model can do better in terms of pre-
cision, but the coverage levels, in general, may
be too low when the goal is to generate as many
good recommendations as possible. On the other
hand, when dealing with applications such as
Web pre-fetching in which the primary goal is to

7

Applications of Pattern Discovery Using Sequential Data Mining

predict the user’s immediate next actions (rather
than providing a broader set of recommendations),
the CSP model provides the best choice. This is
particularly true in sites with many dynamically
generated pages, where often a contiguous navi-
gational path represents a semantically meaningful
sequence of user actions each depending on the
previous actions.

TEXT MINING

Pattern mining has been used for text databases to
discover trends, for text categorization, for docu-
ment classification and authorship identification.
We discuss these works below.

Trends in Text Databases

(Lent, Agrawal, & Srikant, 1997) describe a
system for identifying trends in text documents
collected over a period of time. Trends can be
used, for example, to discover that a company
is shifting interests from one domain to another.
Their system mines these trends and also provides
a method to visualize them.

The unit of text is a word and a phrase is a list
of words. Associated with each phrase is a history
of the frequency of occurrence of the phrase, ob-
tained by partitioning the documents based upon
their timestamps. The frequency of occurrence in
a particular time period is the number of docu-
ments that contain the phrase. A trend is a specific
subsequence of the history of a phrase that satisfies
the users’ query over the histories. For example,
the user may specify a shape query like a spike
query to find those phrases whose frequency of
occurrence increased and then decreased. In this
trend analysis, sequential pattern mining is used
for phrase identification.

A transaction ID is assigned to each word of
every document treating the words as items in the
data mining algorithms. This transformed data is
then mined for dominant words and phrases, and

the results saved. The user’s query is translated
into a shape query and this query is then executed
over the mined data yielding the desired trends.
The results of the mining are a set of phrases that
occur frequently in the underlying documents and
that match a query supplied by the user. Thus, the
system has three major steps: Identifying frequent
phrases using sequential patterns mining, generat-
ing histories of phrases and finding phrases that
satisfy a specified trend.

1-phrase is a list of elements where each ele-
ment is a phrase. k-phrase is an iterated list of
phrases with k levels of nesting. <<(IBM)><(data
mining)>> is a 1-phrase, which can mean that
IBM and “data mining” should occur in the same
paragraph, with “data mining” being contiguous
words in the paragraph.

A word in a text field is mapped to an item in
a data-sequence or sequential pattern and a phrase
to a sequential pattern that has just one item in
each element. Each element of a data sequence
in the sequential pattern problem has some as-
sociated timestamp relative to the other elements
in the sequence thereby defining an ordering of
the elements of a sequence. Sequential pattern
algorithms can now be applied to the transaction
ID labeled words to identify simple phrases from
the document collection.

User may be interested in phrases that are
contained in individual sentences only. Alterna-
tively, the words comprising a phrase may come
from sequential sentences so that a phrase spans
a paragraph. This generalization can be accom-
modated by the use of distance constraints that
specify a minimum and/or maximum gap between
adjacent words of a phrase. For example, the first
variation described above would be constrained
by specifying a minimum gap of one word and a
maximum gap of one sentence. The second varia-
tion would have a minimum gap of one sentence
and a maximum gap of one paragraph. For this
latter example, one could further generalize the
notion from a single word from each sentence
to a set of words from each sentence by using a

8

Applications of Pattern Discovery Using Sequential Data Mining

sliding transaction time window within sentences.
The generalizations made in the GSP algorithm
for mining sequential patterns allow a one-to-one
mapping of the minimum gap, maximum gap,
and transaction window to the parameters of the
algorithm.

Basic mapping of phrases to sequential patterns
is extended by providing a hierarchical mapping
over sentences, paragraphs, or even sections of a
text document. This extended mapping helps in
taking advantage of the structure of a document
to obtain a richer set of phrases. Where a docu-
ment has completely separate sections, phrases
that span multiple sections can also be mined,
thereby discovering a new set of relationships.
This enhancement of the GSP algorithm can be
implemented by changing the Apriori-like candi-
date generation algorithm, to consider both phrases
and words as individual elements when generating
candidate k-phrases. The manner in which these
candidates are counted would similarly change.

Patterns for Text Categorization

(Jaillet, Laurent, & Teisseire, 2006) propose us-
age of sequential patterns in the SPaC method
(Sequential Patterns for Classification) for text
categorization. Text categorization is the task of
assigning a boolean value to each pair (document,
category) where the value is true if the document
belongs to the particular category. SPaC method
consists of two steps. In the first step, sequential
patterns are built from texts. In the second step,
sequential patterns are used to classify texts.

The text consists of a set of sentences. Each
sentence is associated with a timestamp (its posi-
tion in the text). Finally the set of words contained
in a sentence corresponds to the set of items pur-
chased by the client in the market basket analysis
framework. This representation is coupled with a
stemming step and a stop-list. Sequential patterns
are extracted using a different support applied for
each category Ci. The support of a frequent pattern
is the number of texts containing the sequence of

words. E.g., the sequential pattern < (data) (infor-
mation) (machine)> means that some texts contain
words ‘data’ then ‘information’ then ‘machine’ in
three different sentences. Once sequential patterns
have been extracted for each category, the goal is
to derive a categorizer from the obtained patterns.
This is done by computing, for each category, the
confidence of each associated sequential pattern.
To solve this problem, a rule R is generated in the
following way:

R:<s1... sp> ⇒ Ci; confidence(R)=(#texts from Ci
matching <s1... sp>)/(#texts matching <s1... sp>).

Rules are sorted depending on their confidence
level and the size of the associated sequence.
When considering a new text to be classified,
a simple categorization policy is applied: the K
rules having the best confidence level and being
supported are applied. The text is then assigned
to the class mainly obtained within the K rules.

Patterns for XML Document
Classification

(Garboni, Masseglia, & Trousse, 2005) present
a supervised classification technique for XML
documents which is based on structure only. Each
XML document is viewed as an ordered labeled
tree, represented by its tags only. After a cleaning
step, each predefined cluster is characterized in
terms of frequent structural subsequences. Then
the XML documents are classified based on the
mined patterns of each cluster.

Documents are characterized using frequent
sub-trees which are common to at least x% (the
minimum support) documents of the collection.
The system is provided a set of training docu-
ments each of which is associated with a category.
Frequently occurring tags common to all clusters
are removed. In order to transform an XML docu-
ment to a sequence, the nodes of the XML tree
are mapped into identifiers. Then each identifier
is associated with its depth in the tree. Finally

9

Applications of Pattern Discovery Using Sequential Data Mining

a depth-first exploration of the tree gives the
corresponding sequence. An example sequential
pattern looks like <(0 movie), (1 title), (1 url),
(1 CountryOfProduction), (2 item), (2 item), (1
filmography), (3 name)>. Once the whole set of
sequences (corresponding to the XML documents
of a collection) is obtained, a traditional sequential
pattern extraction algorithm is used to extract
the frequent sequences. Those sequences, once
mapped back into trees, will give the frequent
sub-trees embedded in the collection.

They tested several measures in order to decide
which class each test document belongs to. The two
best measures are based on the longest common
subsequence. The first one computes the average
matching between the test document and the set
of sequential patterns and the second measure is a
modified measure, which incorporates the actual
length of the pattern compared to the maximum
length of a sequential pattern in the cluster.

Patterns to Identify Authors
of Documents

(Tsuboi, 2002) aims at identifying the authors
of mailing list messages using a machine learn-
ing technique (Support Vector Machines). In
addition, the classifier trained on the mailing
list data is applied to identify the author of Web
documents in order to investigate performance in
authorship identification for more heterogeneous
documents. Experimental results show better
identification performance when features of not
only conventional word N-gram information but
also of frequent sequential patterns extracted by
a data mining technique (PrefixSpan) are used.

They applied PrefixSpan to extract sequential
word patterns from each sentence and used them
as author’s style markers in documents. The
sequential word patterns are sequential patterns
where item and sequence correspond to word and
sentence, respectively.

Sequential pattern is <w1*w2*...*wl> where wi
is a word and l is the length of pattern. * is any

sequence of words including empty sequence.
These sequential word patterns were introduced
for authorship identification based on the fol-
lowing assumption. Because people usually
generate words from the beginning to the end of
a sentence, how one orders words in a sentence
can be an indicator of author’s writing style. As
word order in Japanese (they study a Japanese
corpus) is relatively free, rigid word segments
and non-contiguous word sequences may be a
particularly important indicator of the writing
style of authors.

While N-grams (consecutive word sequences)
fail to account for non-contiguous patterns, se-
quential pattern mining methods can do so quite
naturally.

BIOINFORMATICS

Pattern mining is useful in the bioinformatics
domain for predicting rules for organization of
certain elements in genes, for protein function pre-
diction, for gene expression analysis, for protein
fold recognition and for motif discovery in DNA
sequences. We study these applications below.

Pattern Mining for Bio-Sequences

Bio-sequences typically have a small alphabet,
a long length, and patterns containing gaps (i.e.,
“don’t care”) of arbitrary size. A long sequence
(especially, with a small alphabet) often contains
long patterns. Mining frequent patterns in such
sequences faces a different type of explosion
than in transaction sequences primarily moti-
vated in market-basket analysis. (Wang, Xu, &
Yu, 2004) study how this explosion affects the
classic sequential pattern mining, and present a
scalable two-phase algorithm to deal with this
new explosion.

Biosequence patterns have the form of X1
... Xn spanning over a long region, where each
Xi is a short region of consecutive items, called

10

Applications of Pattern Discovery Using Sequential Data Mining

a segment, and * denotes a variable length gap
corresponding to a region not conserved in the
evolution. The presence of * implies that pattern
matching is more permissible and involves the
whole range in a sequence. The support of a pattern
is the percentage of the sequences in the database
that contain the pattern. Given a minimum segment
length min_len and a minimum support min_sup,
a pattern X1 *...* Xn is frequent if |Xi|>=min_len
for 1<=i<=n and the support of the pattern is at
least min_sup. The problem of mining sequence
patterns is to find all frequent patterns.

The Segment Phase first searches short patterns
containing no gaps (Xi), called segments. This
phase is efficient. This phase finds all frequent
segments and builds an auxiliary structure for
answering position queries. GST (generalized
suffix tree) is used to find: (1) The frequent seg-
ments of length min_len, Bi, called base segments,
and the position lists for each Bi, s:p1, p2... where
pj<pj+1 and each <s, pj> is a start position of Bi.
(2) All frequent segments of length>min_len. Note
that position lists for such frequent segments are
not extracted. This information about the base
segments and their positions is then stored in an
index, Segment to Position Index.

The Pattern Phase searches for long patterns
(X1 *...* Xn) containing multiple segments sepa-
rated by variable length gaps. This phase grows
rapidly one segment at a time, as opposed to one
item at a time. This phase is time consuming. The
purpose of two phases is to exploit the information
obtained from the first phase to speed up the pat-
tern growth and matching and to prune the search
space in the second phase.

Two types of pruning techniques are used.
Consider a pattern P’, which is a super-pattern of P:

• Pattern Generation Pruning: If P*X fails
to be a frequent pattern, so does P’*X. So,
we can prune P’*X.

• Pattern Matching Pruning: If P*X fails
to occur before position i in sequence s, so
does P’*X. So, we only need to examine

the positions after i when matching P’*X
against s.

Further to deal with the huge size of the
sequences, they introduce compression based
querying. In this method, all positions in a
non-coding region are compressed into a new
item ε that matches no existing item except *. A
non-coding region contains no part of a frequent
segment. Each original sequence is scanned once,
each consecutive region not overlapping with any
frequent segment is identified and collapsed into
the new item ε. For a long sequence and large
min_len and min_sup, a compressed sequence is
typically much shorter than the original sequence.

On real life datasets like DNA and protein
sequences submitted from 2002/12, 2003/02, they
show the superiority of their method compared
to PrefixSpan with respect to execution time and
the space required.

Patterns in Genes for Predicting
Gene Organization Rules

In eukaryotes, rules regarding organization of cis-
regulatory elements are complex. They sometimes
govern multiple kinds of elements and positional
restrictions on elements. (Terai & Takagi, 2004)
propose a method for detecting rules, by which the
order of elements is restricted. The order restric-
tion is expressed as element patterns. They extract
all the element patterns that occur in promoter
regions of at least the specified number of genes.
Then, significant patterns are found based on
the expression similarity of genes with promoter
regions containing each of the extracted patterns.
By applying the method to Saccharomyces cerevi-
siae, they detected significant patterns overlooked
by previous methods, thus demonstrating the
utility of sequential pattern mining for analysis
of eukaryotic gene regulation. Several types of
element organization exist, those in which (1)
only the order of elements is important, (2) order
and distance both are important and (3) only the

11

Applications of Pattern Discovery Using Sequential Data Mining

combination of elements is important. In this case,
pattern support is the number of genes containing
the pattern in their promoter region. Minimum
length of the patterns may vary with the species.
They use Apriori algorithm to perform mining.

Each element typically has a length of 10–20
base pairs. Therefore, two elements sometimes
overlap one another. In this study, any two ele-
ments overlapping each other are not considered
to be ordered elements, because they use elements
defined by computational prediction. Most of
these overlapping sites may have no biological
meaning; they may simply be false-positive hits
during computational prediction of elements.
The decision of how to treat such overlapping
elements is reflected in the count stage −if a
pattern consisting of element A followed by and
overlapping with B should not be considered as
<A,B>, we can exclude genes containing such
elements when counting the support of <A,B>.
This is an interesting tweak in counting support,
specific to this problem.

Patterns for Predicting Protein
Sequence Function

(Wang, Shang, & Li, 2008) present a novel method
of protein sequence function prediction based on
sequential pattern mining. First, known function
sequence dataset is mined to get frequent patterns.
Then, a classifier is built using the patterns gen-
erated to predict function of protein sequences.
They propose the usage of joined frequent pat-
terns based and joined closed frequent patterns
based sequential pattern mining algorithms for
mining this data. First, the joined frequent pattern
segments are generated. Then, longer frequent
patters can be obtained by combining the above
segments. They generate closed patterns only.
The purpose of producing closed patterns is to use
them to construct a classifier for protein function
prediction. So using non-redundant patterns can
improve the accuracy of classification.

Patterns for Analysis of
Gene Expression Data

(Icev, 2003) introduces a sequential pattern mining
based technique for the analysis of gene expres-
sion. Gene expression is the effective production
of the protein that a gene encodes. They focus on
the characterization of the expression patterns of
genes based on their promoter regions. The pro-
moter region of a gene contains short sequences
called motifs to which gene regulatory proteins
may bind, thereby controlling when and in which
cell types the gene is expressed. Their approach
addresses two important aspects of gene expres-
sion analysis: (1) Binding of proteins at more than
one motif is usually required, and several different
types of proteins may need to bind several differ-
ent types of motifs in order to confer transcrip-
tional specificity. (2) Since proteins controlling
transcription may need to interact physically, the
order and spacing in which motifs occur can affect
expression. They use association rules to address
the combinatorial aspect. The association rules
have the ability to involve multiple motifs and
to predict expression in multiple cell types. To
address the second aspect, association rules are
enhanced with information about the distances
among the motifs, or items that are present in
the rule. Rules of interest are those whose set of
motifs deviates properly, i.e. set of motifs whose
pair-wise distances are highly conserved in the
promoter regions where these motifs occur.

They define the cvd of a pair of motifs with
respect to a collection (or item-set) I of motifs as
the ratio between the standard deviation and the
mean of the distances between the motifs in those
promoter regions that contain all the motifs in I.

Given a dataset of instances D, a minimum
support min_sup, a minimum confidence min_
conf, and a maximum coefficient of variation of
distances (max-cvd), they find all distance-based
association rules from D whose support and confi-
dence are >= the min_sup and min_conf thresholds
and such that the cvd’s of all the pairs of items

12

Applications of Pattern Discovery Using Sequential Data Mining

in the rule are <= the maximum cvd threshold.
Their algorithm to mine distance-based associa-
tion rules from a dataset of instances extends the
Apriori algorithm.

In order to obtain distance-based association
rules, one could use the Apriori algorithm to
mine all association rules whose supports and
confidences satisfy the thresholds, and then an-
notate those rules with the cvd’s of all the pair of
items present in the rule. Only those rules whose
cvd’s satisfy the max-cvd threshold are returned.
They call this algorithm to mine distance-based
association rules, Naïve distance-Apriori.

Distance-based Association Rule Mining
(DARM) algorithm first generates all the frequent
item-sets that satisfy the max-cvd constraint (cvd-
frequent item-sets), and then generates all associa-
tion rules with the required confidence from those
item-sets. Note that the max-cvd constraint is a
non-monotonic property. An item-set that does not
satisfy this constraint may have supersets that do.
However, they define the following procedure that
keeps under consideration only frequent item-sets
that deviate properly in an interesting manner.

Let n be the number of promoter regions (in-
stances) in the dataset. Let I be a frequent item-
set, and let S be the set of promoter regions that
contain I. I is then said to deviate properly if either:

1. I is cvd-frequent. That is, the cvd over S of
each pair of motifs in I is <= max-cvd, or

2. For each pair of motifs P∈I, there is a subset
S’ of S with cardinality >= ⌈min_sup*n⌉ such
that the cvd over S’ of P is <= max-cvd.

The k-level of item-sets kept by the DARM
algorithm is the collection of frequent item-sets of
cardinality k that deviate properly. Those item-sets
are used to generate the (k+1)-level. Once, all the
frequent item-sets that deviate properly have been
generated, distance-based association rules are
constructed from those item-sets that satisfy the
max-cvd constraint. As is the case with the Apriori
algorithm, each possible split of such an item-set

into two parts, one for the antecedent and one for
the consequent of the rule, is considered. If the
rule so formed satisfies the min_conf constraint,
then the rule is added to the output. These rules are
then used for building a classification/predictive
model for gene expression.

Patterns for Protein
Fold Recognition

Protein data contain discriminative patterns that
can be used in many beneficial applications if
they are defined correctly. (Exarchos, Papaloukas,
Lampros, & Fotiadis, 2008) use sequential pat-
tern mining for sequence-based fold recognition.
Protein classification in terms of fold recognition
plays an important role in computational protein
analysis, since it can contribute to the determina-
tion of the function of a protein whose structure is
unknown. Fold means 3D structure of a protein.
They use cSPADE (Zaki, Sequence mining in
categorical domains: incorporating constraints,
2000), for the analysis of protein sequence. Se-
quential patterns were generated for each category
(fold) separately. A patterni extracted from foldi,
indicates an implication (rule) of the form patterni
⇒foldi. A maximum gap constraint is also used.

When classifying an unknown protein to one of
the folds, all the extracted sequential patterns from
all folds are examined to find which of them are
contained in the protein. For a pattern contained
in a protein, the score of this protein with respect
to this fold is increased by: scorea

i=(length of the
patterna

i-k) /(number of patterns in foldi) where ‘i’
represents a fold, ‘a’ represents a pattern of a fold.
Here, the length is the size of the pattern with gaps.
Patterna

i is the ath pattern of the ith fold and k is a
value employed to assign the minimum score, to
the minimal pattern. It should be mentioned that
if a pattern is contained in a protein sequence
more than once, it receives the same score as if
it was contained only once. The scores for each
fold are summed and the new protein is assigned
to the fold exhibiting the highest sum.

13

Applications of Pattern Discovery Using Sequential Data Mining

The score of a protein with respect to a fold
is calculated based on the number of sequential
patterns of this fold contained in the protein. The
higher the number of patterns of a fold contained
in a protein, the higher the score of the protein
for this fold.

A classifier uses the extracted sequential pat-
terns to classify proteins in the appropriate fold
category. For training and evaluating the proposed
method they used the protein sequences from
the Protein Data Bank and the annotation of the
SCOP database. The method exhibited an overall
accuracy of 25% (random would be 2.8%) in a
classification problem with 36 candidate catego-
ries. The classification performance reaches up to
56% when the five most probable protein folds
are considered.

Patterns for Protein Family Detection

In another work on protein family detection (pro-
tein classification), (Ferreira & Azevedo, 2005)
use the number and average length of the relevant
subsequences shared with each of the protein
families, as features to train a Bayes classifier.
Priors for the classes are set using the number of
patterns and average length of the patterns in the
corresponding class.

They Identify Two Types of Patterns

Rigid Gap Patterns (only contain gaps with a
fixed length) and Flexible Gap Patterns (allow a
variable number of gaps between symbols of the
sequence). Frequent patterns are mined with the
constraint of minimum length. Apart from this,
they also support item constraints (restricts set of
other symbols that can occur in the pattern), gap
constraints (minGap and maxGap), duration or
window constraints which defines the maximum
distance (window) between the first and the last
event of the sequence patterns.

Protein sequences of the same family typically
share common subsequences, also called motifs.

These subsequences are possibly implied in a
structural or biological function of the family and
have been preserved through the protein evolution.
Thus, if a sequence shares patterns with other
sequences it is expected that the sequences are
biologically related. Considering the two types
of patterns, rigid gap patterns reveal better con-
served regions of similarity. On the other hand,
flexible gap patterns have a greater probability
of occur by chance, having a smaller biological
significance. Since the protein alphabet is small,
many small patterns that express trivial local
similarity may arise. Therefore, longer patterns
are expected to express greater confidence in the
sequences similarity.

Patterns in DNA Sequences

Large collections of genomic information have
been accumulated in recent years, and embedded
in them is potentially significant knowledge for
exploitation in medicine and in the pharmaceutical
industry. (Guan, Liu, & Bell, 2004) detect strings
in DNA sequences which appear frequently, either
within a given sequence (e.g., for a particular
patient) or across sequences (e.g., from different
patients sharing a particular medical diagnosis).
Motifs are strings that occur very frequently.
Having discovered such motifs, they show how to
mine association rules by an existing rough-sets
based technique.

TELECOMMUNICATIONS

Pattern mining can be used in the field of tele-
communications for mining of group patterns
from mobile user movement data, for customer
behavior prediction, for predicting future location
of a mobile user for location based services and
for mining patterns useful for mobile commerce.
We discuss these works briefly in this sub-section.

14

Applications of Pattern Discovery Using Sequential Data Mining

Patterns in Mobile User
Movement Data

(Wang, Lim, & Hwang, 2006) present a new ap-
proach to derive groupings of mobile users based
on their movement data. User movement data are
collected by logging location data emitted from
mobile devices tracking users. This data is of
the form D = (D1, D2... DM), where Di is a time
series of tuples (t, (x, y, z)) denoting the x, y and
z coordinates of user ui at time t. A set of consecu-
tive time points [ta, tb] is called a valid segment
of G (where G is a set of users) if all the pair of
users are within dist max_dis for time [ta,tb], at
least one pair of users has distance greater than
max_dis before time ta, at least one pair of users
has distance greater than max_dis after time tb and
tb-ta+1 >=min_dur. Given a set of users G, thresh-
olds max_dis and min_dur, these form a group
pattern, denoted by P = <G,max_dis,min_dur>, if
G has a valid segment. Thus, a group pattern is a
group of users that are within a distance threshold
from one another for at least a minimum duration.

In a movement database, a group pattern may
have multiple valid segments. The combined
length of these valid segments is called the weight-
count of the pattern. Thus the significance of the
pattern is measured by comparing its weight-count
with the overall time duration.

Since weight represents the proportion of the
time points a group of users stay close together,
the larger the weight is, the more significant (or
interesting) the group pattern is. Furthermore, if
the weight of a group pattern exceeds a threshold
min_wei, it is called a valid group pattern, and
the corresponding group of users a valid group.

To mine group patterns, they first propose two
algorithms, namely AGP (based on Apriori) and
VG-growth (based on FP-growth). They show that
when both the number of users and logging dura-
tion are large, AGP and VG-growth are inefficient
for the mining group patterns of size two. There-
fore, they propose a framework that summarizes
user movement data before group pattern mining.

In the second series of experiments, they show
that the methods using location summarization
reduce the mining overheads for group patterns
of size two significantly.

Patterns for Customer
Behavior Prediction

Predicting the behavior of customers is challeng-
ing, but important for service oriented businesses.
Data mining techniques are used to make such
predictions, typically using only recent static data.
(Eichinger, Nauck, & Klawonn) propose the usage
of sequence mining with decision tree analysis for
this task. The combined classifier is applied to real
customer data and produces promising results.

They Use Two Sequence
Mining Parameters

maxGap, the maximum number of allowed ex-
tra events in between a sequence and maxSkip,
the maximum number of events at the end of a
sequence before the occurrence of the event to
be predicted.

They use an Apriori algorithm to detect fre-
quent patterns from a Sequence tree and hash
table based data structure. This avoids multiple
database scans, which are otherwise necessary
after every generation of candidate sequences in
Apriori based algorithms.

The frequent sequences are combined with
decision tree based classification to predict cus-
tomer behavior.

Patterns for Future Location
Prediction of Mobile Users

Future location prediction of mobile users can
provide location-based services (LBSs) with ex-
tended resources, mainly time, to improve system
reliability which in turn increases the users’ confi-
dence and the demand for LBSs. (Vu, Ryu, & Park,
2009) propose a movement rule-based Location

15

Applications of Pattern Discovery Using Sequential Data Mining

Prediction method (RLP), to guess the user’s future
location for LBSs. They define moving sequences
and frequent patterns in trajectory data. Further,
they find out all frequent spatiotemporal move-
ment patterns using an algorithm based on GSP
algorithm. The candidate generating mechanism
of the technique is based on that of GSP algorithm
with an additional temporal join operation and
a different method for pruning candidates. In
addition, they employ the clustering method to
control the dense regions of the patterns. With
the frequent movement patterns obtained from
the preceding subsection, the movement rules are
generated easily.

Patterns for Mobile Commerce

To better reflect the customer usage patterns in
the mobile commerce environment, (Yun & Chen,
2007) propose an innovative mining model, called
mining mobile sequential patterns, which takes
both the moving patterns and purchase patterns
of customers into consideration. How to strike a
compromise among the use of various knowledge
to solve the mining on mobile sequential patterns,
is a challenging issue. They devise three algorithms
for determining the frequent sequential patterns
from the mobile transaction sequences.

INTRUSION DETECTION

Sequential pattern mining has been used for in-
trusion detection to study patterns of misuse in
network attack data and thereby detect sequential
intrusion behaviors and for discovering multistage
attack strategies.

Patterns in Network Attack Data

(Wuu, Hung, & Chen, 2007) have implemented
an intrusion pattern discovery module in Snort
network intrusion detection system which applies
data mining technique to extract single intrusion

patterns and sequential intrusion patterns from a
collection of attack packets, and then converts the
patterns to Snort detection rules for on-line intru-
sion detection. Patterns are extracted both from
packet headers and the packet payload. A typical
pattern is of the form “A packet with DA port as
139, DgmLen field in header set to 48 and with
content as 11 11”. Intrusion behavior detection
engine creates an alert when a series of incom-
ing packets match the signatures representing
sequential intrusion scenarios.

Patterns for Discovering Multi-
Stage Attack Strategies

In monitoring anomalous network activities,
intrusion detection systems tend to generate a
large amount of alerts, which greatly increase the
workload of post-detection analysis and decision-
making. A system to detect the ongoing attacks
and predict the upcoming next step of a multistage
attack in alert streams by using known attack
patterns can effectively solve this problem. The
complete, correct and up to date pattern rule of
various network attack activities plays an impor-
tant role in such a system. An approach based on
sequential pattern mining technique to discover
multistage attack activity patterns is efficient to
reduce the labor to construct pattern rules. But
in a dynamic network environment where novel
attack strategies appear continuously, the novel
approach proposed by (Li, Zhang, Li, & Wang,
2007) to use incremental mining algorithm shows
better capability to detect recently appeared attack.
They remove the unexpected results from mining
by computing probabilistic score between suc-
cessive steps in a multistage attack pattern. They
use GSP to discover multistage attack behavior
patterns. All the alerts stored in database can be
viewed as a global sequence of alerts sorted by
ascending DetectTime timestamp. Sequences of
alerts describe the behavior and actions of attack-
ers. Multistage attack strategies can be found by
analyzing this alert sequence. A sequential pattern

16

Applications of Pattern Discovery Using Sequential Data Mining

is a collection of alerts that occur relatively close
to each other in a given order frequently. Once
such patterns are known, the rules can be produced
for describing or predicting the behavior of the
sequence of network attack.

OTHER APPLICATIONS

Apart from the different domains mentioned
above, sequential pattern mining has been found
useful in a variety of other domains. We briefly
mention works in some of such areas in this sub-
section. Besides the works mentioned below, there
are some applications that may need to classify
sequence data, such as based on sequence patterns.
An overview on research in sequence classification
can be found in (Xing, Pei & Keogh).

Patterns in Earth Science Data

The earth science data consists of time series mea-
surements for various Earth science and climate
variables (e.g. soil moisture, temperature, and
precipitation), along with additional data from
existing ecosystem models (e.g. Net Primary
Production). The ecological patterns of interest
include associations, clusters, predictive models,
and trends. (Potter, Klooster, Torregrosa, Tan,
Steinbach, & Kumar) discuss some of the chal-
lenges involved in preprocessing and analyzing
the data, and also consider techniques for handling
some of the spatio-temporal issues. Earth Science
data has strong seasonal components that need
to be removed prior to pattern analysis, as Earth
scientists are primarily interested in patterns
that represent deviations from normal seasonal
variation such as anomalous climate events (e.g.,
El Nino) or trends (e.g., global warming). They
de-seasonalize the data and then compute variety
of spatio-temporal patterns. Rules learned from
the patterns look like (WP-Hi) ⇒ (Solar-Hi) ⇒
(NINO34-Lo) ⇒ (Temp-Hi) ⇒ (NPP-Lo) where

WP, Solar etc are different earth science parameters
with values Hi (High) or Lo (Low).

Patterns for Computer
Systems Management

Predictive algorithms play a crucial role in sys-
tems management by alerting the user to potential
failures. (Vilalta, Apte, Hellerstein, Ma, & Weiss,
2002) focus on three case studies dealing with the
prediction of failures in computer systems: (1)
long-term prediction of performance variables
(e.g., disk utilization), (2) short-term prediction
of abnormal behavior (e.g., threshold violations),
and (3) short-term prediction of system events
(e.g., router failure). Empirical results show
that predictive algorithms based on mining of
sequential patterns can be successfully employed
in the estimation of performance variables and the
prediction of critical events.

Patterns to Detect Plan Failures

(Zaki, Lesh, & Mitsunori, 1999) present an al-
gorithm to extract patterns of events that predict
failures in databases of plan executions: Plan-
Mine. Analyzing execution traces is appropriate
for planning domains that contain uncertainty,
such as incomplete knowledge of the world or
actions with probabilistic effects. They extract
causes of plan failures and feed the discovered
patterns back into the planner. They label each
plan as “good” or “bad” depending on whether
it achieved its goal or it failed to do so. The goal
is to find “interesting” sequences that have a high
confidence of predicting plan failure. They use
SPADE to mine such patterns.

TRIPS is an integrated system in which a
person collaborates with a computer to develop a
high quality plan to evacuate people from a small
island. During the process of building the plan,
the system simulates the plan repeatedly based
on a probabilistic model of the domain, includ-

17

Applications of Pattern Discovery Using Sequential Data Mining

ing predicted weather patterns and their effect on
vehicle performance.

The system returns an estimate of the plan’s
success. Additionally, TRIPS invokes PlanMine
on the execution traces produced by simulation,
in order to analyze why the plan failed when it
did. The system runs PlanMine on the execution
traces of the given plan to pinpoint defects in the
plan that most often lead to plan failure. It then
applies qualitative reasoning and plan adaptation
algorithms to modify the plan to correct the defects
detected by PlanMine.

Patterns in Automotive
Warranty Data

When a product fails within a certain time period,
the warranty is a manufacturer’s assurance to a
buyer that the product will be repaired without
a cost to the customer. In a service environment
where dealers are more likely to replace than to
repair, the cost of component failure during the
warranty period can easily equal three to ten times
the supplier’s unit price. Consequently, companies
invest significant amounts of time and resources
to monitor, document, and analyze product war-
ranty data. (Buddhakulsomsiri & Zakarian, 2009)
present a sequential pattern mining algorithm that
allows product and quality engineers to extract
hidden knowledge from a large automotive war-
ranty database. The algorithm uses the elementary
set concept and database manipulation techniques
to search for patterns or relationships among
occurrences of warranty claims over time. The
sequential patterns are represented in a form of
IF–THEN association rules, where the IF portion
of the rule includes quality/warranty problems,
represented as labor codes, that occurred in an
earlier time, and the THEN portion includes
labor codes that occurred at a later time. Once a
set of unique sequential patterns is generated, the
algorithm applies a set of thresholds to evaluate
the significance of the rules and the rules that
pass these thresholds are reported in the solution.

Significant patterns provide knowledge of one or
more product failures that lead to future product
fault(s). The effectiveness of the algorithm is il-
lustrated with the warranty data mining application
from the automotive industry.

Patterns in Alarm Data

Increasingly powerful fault management systems
are required to ensure robustness and quality of
service in today’s networks. In this context, event
correlation is of prime importance to extract
meaningful information from the wealth of alarm
data generated by the network. Existing sequen-
tial data mining techniques address the task of
identifying possible correlations in sequences of
alarms. The output sequence sets, however, may
contain sequences which are not plausible from
the point of view of network topology constraints.
(Devitt, Duffin, & Moloney, 2005) presents the
Topographical Proximity (TP) approach which
exploits topographical information embedded in
alarm data in order to address this lack of plausibil-
ity in mined sequences. Their approach is based
on an Apriori approach and introduces a novel
criterion for sequence selection which evaluates
sequence plausibility and coherence in the context
of network topology. Connections are inferred at
run-time between pairs of alarm generating nodes
in the data and a Topographical Proximity (TP)
measure is assigned based on the strength of the
inferred connection. The TP measure is used to
reject or promote candidate sequences on the basis
of their plausibility, i.e. the strength of their con-
nection, thereby reducing the candidate sequence
set and optimizing the space and time constraints
of the data mining process.

Patterns for Personalized
Recommendation System

(Romero, Ventura, Delgado, & Bra, 2007) describe
a personalized recommender system that uses web
mining techniques for recommending a student

18

Applications of Pattern Discovery Using Sequential Data Mining

which (next) links to visit within an adaptable
educational hypermedia system. They present a
specific mining tool and a recommender engine
that helps the teacher to carry out the whole web
mining process. The overall process of Web per-
sonalization based on Web usage mining generally
consists of three phases: data preparation, pattern
discovery and recommendation. The first two
phases are performed off-line and the last phase
on-line. To make recommendations to a student,
the system first, classifies the new students in one
of the groups of students (clusters). Then, it only
uses the sequential patterns of the correspond-
ing group to personalize the recommendations
based on other similar students and his current
navigation. Grouping of students is done using
k-means. They use GSP to get frequent sequences
for each of the clusters. They mine rules of the
form readme⇒install, welcome⇒install which are
intuitively quite common patterns for websites.

Patterns in Atmospheric
Aerosol Data

EDAM (Exploratory Data Analysis and Man-
agement) is a joint project between researchers
in Atmospheric Chemistry and Computer Sci-
ence at Carleton College and the University of
Wisconsin-Madison that aims to develop data
mining techniques for advancing the state of the
art in analyzing atmospheric aerosol datasets.

The traditional approach for particle measure-
ment, which is the collection of bulk samples of
particulates on filters, is not adequate for studying
particle dynamics and real-time correlations. This
has led to the development of a new generation
of real-time instruments that provide continuous
or semi-continuous streams of data about certain
aerosol properties. However, these instruments
have added a significant level of complexity to at-
mospheric aerosol data, and dramatically increased
the amounts of data to be collected, managed, and
analyzed. (Ramakrishnan, et al., 2005) experiment

with a dataset consisting of samples from aerosol
time-of-flight mass spectrometer (ATOFMS).

A mass spectrum is a plot of signal intensity
(often normalized to the largest peak in the spec-
trum) versus the mass-to-charge (m/z) ratio of
the detected ions. Thus, the presence of a peak
indicates the presence of one or more ions con-
taining the m/z value indicated, within the ion
cloud generated upon the interaction between
the particle and the laser beam. In many cases,
the ATOFMS generates elemental ions. Thus, the
presence of certain peaks indicates that elements
such as Na+ (m/z = +23) or Fe+ (m/z = +56) or
O- (m/z = -16) ions are present. In other cases,
cluster ions are formed, and thus the m/z observed
represents that of a sum of the atomic weights of
various elements.

For many kinds of analysis, what is significant
in each particle’s mass spectrum is the composi-
tion of the particle, i.e., the ions identified by the
peak labels (and, ideally, their proportions in the
particle, and our confidence in having correctly
identified them). While this representation is
less detailed than the labeled spectrum itself, it
allows us to think of the ATOFMS data stream as
a time-series of observations, one per observed
particle, where each observation is a set of ions
(possibly labeled with some additional details).
This is precisely the market-basket abstraction
used in e-commerce: a time-series of customer
transactions, each recording the items purchased
by a customer on a single visit to a store. This
analogy opens the door to applying a wide range
of association rule and sequential pattern algo-
rithms to the analysis of mass spectrometry data.
Once these patterns are mined, they can be used to
extrapolate to periods where filter-based samples
were not collected.

Patterns in Individuals’ Time Diaries

Identifying patterns of activities within indi-
viduals’ time diaries and studying similarities and
deviations between individuals in a population

19

Applications of Pattern Discovery Using Sequential Data Mining

is of interest in time use research. So far, activ-
ity patterns in a population have mostly been
studied either by visual inspection, searching for
occurrences of specific activity sequences and
studying their distribution in the population, or
statistical methods such as time series analysis
in order to analyze daily behavior. (Vrotsou, El-
legård, & Cooper) describe a new approach for
extracting activity patterns from time diaries that
uses sequential data mining techniques. They
have implemented an algorithm that searches the
time diaries and automatically extracts all activ-
ity patterns meeting user-defined criteria of what
constitutes a valid pattern of interest. Amongst the
many criteria which can be applied are: a time
window containing the pattern, and minimum
and maximum number of people that perform the
pattern. The extracted activity patterns can then
be interactively filtered, visualized and analyzed
to reveal interesting insights using the VISUAL-
TimePAcTS application. To demonstrate the value
of this approach they consider and discuss sequen-
tial activity patterns at a population level, from a
single day perspective, with focus on the activity
“paid work” and some activities surrounding it.

An activity pattern in this paper is defined as a
sequence of activities performed by an individual
which by itself or together with other activities,
aims at accomplishing a more general goal/proj-
ect. When analyzing a single day of diary data,
activity patterns identified in a single individual
(referred to as an individual activity pattern) are
unlikely to be significant but those found amongst
a group or population (a collective activity pat-
tern) are of greater interest. Seven categories of
activities that they consider are: care for oneself,
care for others, household care, recreation/reflec-
tion, travel, prepare/procure food, work/school.
{“cook dinner”; “eat dinner”; “wash dishes”} is
a typical pattern. They also incorporate a variety
of constraints like min and max pattern duration,
min and max gap between activities, min and
max number of occurrences of the pattern and
min and max number of people (or a percentage

of the population) that should be performing the
pattern. The sequential mining algorithm that
they have used for the activity pattern extraction
is an “AprioriAll” algorithm which is adapted to
the time diary data.

Two stage classification using patterns: (Ex-
archos, Tsipouras, Papaloukas, & Fotiadis, 2008)
present a methodology for sequence classification,
which employs sequential pattern mining and
optimization, in a two-stage process. In the first
stage, a sequence classification model is defined,
based on a set of sequential patterns and two sets
of weights are introduced, one for the patterns and
one for classes. In the second stage, an optimiza-
tion technique is employed to estimate the weight
values and achieve optimal classification accuracy.
Extensive evaluation of the methodology is car-
ried out, by varying the number of sequences, the
number of patterns and the number of classes and
it is compared with similar sequence classifica-
tion approaches.

CONCLUSION

We presented selected applications of the se-
quential pattern mining methods in the fields of
healthcare, education, web usage mining, text
mining, bioinformatics, telecommunications,
intrusion detection, etc. We envision that the
power of sequential mining methods has not yet
been fully exploited. We hope to see many more
strong applications of these methods in a variety
of domains in the years to come.

REFERENCES

Berendt, B. A. (2000). Analysis of navigation
behaviour in web sites integrating multiple infor-
mation systems. The VLDB Journal, 9(1), 56–75.
doi:10.1007/s007780050083

20

Applications of Pattern Discovery Using Sequential Data Mining

Buchner, A. G., & Mulvenna, M. D. (1998). Dis-
covering Internet marketing intelligence through
online analytical web usage mining. SIGMOD Re-
cord, 27(4), 54–61. doi:10.1145/306101.306124

Buddhakulsomsiri, J., & Zakarian, A. (2009). Se-
quential pattern mining algorithm for automotive
warranty data. Journal of Computers and Indus-
trial Engineering, 57(1), 137–147. doi:10.1016/j.
cie.2008.11.006

Chen, Y.-L., & Huang, T. C.-K. (2008). A novel
knowledge discovering model for mining fuzzy
multi-level sequential patterns in sequence data-
bases. Data & Knowledge Engineering, 66(3),
349–367. doi:10.1016/j.datak.2008.04.005

Cooley, R., Mobasher, B., & Srivastava, J. (1999).
Data preparation for mining World Wide Web
browsing patterns. Knowledge and Information
Systems, 1(1), 5–32.

Devitt, A., Duffin, J., & Moloney, R. (2005).
Topographical proximity for mining network
alarm data. MineNet ‘05: Proceedings of the 2005
ACM SIGCOMM workshop on Mining network
data (pp. 179-184). Philadelphia, PA: ACM.

Eichinger, F., Nauck, D. D., & Klawonn, F. (n.d.).
Sequence mining for customer behaviour predic-
tions in telecommunications.

Exarchos, T. P., Papaloukas, C., Lampros, C., &
Fotiadis, D. I. (2008). Mining sequential patterns
for protein fold recognition. Journal of Biomedi-
cal Informatics, 41(1), 165–179. doi:10.1016/j.
jbi.2007.05.004

Exarchos, T. P., Tsipouras, M. G., Papaloukas, C.,
& Fotiadis, D. I. (2008). A two-stage methodology
for sequence classification based on sequential
pattern mining and optimization. Data & Knowl-
edge Engineering, 66(3), 467–487. doi:10.1016/j.
datak.2008.05.007

Ferreira, P. G., & Azevedo, P. J. (2005). Protein
sequence classification through relevant sequence
mining and bayes classifiers. Proc. 12th Portu-
guese Conference on Artificial Intelligence (EPIA)
(pp. 236-247). Springer-Verlag.

Garboni, C., Masseglia, F., & Trousse, B. (2005).
Sequential pattern mining for structure-based
XML document classification. Workshop of the
INitiative for the Evaluation of XML Retrieval.

Guan, J. W., Liu, D., & Bell, D. A. (2004). Dis-
covering motifs in DNA sequences. Fundam.
Inform., 59(2-3), 119–134.

Icev, A. (2003). Distance-enhanced association
rules for gene expression. BIOKDD’03, in con-
junction with ACM SIGKDD.

Ishio, T., Date, H., Miyake, T., & Inoue, K. (2008).
Mining coding patterns to detect crosscutting con-
cerns in Java programs. WCRE ‘08: Proceedings
of the 2008 15th Working Conference on Reverse
Engineering (pp. 123-132). Washington, DC:
IEEE Computer Society.

Jaillet, S., Laurent, A., & Teisseire, M. (2006).
Sequential patterns for text categorization. Intel-
ligent Data Analysis, 10(3), 199–214.

Kay, J., Maisonneuve, N., Yacef, K., & Zaïane,
O. (2006). Mining patterns of events in students’
teamwork data. In Educational Data Mining
Workshop, held in conjunction with Intelligent
Tutoring Systems (ITS), (pp. 45-52).

Kum, H.-C., Chang, J. H., & Wang, W. (2006).
Sequential Pattern Mining in Multi-Databases via
Multiple Alignment. Data Mining and Knowl-
edge Discovery, 12(2-3), 151–180. doi:10.1007/
s10618-005-0017-3

Kum, H.-C., Chang, J. H., & Wang, W. (2007).
Benchmarking the effectiveness of sequential
pattern mining methods. Data & Knowledge
Engineering, 60(1), 30–50. doi:10.1016/j.
datak.2006.01.004

21

Applications of Pattern Discovery Using Sequential Data Mining

Kuo, R. J., Chao, C. M., & Liu, C. Y. (2009). In-
tegration of K-means algorithm and AprioriSome
algorithm for fuzzy sequential pattern mining. Ap-
plied Soft Computing, 9(1), 85–93. doi:10.1016/j.
asoc.2008.03.010

Lau, A., Ong, S. S., Mahidadia, A., Hoffmann,
A., Westbrook, J., & Zrimec, T. (2003). Mining
patterns of dyspepsia symptoms across time points
using constraint association rules. PAKDD’03:
Proceedings of the 7th Pacific-Asia conference on
Advances in knowledge discovery and data mining
(pp. 124-135). Seoul, Korea: Springer-Verlag.

Laur, P.-A., Symphor, J.-E., Nock, R., & Pon-
celet, P. (2007). Statistical supports for mining
sequential patterns and improving the incremental
update process on data streams. Intelligent Data
Analysis, 11(1), 29–47.

Lent, B., Agrawal, R., & Srikant, R. (1997). Dis-
covering trends in text databases. Proc. 3rd Int.
Conf. Knowledge Discovery and Data Mining,
KDD (pp. 227-230). AAAI Press.

Li, Z., Zhang, A., Li, D., & Wang, L. (2007). Dis-
covering novel multistage attack strategies. ADMA
‘07: Proceedings of the 3rd international confer-
ence on Advanced Data Mining and Applications
(pp. 45-56). Harbin, China: Springer-Verlag.

Lin, N. P., Chen, H.-J., Hao, W.-H., Chueh, H.-E.,
& Chang, C.-I. (2008). Mining strong positive and
negative sequential patterns. W. Trans. on Comp.,
7(3), 119–124.

Mannila, H., Toivonen, H., & Verkamo, I. (1997).
Discovery of frequent episodes in event sequences.
Data Mining and Knowledge Discovery, 1(3),
259–289. doi:10.1023/A:1009748302351

Masseglia, F., Poncelet, P., & Teisseire, M. (2003).
Incremental mining of sequential patterns in large
databases. Data & Knowledge Engineering, 46(1),
97–121. doi:10.1016/S0169-023X(02)00209-4

Masseglia, F., Poncelet, P., & Teisseire, M. (2009).
Efficient mining of sequential patterns with time
constraints: Reducing the combinations. Expert
Systems with Applications, 36(2), 2677–2690.
doi:10.1016/j.eswa.2008.01.021

Mendes, L. F., Ding, B., & Han, J. (2008). Stream
sequential pattern mining with precise error
bounds. Proc. 2008 Int. Conf. on Data Mining
(ICDM’08), Italy, Dec. 2008.

Mobasher, B., Dai, H., Luo, T., & Nakagawa, M.
(2002). Using sequential and non-sequential pat-
terns in predictive Web usage mining tasks. ICDM
‘02: Proceedings of the 2002 IEEE International
Conference on Data Mining (pp. 669-672). Wash-
ington, DC: IEEE Computer Society.

Nicolas, J. A., Herengt, G., & Albuisson, E. (2004).
Sequential pattern mining and classification of
patient path. MEDINFO 2004: Proceedings Of
The 11th World Congress On Medical Informatics.

Parthasarathy, S., Zaki, M., Ogihara, M., &
Dwarkadas, S. (1999). Incremental and interactive
sequence mining. In Proc. of the 8th Int. Conf.
on Information and Knowledge Management
(CIKM’99).

Perera, D., Kay, J., Yacef, K., & Koprinska, I.
(2007). Mining learners’ traces from an online
collaboration tool. Proceedings of Educational
Data Mining workshop (pp. 60–69). CA, USA:
Marina del Rey.

Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., &
Dayal, U. (2001). Multi-dimensional sequential
pattern mining. CIKM ‘01: Proceedings of the
Tenth International Conference on Information
and Knowledge Management (pp. 81-88). New
York, NY: ACM.

Potter, C., Klooster, S., Torregrosa, A., Tan, P.-
N., Steinbach, M., & Kumar, V. (n.d.). Finding
spatio-temporal patterns in earth science data.

22

Applications of Pattern Discovery Using Sequential Data Mining

Ramakrishnan, R., Schauer, J. J., Chen, L., Huang,
Z., Shafer, M. M., & Gross, D. S. (2005). The
EDAM project: Mining atmospheric aerosol da-
tasets: Research articles. International Journal of
Intelligent Systems, 20(7), 759–787. doi:10.1002/
int.20094

Romero, C., Ventura, S., Delgado, J. A., & Bra,
P. D. (2007). Personalized links recommendation
based on data mining un adaptive educational
hypermedia systems. Creating New Learning
Experiences on a Global Scale. Second European
Conference on Technology Enhanced Learning,
EC-TEL 2007 (pp. 293-305). Crete, Greece:
Springer.

Seno, M., & Karypis, G. (2002). SLPMiner: An
algorithm for finding frequent sequential patterns
using length-decreasing support constraint. In
Proceedings of the 2nd IEEE International Con-
ference on Data Mining (ICDM), (pp. 418-425).

Srikant, R., & Agrawal, R. (1996)... Advances in
Database Technology EDBT, 96, 3–17.

Terai, G., & Takagi, T. (2004). Predicting rules
on organization of cis-regulatory elements, tak-
ing the order of elements into account. Bioin-
formatics (Oxford, England), 20(7), 1119–1128.
doi:10.1093/bioinformatics/bth049

Tsuboi, Y. (2002). Authorship identification for
heterogeneous documents.

Vilalta, R., Apte, C. V., Hellerstein, J. L., Ma, S., &
Weiss, S. M. (2002). Predictive algorithms in the
management of computer systems. IBM Systems
Journal, 41(3), 461–474. doi:10.1147/sj.413.0461

Vrotsou, K., Ellegård, K., & Cooper, M. (n.d.).
Exploring time diaries using semi-automated
activity pattern extraction.

Vu, T. H., Ryu, K. H., & Park, N. (2009). A
method for predicting future location of mobile
user for location-based services system. Com-
puters & Industrial Engineering, 57(1), 91–105.
doi:10.1016/j.cie.2008.07.009

Wang, J. L., Chirn, G., Marr, T., Shapiro, B.,
Shasha, D., & Zhang, K. (1994). Combinatorial
pattern discovery for scientific data: Some pre-
liminary results. Proc. ACM SIGMOD Int’l Conf.
Management of Data, (pp. 115-125).

Wang, K., Xu, Y., & Yu, J. X. (2004). Scalable
sequential pattern mining for biological sequences.
CIKM ‘04: Proceedings of the Thirteenth ACM
International Conference on Information and
Knowledge Management (pp. 178-187). Wash-
ington, DC: ACM.

Wang, M., Shang, X.-Q., & Li, Z.-H. (2008).
Sequential pattern mining for protein function
prediction. ADMA ‘08: Proceedings of 4th In-
ternational Conference on Adv Data Mining and
Applications (pp. 652-658). Chengdu, China:
Springer-Verlag.

Wang, Y., Lim, E.-P., & Hwang, S.-Y. (2006).
Efficient mining of group patterns from user
movement data. Data & Knowledge Engineering,
57(3), 240–282. doi:10.1016/j.datak.2005.04.006

Wong, P. C., Cowley, W., Foote, H., Jurrus, E.,
& Thomas, J. (2000). Visualizing sequential pat-
terns for text mining. Proc. IEEE Information
Visualization, 2000 (pp. 105-114). Society Press.

Wuu, L.-C., Hung, C.-H., & Chen, S.-F. (2007).
Building intrusion pattern miner for Snort network
intrusion detection system. Journal of Systems
and Software, 80(10), 1699–1715. doi:10.1016/j.
jss.2006.12.546

Xing, Z., Pei, J., & Keogh, E. (2010). A
brief survey on sequence classification. SIG-
KDD Explorations Newsletter, 12(1), 40–48.
doi:10.1145/1882471.1882478

Yun, C. H., & Chen, M. S. (2007). Mining mobile
sequential patterns in a mobile commerce environ-
ment. IEEE Transactions on Systems, Man, and
Cybernetics, 278–295.

23

Applications of Pattern Discovery Using Sequential Data Mining

Yun, U. (2008). A new framework for detecting
weighted sequential patterns in large sequence
databases. Knowledge-Based Systems, 21(2),
110–122. doi:10.1016/j.knosys.2007.04.002

Zaki, M. J. (2001). SPADE: An efficient algorithm
for mining frequent sequences. Machine Learning,
42(1-2), 31–60. doi:10.1023/A:1007652502315

Zaki, M. J., Lesh, N., & Mitsunori, O. (1999).
PlanMine: Predicting plan failures using sequence
mining. Artificial Intelligence Review, 14(6),
421–446. doi:10.1023/A:1006612804250

ADDITIONAL READING

Adamo, J.-M. (2001). Data Mining for Associa-
tion Rules and Sequential Patterns: Sequential
and Parallel Algorithms. Secaucus, NJ, USA:
Springer-Verlag New York, Inc.doi:10.1007/978-
1-4613-0085-4

Alves, R., & Rodriguez-Baena, D. S., Aguilar-
Ruiz, & S., J. (2009). Gene association analysis:
a survey of frequent pattern mining from gene
expression data. Briefings in Bioinformatics,
210–224.

Han, J., & Kamber, M. (2006). Data Mining:
Concepts and Techniques (2nd ed.). Morgan
Kaufmann Publishers.

Li, T.-R., Xu, Y., Ruan, D., & Pan, W.-m. Sequen-
tial pattern mining. In R. Da, G. Chen, E. E. Kerre,
& G. Wets, Intelligent data mining: techniques
and applications (pp. 103-122). Springer.

Lu, J., Adjei, O., Chen, W., Hussain, F., & Enach-
escu, C. (n.d.). Sequential Patterns Mining.

Srinivasa, R. N. (2005). Data mining in e-com-
merce: A survey. Sadhana, 275–289. doi:10.1007/
BF02706248

Teisseire, M., Poncelet, P., Scientifique, P., Besse,
G., Masseglia, F., & Masseglia, F. (2005). Se-
quential pattern mining: A survey on issues and
approaches. Encyclopedia of Data Warehousing
and Mining, nformation Science Publishing (pp.
3–29). Oxford University Press.

Yang, L. (2003). Visualizing frequent itemsets, as-
sociation rules, and sequential patterns in parallel
coordinates. ICCSA’03: Proceedings of the 2003
international conference on Computational sci-
ence and its applications (pp. 21-30). Montreal,
Canada: Springer-Verlag.

Zhao, Q., & Bhowmick, S. S. (2003). Sequential
Pattern Matching: A Survey.

24

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

Dileep A. D.
Indian Institute of Technology, India

Veena T.
Indian Institute of Technology, India

C. Chandra Sekhar
Indian Institute of Technology, India

A Review of Kernel Methods
Based Approaches to

Classification and Clustering
of Sequential Patterns, Part I:

Sequences of Continuous Feature Vectors

ABSTRACT

Sequential data mining involves analysis of sequential patterns of varying length. Sequential pattern
analysis is important for pattern discovery from sequences of discrete symbols as in bioinformatics and
text analysis, and from sequences or sets of continuous valued feature vectors as in processing of au-
dio, speech, music, image, and video data. Pattern analysis techniques using kernel methods have been
explored for static patterns as well as sequential patterns. The main issue in sequential pattern analysis
using kernel methods is the design of a suitable kernel for sequential patterns of varying length. Kernel
functions designed for sequential patterns are known as dynamic kernels. In this chapter, we present a
brief description of kernel methods for pattern classification and clustering. Then we describe dynamic
kernels for sequences of continuous feature vectors. We then present a review of approaches to sequential
pattern classification and clustering using dynamic kernels.

DOI: 10.4018/978-1-61350-056-9.ch002

25

A Review of Kernel Methods Based Approaches, Part I

INTRODUCTION TO SEQUENTIAL
PATTERN ANALYSIS USING KERNEL
METHODS

Classification and clustering of patterns extracted
from sequential data are important for pattern
discovery using sequence data mining. Pattern
discovery from bio-sequences involves classifica-
tion and clustering of discrete symbol sequences.
Pattern discovery from multimedia data such as
audio, speech and video data involves classifica-
tion and clustering of continuous valued feature
vector sequences. Classification and clustering of
sequential patterns of varying length have been
challenging tasks in pattern recognition. Con-
ventional methods for classification of sequential
patterns use discrete hidden Markov models
(HMMs) for discrete sequences, and continuous
density HMMs for continuous feature vector se-
quences. Conventional methods for clustering of
sequential patterns use distance measures such as
edit distance for discrete sequences and dynamic
time warping based distance for continuous feature
vector sequences. During the past 15 years, kernel
methods based approaches such as support vector
machines and kernel K-means clustering have been
explored for classification and clustering of static
patterns and sequential patterns. Kernel methods
have been shown to give a good generalization
performance. This Chapter presents a review of
kernel methods based approaches to classification
and clustering of sequential patterns.

Kernel methods for pattern analysis involve
performing a nonlinear transformation from the
input feature space to a higher dimensional feature
space induced by a Mercer kernel function, and
then constructing an optimal linear solution in the
kernel feature space. Support vector machine for
two class pattern classification constructs an op-
timal hyperplane corresponding to the maximum
margin separating hyperplane in the kernel feature
space (Burges, 1998). Kernel K-means clustering
gives an optimal nonlinear separation of clusters
in the input feature space by minimizing the trace

of the within-cluster scatter matrix for the clusters
formed in the kernel feature space (Girolami, 2002;
Satish, 2005). The choice of the kernel function
used in the kernel methods is important for their
performance. Several kernel functions have been
proposed for static patterns. Kernel methods for
sequential pattern analysis adopt one of the fol-
lowing two strategies: (1) Convert a sequential
pattern into a static pattern and then use a kernel
function defined for static patterns, and (2) Design
and use a kernel function for sequential patterns.
Kernel functions designed for sequential data are
referred to as dynamic kernels or sequence kernels
(Wan & Renals, 2002). Examples of dynamic
kernels for continuous feature vector sequences
are Gaussian mixture model (GMM) supervector
kernel (Campbell et al., 2006b) and intermedi-
ate matching kernel (Boughorbel et al., 2005).
Fisher kernel (Jaakkola et al,. 2000) is used for
both the discrete observation symbol sequences
and sequences of continuous feature vectors. This
Chapter discusses the issues in designing dynamic
kernels for continuous feature vector sequences
and then presents a review of dynamic kernels
proposed in the literature.

Dynamic kernels for continuous feature vec-
tor sequences belong to the following two main
categories: (1) Kernels such as Fisher kernels that
capture the sequence information in the feature
vector sequences, and (2) Kernels such as GMM
supervector kernels and intermediate matching
kernels that consider the feature vector sequences
as sets of feature vectors. The kernels belonging
to the first category have been explored for clas-
sification of units of speech such as phonemes,
syllables and words in speech recognition. The
kernels belonging to the second category have
been explored for tasks such as speaker identifica-
tion and verification, speech emotion recognition
and image classification. This chapter presents a
review of dynamic kernels based approaches to
classification and clustering of sequential patterns.

The organization of the rest of the chapter is
as follows: The next section describes the kernel

26

A Review of Kernel Methods Based Approaches, Part I

methods for pattern analysis. The SVM based ap-
proach to pattern classification and kernel based
approaches to pattern clustering are presented in
this section. Then the design of dynamic kernels
for sequential patterns is presented in the third
section. This section also describes the dynamic
kernels for continuous feature vector sequences.
Finally, we present a review of kernel methods
based approaches to sequential pattern analysis.

KERNEL METHODS FOR
PATTERN ANALYSIS

In this section we describe different approaches
using kernel methods for patterns analysis. We first
describe the support vector machines (SVMs) for
pattern classification, and then present the kernel
K-means clustering and support vector clustering
methods for pattern clustering.

Support Vector Machines for
Pattern Classification

The SVM (Burges, 1998; Cristianini & Shawe-
Taylor, 2000; Sekhar et al., 2003) is a linear two-
class classifier. An SVM constructs the maximum
margin hyperplane (optimal hyperplane) as a
decision surface to separate the data points of two
classes. The margin of a hyperplane is defined as
the minimum distance of training points from the
hyperplane. We first discuss the construction of an
optimal hyperplane for linearly separable classes.
Then we discuss the construction of an optimal
hyperplane for linearly nonseparable classes, i.e.,
some training examples of the classes cannot be
classified correctly. Finally, we discuss building
an SVM for nonlinearly separable classes by con-
structing an optimal hyperplane in a high dimen-
sional feature space corresponding to a nonlinear
transformation induced by a kernel function.

Optimal Hyperplane for Linearly
Separable Classes

Suppose the training data set consists of L ex-

amples, x
i i i

L
y,{ }

=1
, xi ∈ Rd and yi ∈ {+1, −1},

where xi is ith training example and yi is the cor-
responding class label. Figure 1 illustrates the
construction of an optimal separating hyperplane
for linearly separable classes in the two-dimen-
sional input space of x.

A hyperplane is specified as wtx + b = 0, where
w is the parameter vector and b is the bias. A
separating hyperplane that separates the data points
of two linearly separable classes satisfies the fol-
lowing constraints:

yi(w
txi + b) > 0 for i = 1, 2,…, L (1)

The distance between the nearest example and
the separating hyperplane, called the margin, is
given by 1/||w||. The problem of finding the op-
timal separating hyperplane that maximizes the
margin is the same as the problem of minimizing
the Euclidean norm of the parameter vector w. For
reducing the search space of w, the constraints that
the optimal separating hyperplane must satisfy are
specified as follows:

Figure 1. Illustration of constructing the optimal
hyperplane for linearly separable classes

27

A Review of Kernel Methods Based Approaches, Part I

yi(w
txi + b) ≥ 1 for i = 1, 2,…, L (2)

The learning problem of finding the optimal
separating hyperplane is a constrained optimiza-
tion problem stated as follows: Given the training
data set, find the values of w and b such that they
satisfy the constraints in (2) and the parameter
vector w minimizes the following cost function:

J()w w=
1
2

2
 (3)

The constrained optimization problem is solved
using the method of Lagrangian multipliers. The
primal form of the Lagrangian objective function
is given by

L
p i i

t
i

i

L

b y b(, ,)w w w xα = − +()−

=
∑1

2
1

2

1

α

(4)

where the non-negative variables αi are called
Lagrange multipliers. The saddle point of the
Lagrangian objective function provides the solu-
tion for the optimization problem. The solution
is determined by first minimizing the Lagrang-
ian objective function with respect to w and b,
and then maximizing with respect to α. The two
conditions of optimality due to minimization are

∂

∂
=

L
p
b(, ,)w

w
0

α (5)

∂

∂
=

L
p
b

b

(, ,)w α
0 (6)

Application of optimality conditions gives

w x=
=
∑αi i i
i

L

y
1

 (7)

α
i i

i

L

y
=
∑ =

1

0 (8)

Substituting the expression for w from (7) in
(4) and using the condition in (8), the dual form of
Lagrangian objective function can be derived as a
function of Lagrangian multipliers α, as follows:

L
d i

i

L

i j i
j

L

i

L

j i
t
j

y y()α = −
= ==
∑ ∑∑α α α

1 11

1
2

x x (9)

The optimum values of Lagrangian multipli-
ers are determined by maximizing the objective
function Ld(α) subject to the following constraints:

α
i i

i

L

y
=
∑ =

1

0 (10)

αi ≥ 0 for i = 1, 2, …, L (11)

This optimization problem is solved using
quadratic programming methods (Kaufman,
1999). The data points for which the values of the
optimum Lagrange multipliers are not zero are
the support vectors. For these data points the
distance to the optimal hyperplane is minimum.
Hence, the support vectors are the training data
points that lie on the margin, as illustrated in
Figure 1. For the optimum Lagrange multipliers

α
j j

Ls*{ }
=1

, the optimum parameter vector w∗ is

given by

w x* =
=
∑αj j j
j

L

y
s

*

1

 (12)

where Ls is the number of support vectors. The
discriminant function of the optimal hyperplane
in terms of support vectors is given by

28

A Review of Kernel Methods Based Approaches, Part I

D b y bt
j j

t
j

j

Ls

(x) w x x x= + = +
=
∑* * * *α

1

 (13)

where b∗ is the optimum bias.
However, the data for most of the real world

tasks are not linearly separable. Next we present
a method to construct an optimal hyperplane for
linearly non-separable classes.

Optimal Hyperplane for Linearly
Non-Separable Classes

The training data points of the linearly non-
separable classes cannot be separated by a hyper-
plane without classification error. In such cases,
it is desirable to find an optimal hyperplane that
minimizes the probability of classification error
for the training data set. A data point is non-
separable when it does not satisfy the constraint
in (2). This corresponds to a data point that falls
either within margin or on the wrong side of the
separating hyperplane as illustrated in Figure 2.

For linearly non-separable classes, the con-
straints in (2) are modified by introducing the
nonnegative slack variables ξi as follows:

yi(w
txi + b) ≥ 1- ξi for i = 1, 2,…, L (14)

The slack variable ξi is a measure of the devia-
tion of a data point xi from the ideal condition of
separability. For 0 ≤ ξi ≤ 1, the data point falls
inside the region of separation, but on the correct
side of the separating hyperplane. For ξi > 1, the
data point falls on the wrong side of the separat-
ing hyperplane. The support vectors are those
particular data points that satisfy the constraint
in (14) with equality sign. The cost function for
linearly non-separable classes is given as

J C
i

i

L

()w, wξ = +
=
∑1

2

2

1

ξ (15)

where C is a user-specified positive parameter that
controls the trade-off between the complexity of
the classifier and the number of non-separable data
points. Using the method of Lagrange multipliers
to solve the constrained optimization problem as
in the case of linearly separable classes, the dual
form of the Lagrangian objective function can be
obtained as follows (Haykin, 1999):

L
d i

i

L

i j i
j

L

i

L

j i
t
j

y y()α = −
= ==
∑ ∑∑α α α

1 11

1
2

x x (16)

subject to the constraints:

α
i i

i

L

y
=
∑ =

1

0 (17)

0 ≤ αi ≤ C for i = 1, 2, …, L (18)

It may be noted that the maximum value that
the Lagrangian multipliers αi can take is C for the
linearly non-separable classes. For the optimum

Lagrange multipliers α
j j

Ls*{ }
=1

, the optimum pa-

rameter vector w∗ is given by

w x* =
=
∑αj j j
j

L

y
s

*

1

 (19)

Figure 2. Illustration of constructing the optimal
hyperplane for linearly nonseparable classes

29

A Review of Kernel Methods Based Approaches, Part I

where Ls is the number of support vectors. The
discriminant function of the optimal hyperplane
for an input vector x is given by

D b y bt
j j

t
j

j

Ls

(x) w x x x= + = +
=
∑* * * *α

1

 (20)

where b∗ is the optimum bias.

Support Vector Machine for
Nonlinearly Separable Classes

For nonlinearly separable classes, an SVM is built
by mapping the input vector xi, i = 1, 2, …, L into
a high dimensional feature vector Φ(xi) using a
nonlinear transformation Φ, and constructing an
optimal hyperplane defined by wtΦ(x) + b = 0 to
separate the examples of two classes in the feature
space Φ(x). This is based on Cover’s theorem
which states that an input space where the patterns
are nonlinearly separable may be transformed into
a feature space where the patterns are linearly
separable with a high probability, provided two
conditions are satisfied (Haykin, 1999). The first
condition is that the transformation is nonlinear
and the second condition is that the dimensional-
ity of the feature space is high enough. The con-
cept of support vector machine for pattern classi-
fication is illustrated in Figure 3. It is seen that the
nonlinearly separable data points xi = [xi1, xi2]

t, i =
1, 2, …, L in a two-dimensional input space are

mapped onto three-dimensional feature vectors
Φ(xi) =[x x x x

i i i i1
2

2
2

1 2
2, ,]t, i = 1, 2, …, L where

they are linearly separable.
For the construction of the optimal hyperplane

in the high dimensional feature space Φ(x), the
dual form of the Lagrangian objective function
in (16) takes the following form:

L
d i

i

L

i j i
j

L

i

L

j i
t

j
y y()α Φ Φ= −

= ==
∑ ∑∑α α α

1 11

1
2

() ()x x

(21)

subject to the constraints:

α
i i

i

L

y
=
∑ =

1

0 (22)

0 ≤ αi ≤ C for i = 1, 2, …, L (23)

For the optimal α∗, the optimal parameter vec-
tor w∗ is given by

w x* =
=
∑αj j j
j

L

y
s

*)Φ(
1

 (24)

where Ls is the number of support vectors. The
discriminant function of the optimal hyperplane
for an input vector x is defined as

Figure 3. Illustration of nonlinear transformation used in building an SVM for nonlinearly separable
classes

30

A Review of Kernel Methods Based Approaches, Part I

D b y bt
j j

t
j

j

Ls

(x) w ¦ x ¦ x ¦ x= + = +
=
∑* * * *() () ()α

1
(25)

Solving (21) involves computation of the in-
nerproduct operation Φ(xi)

tΦ(xj). Evaluation of
innerproducts in a high dimensional feature space
is avoided by using an innerproduct kernel, K(xi,
xj), defined as K(xi, xj) = Φ(xi)

tΦ(xj) (Scholkopf
et al., 1999). A valid innerproduct kernel K(xi, xj)
for two pattern vectors xi and xj is a symmetric
function for which the following Mercer’s condi-
tion holds good:

K g g d d
i j i j i j

(,) () ()x x x x x x∫ ≥ 0 (26)

for all g(xi) such that

g d
i i

2()x x∫ <∞ (27)

The objective function in (21) and the discrimi-
nant function of the optimal hyperplane in (25)
can now be specified using the kernel function
as follows:

L y y K
d i

i

L

i j i
j

L

i

L

j i j
()α = −

= ==
∑ ∑∑α α α

1 11

1
2

(,)x x

(28)

D b y K , bt
j j j

j

Ls

(x) w x (x x= + = +
=
∑* * * *Φ())α

1
(29)

The architecture of a support vector machine
for two-class pattern classification that implements
the discriminant function of the hyperplane in (29)
is given in Figure 4. The number of hidden nodes
corresponding to the number of support vectors,
and the training examples corresponding to the
support vectors are determined by maximizing the
objective function in (28) using a given training
data set and for a chosen kernel function.

Some commonly used innerproduct kernel
functions are as follows:

Polynomial kernel: K(xi, xj) = (axi
txj + c)p

Sigmoidal kernel: K(xi, xj) = tanh(axi
txj + c)

Gaussian kernel: K(xi, xj) = exp(−δ||xi − xj||
2)

Here, xi and xj are vectors in the d-dimensional
input pattern space, a and c are constants, p is the

Figure 4. Architecture of a support vector machine for two-class pattern classification. The class of
the input pattern x is given by the sign of the discriminant function D(x). The number of hidden nodes
corresponds to the number of support vectors Ls. Each hidden node computes the innerproduct kernel
function K(x, xi) on the input pattern x and a support vector xi.

31

A Review of Kernel Methods Based Approaches, Part I

degree of the polynomial and δ is a nonnegative
constant used for numerical stability in Gaussian
kernel function. The dimensionality of the feature
space is (p+d)!/(p! d!) for the polynomial kernel
(Cristianini & Shawe-Taylor, 2000). The feature
spaces for the sigmoidal and Gaussian kernels
are of infinite dimension. The kernel functions
involve computations in the d-dimensional input
space and avoid the innerproduct operations in
the high dimensional feature space.

The best choice of the kernel function for a
given pattern classification problem is still a re-
search issue (Burges, 1998). The suitable kernel
function and its parameters are chosen empirically.
The complexity of a two-class support vector
machine is a function of the number of support
vectors (Ls) determined during its training. Multi-
class pattern classification problems are generally
solved using a combination of two-class SVMs.
Therefore, the complexity of a multiclass pattern
classification system depends on the number of
SVMs and the complexity of each SVM used. In
the next subsection, we present the commonly
used approaches to multiclass pattern classifica-
tion using SVMs.

Multiclass Pattern Classification
Using SVMs

Support vector machines are originally designed
for two-class pattern classification. Multiclass
pattern classification problems are commonly
solved using a combination of two-class SVMs
and a decision strategy to decide the class of the
input pattern (Allwein et al., 2001). Each SVM has
the architecture given in Figure 4 and is trained
independently. Now we present the two approaches
to decomposition of the learning problem in mul-
ticlass pattern classification into several two-class
learning problems so that a combination of SVMs
can be used. The training data set {(xi, ci)} consists
of L examples belonging to T classes. The class
label ci ∈ {1, 2,..., T}. For the sake of simplicity,

we assume that the number of examples for each
class is the same, i.e., Lt = L/T.

One-Against-the-Rest Approach

In this approach, an SVM is constructed for each
class by discriminating that class against the re-
maining (T-1) classes. The classification system
based on this approach consists of T SVMs. All
the L training examples are used in constructing
an SVM for each class. In constructing the SVM
for the class t the desired output yi for a training
example xi is specified as follows:

y
c t

c ti
i

i

=
+ =
− ≠

1

1

,

,

 if

 if
 (30)

The examples with the desired output yi = +1
are called positive examples. The examples with
the desired output yi = −1 are called negative
examples. An optimal hyperplane is constructed
to separate Lt positive examples from L(T-1)/T
negative examples. The much larger number of
negative examples leads to an imbalance, resulting
in the dominance of negative examples in deter-
mining the decision boundary (Kressel & Ulrich,
1999). The extent of imbalance increases with the
number of classes and is significantly high when
the number of classes is large. A test pattern x is
classified by using the winner-takes-all strategy
that uses the following decision rule:

Class label for x = argt max Dt (x) (31)

where Dt(x) is the discriminant function of the
SVM constructed for the class t.

One-Against-One Approach

In this approach, an SVM is constructed for ev-
ery pair of classes by training it to discriminate
the two classes. The number of SVMs used in
this approach is T(T-1)/2. An SVM for a pair of

32

A Review of Kernel Methods Based Approaches, Part I

classes s and t is constructed using 2Lt training
examples belonging to the two classes only. The
desired output yi for a training example xi is speci-
fied as follows:

y
c s

c ti
i

i

=
+ =
− =

1

1

,

,

 if

 if
 (32)

The small size of the set of training examples
and the balance between the number of positive
and negative examples lead to a simple optimi-
zation problem to be solved in constructing an
SVM for a pair of classes. When the number of
classes is large, the proliferation of SVMs leads
to a complex classification system.

The maxwins strategy is commonly used to
determine the class of a test pattern x in this ap-
proach. In this strategy, a majority voting scheme
is used. If Dst(x), the value of the discriminant
function of the SVM for the pair of classes s and t,
is positive, then the class s wins a vote. Otherwise,
the class t wins a vote. Outputs of SVMs are used
to determine the number of votes won by each
class. The class with the maximum number of
votes is assigned to the test pattern. When there are
multiple classes with the same maximum number
of votes, the class with the maximum value of the
total magnitude of discriminant functions (TMDF)
is assigned. The total magnitude of discriminant
functions for the class s is defined as follows:

TMDF =∑ Dst
t

()x (33)

where the summation is over all t with which the
class s is paired. The maxwins strategy needs
evaluation of discriminant functions of all the
SVMs in deciding the class of a test pattern.

The SVM based classifiers have been suc-
cessfully used in various applications like image
categorization, object categorization, text clas-
sification, handwritten character recognition,
speech recognition (Sekhar et al., 2003), speaker

recognition and verification, and speech emotion
recognition.

Kernel Methods for
Pattern Clustering

In this subsection we the describe kernel K-means
clustering and support vector clustering methods
for clustering in the kernel feature space.

Kernel K-means Clustering

The commonly used K-means clustering method
gives a linear separation of data, as illustrated
in Figure 5, and is not suitable for separation of
nonlinearly separable data. In this subsection,
the criterion for partitioning the data into clusters
in the input space using the K-means clustering
algorithm is first presented. Clustering in the
kernel feature space is then realised using the
K-means clustering algorithm (Girolami, 2002;
Satish, 2005).

Consider a set of L data points in the input

space, x
i i

L{ }
=1

, xi ∈ Rd. Let the number of clusters
to be formed is Q. The criterion used by the K-
means clustering method in the input space for
grouping the data into Q clusters is to minimize
the trace of the within-cluster scatter matrix, Sw,
defined as follows (Girolami, 2002):

S x x
w qi i q i q

t

i

L

q

Q

L
z= − −

==
∑∑1

11

()()µ µ (34)

where μq is the center of the qth cluster, Cq, and
zqi is the membership of data point xi to the cluster
Cq. The membership value zqi = 1, if xi ∈Cq and 0
otherwise. The number of points in the qth cluster
is given as Lq defined by

L z
q qi

i

L

=
=
∑
1

 (35)

33

A Review of Kernel Methods Based Approaches, Part I

The center of the cluster Cq is given as μq
defined by

µ
q

q
qi i

i

L

L
z x=

=
∑1
1

 (36)

The optimal clustering of the data points in-
volves determining the Q × L indicator matrix,
Z, with the elements as zqi, that minimizes the
trace of the matrix Sw. This method is used in the
K-means clustering algorithm for linear separation
of the clusters. For nonlinear separation of clusters
of data points, the input space is transformed into
a high dimensional feature space using a smooth
and continuous nonlinear mapping, Φ, and the
clusters are formed in the feature space. The
optimal partitioning in the feature space is based
on the criterion of minimizing the trace of the
within-cluster scatter matrix in the feature space,
S
w
Φ . The feature space scatter matrix is given by

S
L

z x x
w qi i q i q

t

i

L

q

Q
Φ Φ ΦΦ Φ= −() −()

==
∑∑1

11

() ()µ µ

(37)

where µ
q
Φ , the center of the qth cluster in the

feature space, is given by

µ
q

q
qi i

i

L

L
z xΦ Φ=

=
∑1

1

() (38)

The trace of the scatter matrix S
w
Φ can be

computed using the innerproduct operations as
given below:

Tr S
L

z x x
w qi i q

t

i q
i

L

q

Q

() () ()Φ Φ ΦΦ Φ= −() −()
==
∑∑1

11

µ µ

(39)

When the feature space is explicitly repre-
sented, as in the case of mapping using polyno-
mial kernels, the K-means clustering algorithm
can be used to minimise the trace given in the
above equation. However, for Mercer kernels such
as Gaussian kernels with implicit mapping used
for transformation, it is necessary to express the
trace in terms of kernel function. The Mercer
kernel function in the input space corresponds to
the inner-product operation in the feature space,

Figure 5. Illustration of K-means clustering in input space. (a) Scatter plot of the data in clusters sepa-
rable by a circular shaped curve in a 2-dimensional space. Inner cluster belongs to cluster 1 and the
outer cluster belongs to cluster 2. (b) Linear separation of data obtained using K-means clustering in
the input space.

34

A Review of Kernel Methods Based Approaches, Part I

i.e., Ki j = K(xi, xj) = Φ(xi)
tΦ(xj). The trace of S

w
Φ

can be rewritten as

Tr S
L

z K
L

z
z

L
K

w qi ii qi

qj

q
ij

j

L

i

L

q

Q

i

L

q

Q

()Φ = −
=====
∑∑∑∑∑1 1

11111

= −

=

===
∑∑∑1 1

111L
z K

L
z K

qi ii
q

qj ij
j

L

i

L

q

Q

11

11L
z D
qi qi

i

L

q

Q

==
∑∑

(40)

where

D K
L

z K
qi ii

q
qj ij

j

L

= −
=
∑1
1

 (41)

The term Dqi is the penalty associated with
assigning xi to the qth cluster in the feature space.
For explicit mapping kernels such as the polyno-
mial kernel function, the feature space represen-
tation is explicitly known. Polynomial kernel is
given by K(x, xi) = (axtxi + c)p, where a and c are
constants, and p is the degree of polynomial ker-
nel. The vector Φ(x) in the feature space of the
polynomial kernel corresponding to the input
space vector x includes the monomials upto order
p of elements in x. For a polynomial kernel, Dqi
may take a negative value because the magnitude
of Kq j can be greater than that of Kii. To avoid Dqi
taking negative values, Ki j, in the equation for Dqi
is replaced with the normalized value K̂

ij
 defined

as

K̂
K

K K
ij

ij

ii jj

= (42)

From Cauchy-Schwarz inequal i ty,
K K K
ij ii jj
≤ . It follows that for the polyno-

mial kernel K̂
ii
= 1 and ˆ ˆK K

ij ii
≤ , and Dqi is

defined as:

D K
L

z K
qi ii

q
qj ij

j

L

= −
=
∑ˆ ˆ1

1

 (43)

For implicit mapping kernels such as the
Gaussian kernel function, the explicit feature
space representation is not known. A Gaussian
kernel is defined as K(x, xi) = exp(−δ||x − xi||

2),
where δ is the kernel width parameter. For Gauss-
ian kernel, Dq j takes a nonnegative value because
Kii =1 and Ki j ≤ Kii.

In the kernel K-means clustering, the optimiza-
tion problem is to determine the indicator matrix

Z∗ such that

Z Tr S
Z

w
* arg min ()= Φ (44)

An iterative method for solving this optimiza-
tion problem is given in (Girolami, 2002). The
clusters obtained for the ring data using the kernel
K-means clustering method are shown in Figure 6.

Figure 6. Nonlinear separation of data obtained
using the kernel K-means clustering method for
the ring data plotted in Figure 5(a).

35

A Review of Kernel Methods Based Approaches, Part I

Support Vector Clustering

Support vector clustering (Ben-Hur et al., 2001) is
a clustering method that follows the support vec-
tor data description technique. Here, data points
are mapped by means of a Gaussian kernel to a
high dimensional feature space, where a search
for the minimal enclosing sphere is performed.
This sphere, when mapped back to data space, can
form several contours, each enclosing a separate
cluster of points.

Consider a set of L data points in the input

space, x
i i

L{ }
=1

, xi ∈ Rd. Using a nonlinear trans-
formation Φ from the input space to a high di-
mensional feature space, the smallest enclosing
sphere of radius R is found in the feature space.
This is described by the constraints as given below:

|| Φ(xi) - a||2 ≤ R2, for i = 1, 2, …, L (45)

where a is the center of the sphere. Soft constraints
are incorporated by adding slack variables ζi as
follows:

|| Φ(xi) - a||2 ≤ R2 + ζi, for i = 1, 2, …, L (46)

with ζi ≥ 0. This constrained optimization problem
is solved using the method of Lagrangian multipli-
ers. The primal form of the Lagrangian objective
function is given by

L R R x a C
p i i i i i i

i

L

i

L

i

L

= − + − −

− +

===
∑∑∑2 2 2

111

α ζ β ζ ζΦ()

(47)

where αi ≥ 0 and βi ≥ 0 are the Lagrange multipli-

ers, C is a constant, and C
i

i

L

ζ
=
∑
1

 is a penalty term.

Setting to zero the derivative of Lp with respect
to R, a and ζi, respectively, leads to

α
i

i

L

=
=
∑ 1
1

 (48)

a x
i i

i

L

=
=
∑αΦ()

1

 (49)

αi = C - βi (50)

Using these relations, the variables R, a and
ζi may be eliminated from the Lagrangian objec-
tive function giving rise to the Wolf dual, that is
expressed solely in terms of αi, as follows:

L x x x
d i i i j i

t
j

j

L

i

L

i

L

= −
===
∑∑∑α α αΦ Φ Φ() () ()

2

111

(51)

subject to the following constraints:

α
i

i

L

=
∑ =
1

1 (52)

0 ≤ αi ≤ C for i = 1, 2, …, L (53)

The objective function in (51) can now be
specified using the kernel function as follows:

L K x x K x x
d i i i i j i j

j

L

i

L

i

L

= −
===
∑∑∑α α α(,) (,)

111

(54)

This optimization problem is solved using
a quadratic programming method to determine
the optimum center of the sphere a in the feature
space. Like in SVM, the set of points whose cor-
responding Lagrange multipliers are non-zero
become support vectors. Further, the support
vectors whose Lagrange multipliers are at C
are called bounded support vectors and the rest
of them are called unbounded support vectors.
Geometrically, the unbounded support vectors
lie on the surface of the sphere, bounded support
vectors lie outside the sphere and the remaining
points lie inside the sphere.

36

A Review of Kernel Methods Based Approaches, Part I

Let Z(x) be the distance of Φ(x) to the center
of the sphere a is given by

Z2(x) = || Φ(x) - a||2 (55)

From equations (55) and (49) we have,

Z x K x x K x x K x x
i i i j i j

j

L

i

L

i

L
2

111

2() (,) (,) (,)= − −
===
∑∑∑α α α

(56)

Then, the radius of the sphere R can be deter-
mined by computing Z(xi), where xi is a unbounded
support vector.

The sphere in the feature space when mapped
back to the input space leads to the formation of
a set of contours which are interpreted as cluster
boundaries. To identify the points that belong to
different clusters, a geometric approach involv-
ing Z(x) and based on the following observation
is used: Given a pair of data points that belong to
different clusters, any path that connects them must
exit from the sphere in feature space. Therefore,
such a path contains a segment of points v such
that Z(v) > R. This leads to the following definition
of the adjacency Ai j between a pairs of points xi
and xj with Φ(xi) and Φ(xj) being present in or
on the sphere in feature space shown in Box 1.

Clusters are now defined as the connected
components of the graph induced by the adja-
cency matrix A. Bounded support vectors are
unclassified by this procedure since their feature
space images lie outside the enclosing sphere. One
may decide either to leave them unclassified, or to
assign them to the cluster that they are closest.

In this section, we presented the kernel meth-
ods for classification and clustering of patterns.

Though the methods are described for static pat-
terns with each example represented as a vector
in d-dimensional input space, these methods
can also be used for patterns with each example
represented as a non-vectorial type structure.
However, it is necessary to design a Mercer
kernel function for patterns represented using
a non-vectorial type structure so that the kernel
methods can be used for analysis of such pat-
terns. Kernel functions have been proposed for
different types of structured data such as strings,
sets, texts, graphs, images and time series data.
In the next section, we present dynamic kernels
for sequential patterns represented as sequences
of continuous feature vectors.

DESIGN OF DYNAMIC
KERNELS FOR CONTINUOUS
FEATURE VECTOR

Sequences

Continuous sequence data is represented in the
form of a sequence of continuous feature vectors.
Examples of continuous sequence data are speech
data, handwritten character data, video data and
time series data such as weather forecasting data,
financial data, stock market data and network
traffic data. Short-time spectral analysis of the
speech signal of an utterance gives a sequence of
continuous feature vectors. Short-time analysis
of speech signal involves performing spectral
analysis on each frame of about 20 milliseconds
duration and representing each frame by a real
valued feature vector. These feature vectors corre-
spond to the observations. The speech signal of an

Box 1.

A
if Z v R for all v on the line segment connecti

ij
=

≤1, () , nng x and x

otherwise
i j

 0,

 (57)

37

A Review of Kernel Methods Based Approaches, Part I

utterance with M number of frames is represented
as X = x1x2... xm... xM, where xm is a vector of real
valued observations for frame m. The duration
of utterances belonging to a class varies from
one utterance to another. Hence, the number of
frames also differs from one utterance to another.
This makes the number of observations to vary. In
the tasks such as speech recognition, duration of
the data is short and there is a need to model the
temporal dynamics and correlations among the
features. This requires the sequence information
present in the data to be preserved. In such cases,
a speech utterance is represented as a sequence
of feature vectors. On the other hand, in the tasks
such as speaker identification, spoken language
identification, and speech emotion recognition,
the duration of the data is long and preserving
sequence information is not critical. In such cases,
a speech signal is represented as a set of feature
vectors. In the handwritten character data also,
each character is represented as a sequence of
feature vectors. In the video data, each video clip
is considered as a sequence of frames and a frame
may be considered as an image. Each image can be
represented by a feature vector. Since the sequence
information present among the adjacent frames is
to be preserved, a video clip data is represented as
a sequence of feature vectors. An image can also
be represented as a set of local feature vectors.

The main issue in designing a kernel for se-
quences of continuous feature vectors is to handle
the varying length nature of sequences. Dynamic
kernels for sequences of continuous feature vectors
are designed in three ways. In the first approach,
a sequence of feature vectors is mapped onto a
vector in a fixed dimension feature space and a
kernel is defined in that space (Campbell et al.,
2006a; Lee et al., 2007). The second approach
involves in kernelizing a suitable distance measure
used to compare two sequences of feature vectors
(Campbell et al., 2006b; Jing et al., 2003; Moreno
et al., 2004; You et al., 2009a). In the third ap-
proach, matching based technique is considered

for designing the kernel between two sequences of
feature vectors (Boughorbel et al., 2005; Grauman
& Darrell, 2007). In this Section, we describe dif-
ferent dynamic kernels such as generalized linear
discriminant sequence kernel (Campbell et al.,
2006a), the probabilistic sequence kernel (Lee
et al., 2007), Kullback-Leibler divergence based
kernel (Moreno et al., 2004), GMM supervector
kernel (Campbell et al., 2006b), Bhattacharyya
distance based kernel (You et al., 2009a), earth
mover’s distance kernel (Jing et al,. 2003), inter-
mediate matching kernel (Boughorbel et al., 2005),
and pyramid match kernel (Grauman & Darrell,
2007) used for sequences or sets of continuous
feature vectors.

Generalized Linear Discriminant
Sequence Kernel

Generalized linear discriminant sequence
(GLDS) kernel (Campbell et al., 2006a) uses
an explicit expansion into a kernel feature space
defined by the polynomials of degree p. Let X
= x1x2... xm... xM, where xm ∈ Rd be a set of M
feature vectors. The GLDS kernel is derived by
considering polynomials as the generalized linear
discriminant functions (Campbell et al., 2002).
A feature vector xm is represented in a higher
dimensional space Ψ as a polynomial expansion
Ψ (xm) =[ψ1(xm), ψ2(xm),..., ψr(xm)]t. The expansion
Ψ(xm) includes all monomials of elements of xm
upto and including degree p. The set of feature
vectors X is represented as a fixed dimensional
vector Φ(X) which is obtained as follows:

Φ ΨGLDS
m

m

M

X
M

x() ()=
=
∑1

1

 (58)

The GLDS kernel between two examples X =
x1x2... xM and Y = y1y2..., yN is given as

38

A Review of Kernel Methods Based Approaches, Part I

K X Y
M

x S
N

yGLDS
m

m

M
t

n
n

N

(,) () ()=

=

−

=
∑ ∑1 1

1

1

1

Ψ Ψ

(59)

Let L be the total number of examples in the
training data set which includes the data belong-
ing to two classes. The correlation matrix S is
defined as follows:

S
L
R Rt=

1 (60)

where R is the matrix whose rows are the poly-
nomial expansions of the feature vectors in the
training set. When the correlation matrix S is a
diagonal matrix, the GLDS kernel is given as

K X Y
M

S x
N

S yGLDS
m

m

M
t

n
n

N

(,) () ()=

−

=

−

=
∑ ∑1 11

2

1

1
2

1

Ψ Ψ

(61)

When the identity matrix is considered for S,
the GLDS kernel in (61) turns out to be

K X Y
M N

x y

M N
k

GLDS
m
t

n
n

N

m

M

(,) () ()

(

=

=

==
∑∑1 1

1 1
11

Ψ Ψ

 xx y
m n

n

N

m

M

,)
==
∑∑

11

(62)

where k(xm, yn) is the polynomial kernel function
of degree p between xm and yn.

Probabilistic Sequence Kernel

Probabilistic sequence kernel (PSK) (Lee et al.
2007) maps a set of feature vectors onto a proba-
bilistic feature vector obtained using generative
models like Gaussian mixture models (GMMs).
The GMM is a linear superposition of Q Gauss-
ian components, used to obtain the parameterized
density estimation of the given data. The set of

parameters, θ = {πq, μq, Σq}, q = 1, 2,..., Q is es-
timated from the training data using maximum
likelihood (ML) method. The models for each
class are trained independently. The universal
background model (UBM) is a large GMM trained
using the training data of all the classes to rep-
resent the class independent distribution of data.
A class-specific GMM is obtained by adapting
the UBM to the data of that class. Maximum a
posteriori (MAP) method is commonly used for
the adaptation.

The PSK uses the UBM with Q mixtures
(Reynolds et al., 2000) and the class-specific GMM
obtained by adapting UBM. The likelihood of a
feature vector x being generated by the 2Q-mixture
GMM that includes the UBM and class-specific
GMM is given as

p x p x q P q
q

Q

() () ()=
=
∑

1

2

 (63)

where P(q) denotes the mixture weight and p(x|q)
= N(x|μq, Σq). The normalized Gaussian basis
function for the qth component is defined as

ψ
q

q

Q
x

p x q P q

p x q P q

()
() ()

() ()

=
′ ′

′=
∑

1

2
 (64)

A feature vector x is represented in a higher di-
mensional space as a vector of normalized Gaussian
basis functions, Ψ (x) = [ψ1(x), ψ2(x),..., ψ2Q(x)]t.
Since the element ψq(x) indicates the probabilis-
tic alignment of x to the qth component, Ψ(x) is
called as the probabilistic alignment vector. A set
of feature vectors X = x1x2... xM is represented as
a fixed dimensional vector Φ(X) in the higher
dimensional space, as given by

Φ ΨPSK
m

m

M

X
M

x() ()=
=
∑1

1

 (65)

39

A Review of Kernel Methods Based Approaches, Part I

The PSK between two examples X = x1x2...
xM and Y = y1y2..., yN is given as

K X Y
M

x S
N

yPSK
m

m

M
t

n
n

N

(,) () ()=

=

−

=
∑ ∑1 1

1

1

1

Ψ Ψ

(66)

where S is the correlation matrix as in (60), except
that it is obtained using the probabilistic align-
ment vectors.

Kullback-Leibler Divergence
Based Kernel

A kernel function computes a measure of similarity
between a pair of examples. One way of designing
a kernel is to first find a suitable distance metric
for the pair of examples, and then kernelize that
distance metric. Deriving a suitable distance metric
for two varying length sequences is a non-trivial
task. Kullback-Leibler (KL) divergence (Kullback
& Leibler, 1951) can be used to compare two
distributions p(x) and g(x) defined over the space
of x as follows,

D p x g x p x
p x
g x
dxKL () () () log

()
()

() = ∫

(67)

This KL divergence is not symmetric. A sym-
metric version of KL divergence between two
distributions is given by

D p x g x

p x
p x
g x
dx g x

g x
p x
dx

KL () ()

() log
()
()

() log
()
()

() =
+∫ ∫

(68)

The KL divergence based kernel (Moreno et
al., 2004) between the two sequences X and Y
whose elements are in the space of x is obtained
by exponentiating the symmetric KL divergence
as follows:

K X Y eKLD D p x p xKL
X Y(,)

(() ())= −δ (69)

where δ is a constant used for numerical stability.
The KL divergence between two Gaussian dis-
tributions (Moreno et al., 2004), pX(x) = N(x|μX,
ΣX) and pY(x) = N(x|μY, ΣY), is given by Equation
70 in Box 2.

There is no closed form expression for the KL
divergence between two GMMs. In (Moreno et
al., 2004), the Monte Carlo method is used to
compute the KL divergence between two GMMs.

The KLD kernel does not satisfy the Mercer
property. However, in (Campbell et al., 2006b)
a GMM supervector kernel that uses KL diver-
gence to compare the GMM supervectors of two
sequences of feature vectors is introduced. The
GMM supervector kernel is explained in the next
subsection.

GMM Supervector Kernel

The GMM supervector (GMMSV) kernel (Camp-
bell et al., 2006b) performs a mapping of a set of
feature vectors onto a higher dimensional vector
corresponding to a GMM supervector. An UBM
is built using the training examples of all the
classes. An example-specific GMM is built for
each example by adapting only the means of the
UBM using the data of that example. An example
is represented by a supervector obtained by
stacking the mean vectors of the components of

Box 2.

D p x p x tr tr d trKL
X Y X Y Y X X Y X
() () () () ()(-- - - -() = + − + +Σ Σ Σ Σ Σ Σ1 1 1 12 µ µµ µ µ

Y X Y
t)(-)() (70)

40

A Review of Kernel Methods Based Approaches, Part I

the example-specific GMM. A GMM supervec-
tor kernel is designed using a distance measure
between the supervectors of two examples. In
(Campbell et al., 2006b), the distance measure
between the GMM supervectors is obtained by
the approximation to KL divergence between the
two GMMs.

Let p x N x
q q q

q

Q

() ()=
=
∑ π µ Σ

1

 be the probabil-

ity density function represented by the UBM with

Q components. Let p x N x
X q q

X
q

q

Q

() ()()=
=
∑ π µ Σ

1

and p x N x
Y q q

Y
q

q

Q

() ()()=
=
∑ π µ Σ

1

 be the example-

specific GMMs obtained by adapting only the
means of the UBM to the examples X = x1x2... xM
and Y = y1y2..., yN respectively. The examples X
and Y are now represented by the suprevector of
adapted mean vectors of the components as

Ψ() , , ... ,() () ()X X X
Q
X
t

=

µ µ µ

1 2
 a n d

Ψ() , , ... ,() () ()Y Y Y
Q
Y
t

=

µ µ µ

1 2
 respectively. When

only mean vector adaptation is considered, an
approximation for the distance between two
GMMs is considered by bounding the KL diver-
gence with the log-sum inequality as seen in
Equation 71 in Box 3.

For diagonal covariance matrices, the closed
form expression for the distance between two
example-specific GMMs is given by

D X Y

q q
X

q
Y

t

q

Q

q q
X

q
Y

((), ())

() () () ()

Ψ Ψ

Σ

=

−() −()
=

−∑12 1

1π µ µ µ µ
 (72)

The distance in (72) is symmetric and can
be used for kernel computation. The resulting
GMMSV kernel is given as

K X YGMMSV
q q

X
t

q q
Y

q

Q

(,) () ()= () ()−

=
∑ π µ µΣ 1

1

(73)

=

−

=

−

∑ π µ π µ
q q q

X
t

q

Q

q q q
YΣ Σ

1
2

1

1
2() () (74)

It is seen that the GMMSV kernel is linear in
the GMM supervectors. The feature space of the
GMMSV kernel represents a diagonal scaling
using π

q q
Σ of the GMM supervector, i.e.,

Φ Σ() ()X
q q q

X

q

Q

=
−

=
∑ π µ

1
2

1

. Hence the resulting

kernel satisfies the Mercer property.In (Campbell
et al. 2006b), only the adapted means are consid-
ered in forming a supervector. However, signifi-
cant information is present in the covariance terms.
In (Campbell, 2008), the covariance terms are
also considered to compute the kernel. An exam-
ple-specific GMM is built for each example by
adapting both the means and covariance matrices
of the UBM using the data of that example. Here
the symmetric KL divergence is used as the dis-
tance measure between the two GMMs. The su-
pervector kernel for the two sets of feature vectors
X and Y is given by Equation 75 in Box 4 where
Σq is the diagonal covariance matrix of qth com-
ponent of UBM, Σ

q
X() and Σ

q
Y() are the diagonal

covariance matrices of qth adapted components
corresponding to X and Y.

Box 3.

D p x p x D N x N xKL
X Y q

KL
q
X

q q
Y

q
q

Q

() () () ()() ()() ≤ ()
=
∑ π µ µΣ Σ

1

 (71)

41

A Review of Kernel Methods Based Approaches, Part I

One way of obtaining the kernel function is
exponentiating a distance metric (Shawe-Taylor
& Cristianini, 2004). In (Dehak et al., 2007), a
nonlinear GMM supervector kernel is introduced.
It is seen that the distance in (72) is symmetric
and satisfies the Mercer property. The nonlinear
GMM supervector (NLGMMSV) kernel is ob-
tained as

K X Y eNLGMMSV D X Y(,) ((), ())= −δ Ψ Ψ (76)

where δ is a constant used for numerical stability.

Bhattacharyya Distance
Based Kernel

An alternative measure of similarity between
two distributions is the Bhattacharyya affinity
measure (Bhattacharyya, 1943; Kailath, 1967).
The Bhattacharyya distance between two prob-
ability distributions p(x) and g(x) defined over x
is given by

B p x g x p x g x dx() () () ()() = ∫ (77)

L e t p x N x p p() (,)() ()= µ Σ a n d

g x N x g g() (,)() ()= µ Σ be two Gaussian distribu-

tions. The closed form expression for Bhattacha-
ryya distance (You et al., 2009b) between p(x)
and g(x) is given by Equation 78 in Box 5.

This can be extended to compare two distri-
bu t ions r ep resen ted as GMMs. Le t

p x N x
X q

X
q
X

q
X

q

Q

() (,)() () ()=
=
∑ π µ Σ

1

 a n d

p x N x
Y q

Y
q
Y

q
Y

q

Q

() (,)() () ()=
=
∑ π µ Σ

1

 be the GMMs

for the examples X = x1x2... xM and Y = y1y2..., yN
respectively. The closed form expression for
Bhattacharyya distance between pX(x) and pY (x)
is given using the log-sum inequality as shown
in Equation 79 in Box 6.

The Bhattacharyya distance measure is sym-
metric and the corresponding kernel gram matrix
is shown to be positive semidefinite in (Kondor
& Jebara, 2003). Hence it can be used as a kernel
function.

In (You et al. 2009b), the Bhattacharyya mean
distance is used to represent the similarity between

two GMMs. Let p x N x
q q q

q

Q

() (,)=
=
∑ π µ Σ

1

 be

t he UBM wi th Q componen t s and

Box 4.

K X YCOVSV
q q q

X
t

q

Q

q q q
Y(,) () ()=

−

=

−

∑ π µ π µΣ Σ
1
2

1

1
2

+ ()

=
∑
π
q

q
X

q q
Y

q

Q

tr
2

2

1

Σ Σ Σ() - () (75)

Box 5.

B p x g x p g
t p g

p() () - -() ()
() ()

-

() (() = () +

1
8 2

1

µ µ µ µ
Σ Σ gg

p g

p g

)

() ()

() ()
ln()+

+

1
2

2
Σ Σ

Σ Σ
 (78)

42

A Review of Kernel Methods Based Approaches, Part I

p x N x
X q

X
q
X

q
X

q

Q

() (,)() () ()=
=
∑ π µ Σ

1

be the GMM

obtained by adapting the UBM to the example X.
The GMM-UBM mean interval (GUMI) vector
Φq(X) is obtained from the approximation of
Bhattacharyya mean distance between the qth
component of the adapted GMM pX(x) and the
corresponding qth component of the UBM p(x)
as follows:

Φ
Σ Σ

q

q
X

q

q
X

q
X()

()

()=
+

−()

−

2

1
2

µ µ (80)

The GUMI supervector is obtained by con-
catenating the GUMI vectors of different com-
ponents as

Φ Φ Φ ΦGUMI t t
Q

t
t

X X X X() () , () , ... , ()=

1 2

(81)

The GUMI kernel is defined as the innerproduct
of the GUMI supervectors of a pair of examples,
and is given by

K X Y X YGUMI GUMI t GUMI(,) () ()= Φ Φ (82)

In the GUMI kernel, the supervector is obtained
from the Bhattacharyya mean distance between a

GMM and an UBM. However, significant informa-
tion is present in covariance terms. In (You et al.,
2009a), the covariance terms are also considered to
obtain the GUMI supervector. It is shown in (You
et al., 2009a) that a GUMI vector is obtained by
concatenating the mean vector and the variance
vector. The GUMI vector using the covariance
terms for the qth component is given by

Φ

Σ Σ

Σ Σ
COV

q
X

q

q
X

q

q
X

q

X

diag

()

()

()

()
=

+

−()

+

−

2

2

1
2

µ µ

()

 −

1
2 1

2µ
q
X()

(83)

The supervector is obtained by concatenating
the GUMI vectors using the covariance terms of
the different components as

Φ Φ Φ ΦCOVGUMI COV t COV t
Q
COV t

t
X X X X() () , () , ... , ()=

1 2

(84)

Now the modified Bhattacharyya distance
based kernel is obtained as

K X Y X YCOVGUMI COVGUMI t COVGUMI(,) () ()= Φ Φ
(85)

Box 6.

B p x p x
X Y q

X
q
Y

t q
X

q
Y

() () () ()

() ()
-

() = −()
+

1
8 2

µ µ
Σ Σ

11

1

1
2

µ µ
q
X

q
Y

q

Q

q

() ()

ln

−()

+

=
∑

Σ(() ()

() ()

()ln

X
q
Y

q
X

q
Yq

Q

q
X

q

+

−
=
∑

Σ

Σ Σ

2 1
21

π π(()Y

q

Q

()
=
∑

1

 (79)

43

A Review of Kernel Methods Based Approaches, Part I

Earth Mover’s Distance Kernel

Earth mover’s distance (EMD) (Rubner et al.,
2000) is a distance metric that computes a
similarity measure between two multidimen-
sional distributions. The EMD is computed based
on the transportation problem (Hitchcock, 1941).
Let X = x1x2... xM and Y = y1y2..., yN be the two
sets of feature vectors. In (Rubner et al., 2000),
feature vectors of each of the examples are clus-
tered into a fixed number of clusters. Let the
example X be represented using S clusters as
P p w p w p w
X p p S pS
= {(,),(,), ... ,(,)}

1 21 2
 and the

example Y be represented with T number of clus-
ters as R r w r w r w

Y r r T rT
= {(,),(,), ... ,(,)}

1 21 2
 .

Here ps and rt are the cluster representatives, and
w
ps

and w
rt

are the corresponding cluster weights.

The EMD metric between the two examples is
based on considering one set of clusters as piles
of earth and another set of clusters as holes in the
ground, and then finding the least work necessary
to fill the holes with the earth in the piles. The
EMD between the two sets of clusters P and R is
defined as

D P R
f d p r

f

EMD
X Y

st ground s t
t

T

s

S

st
t

T

s

S
,

(,)

() = ==

==

∑∑

∑∑
11

11

 (86)

where dground(.) denotes a ground distance metric
quantifying the distance between the two clusters
and fst ≥ 0 are selected so as to minimize the nu-
merator in (86) subject to the following constraints:

f w s S

f w t T

f w

st p
t

T

st r
s

S

st
t

T

s

S

s

t

≤ ≤ ≤

≤ ≤ ≤

=

=

=

==

∑

∑

∑∑

1

1

11

1

1

min
pp

s

S

r
t

T

s t
w,

= =
∑ ∑

1 1

 (87)

This formulation is solved using a linear pro-
gramming technique to obtain the EMD between
the two sets of clusters PX and RY. In (Jing et al.,
2003), a valid kernel is obtained by exponentiating
the EMD. The EMD kernel for two sequences X
and Y is defined as

K X Y eEMD D P REMD
X Y(,) (,)= −δ (88)

where δ is a constant used for numerical stability.

Intermediate Matching Kernel

The intermediate matching kernel (IMK)
(Boughorbel et al., 2005) is used for the examples
represented as sets of local feature vectors. The
core of the IMK is the set of virtual feature vec-
tors. The two sets of local feature vectors are
matched using an intermediate set of virtual fea-
ture vectors. The role of every virtual feature
vector is to select a local feature vector each from
the pair of examples to be matched. A kernel is
then computed on the selected pairs of local fea-
ture vectors. An IMK is computed by adding the
kernels obtained from the pair of local feature
vectors selected using each virtual feature vector.
Consider a pair of examples X = x1x2... xM and Y
= y1y2..., yN that need to be matched. Let V = {v1,
v2,..., vQ} be the set of virtual feature vectors
extracted from the training data of all the classes.
The feature vectors in X and Y that are closest to
vq are selected for matching. The measure of
closeness is given by Euclidean distance. The
feature vectors x

q
* and y

q
* in X and Y that are

closest to vq are obtained as follows:

x x v and y y v
q

x X
q q

y Y
q

* *arg min - arg min -= =
∈ ∈

(89)

A basic kernel K x y x y
q q q q

(,) exp -* * * *= −

δ

2

is computed for each of the Q pairs of selected
local feature vectors. Here δ is a constant scaling

44

A Review of Kernel Methods Based Approaches, Part I

term used for numerical stability. An IMK is
computed as the sum of all the Q basic kernel
values and is given as

K X Y K x yIMK
q q

q

Q

(,) (,)* *=
=
∑

1

 (90)

In (Boughorbel et al., 2005), the set of the
centers of clusters formed from the training data
of all classes is considered as the set of virtual
feature vectors. It is intuitive that the cluster
centers indicate the centers of highly informa-
tive regions. The pairs of local feature vectors
from a pair of examples that are closest to these
centers are selected for building the IMK. A better
representation for the set of virtual feature vec-
tors can be provided by considering additional
information. In (Dileep & Sekhar, 2011), the set
of components of the UBM is used as the set of
virtual feature vectors.

Set of Components of UBM as
Set of Virtual Feature Vectors:

In this approach, the set of components of the
UBM built using the training data of all the classes
is used as the set of virtual feature vectors. This
representation for the set of virtual feature vectors
makes use of the mean vector, covariance matrix,
and the mixture coefficient for each component.
The UBM is a large GMM of Q components
built using the training data of all the classes.
The feature vectors from the pair of examples
X and Y that are closest to the component q are
selected for matching. The responsibility term is
considered as a measure of closeness of a feature
vector to the component q. The responsibility of
the component q of UBM for the feature vector
x, γq(x), is given by

γ
π µ

π µ
q

q q q

j j j
j

Q
x

N x

N x

()
(,)

(,)

=

=
∑

Σ

Σ
1

 (91)

where πq is the mixture coefficient of the component
q, N(x|μq, Σq) is the normal density for the compo-
nent q with mean μq and covariance Σq. The feature
vectors x

q
* and y

q
* in X and Y that are closest to

the component q of UBM are given by

x x and y y
q

x X
q q

y Y
q

* *arg max () arg max ()= =
∈ ∈
 γ γ

(92)

A basic kernel K x y x y
q q q q

(,) exp -* * * *= −

δ

2
 is

computed between every pair of selected feature
vectors. An intermediate matching kernel (IMK)
is computed as the sum of all the Q basic kernel
values as in (90).

Pyramid Match Kernel

In certain cases as in images, the range of values
for each of the features is uniformly the same. Let
the range be 0 to D. In such cases, each example
can be represented by a histogram. For example,
pixels in a colour image consist of three colour
components, where each colour component has
a fixed range 0 to 255. An image can be consid-
ered as a set of 3-dimensional feature vectors and
represented by colour histogram formed using
3-dimensional bins. In pyramid match kernel
(PMK) (Grauman & Darrell, 2007) a set of feature
vectors is mapped onto a multiresolution histo-
gram that is also called as a histogram pyramid.
The histogram pyramids are then compared by
computing a weighted histogram intersection that
defines an implicit correspondence between the
multiresolution histograms.

In PMK, the feature representation is based on
a multiresolution histogram or pyramid, which is
computed by binning the feature vector of an ex-
ample into discrete regions of increasingly larger
size. The set of feature vectors X = x1x2..., xm,... xM,
xm ∈ Rd, is represented as a vector of concatenated
histograms, Ψ(X) = [H0(X)t, H1(X)t,..., HJ−1(X)t]t.
The number of levels, J is log

2
1D

 + and the

resolution of histogram at each level is different.

45

A Review of Kernel Methods Based Approaches, Part I

Hj(X) is the jth histogram vector formed using
d-dimensional bins of side 2j, and Hj(X) has the

dimension r D
j j

d

=

2

.

Let X = x1x2... xM and Y = y1y2..., yN be the
two sets of feature vectors. The similarity between
X and Y is defined as the weighted sum of the
number of matches found at each level of pyramids
formed by Ψ (X) and Ψ (Y). Let H

j
i()()X and

H
j
i()()Y be the number of feature vectors in the

ith bin of the histograms Hj(X) and Hj(Y) respec-
tively. The number of matches in the ith bin of
the histogram at the level j is obtained as

S H H
j
i

j
i

j
i() () ()(), ()= ()min X Y (93)

The total number of matches at level j is
obtained as

S S
j j

i

i

rj

=
=
∑ ()

1

 (94)

The number of new matches, Aj at the level j is
calculated by computing the difference between
the number of matches at levels j and j-1 as follows:

Aj = S j − S j−1 (95)

The number of new matches found at each
level in the pyramid is weighted according to the
size of that histogram bin. The weight at the

level j is given by w
dj j

=
1

2
. Thus, the PMK for

X and Y is defined as

K w A
j j

j

J
PMK ,()X Y =

=

−

∑
0

1

 (96)

The normalized PMK for two sequences X
and Y is obtained as

ˆ ()
()

() ()
K

K

K K

PMK
PMK

PMK PMK
,

,

, ,
X Y X Y

X X Y Y
=

(97)

In this section, we presented the different meth-
ods for designing dynamic kernels for sequences of
continuous feature vectors. The generalized linear
discriminant sequence kernel for a pair of patterns
is defined by computing the average of polynomial
expansions of feature vectors in each pattern as an
explicit mapping of that pattern, and then comput-
ing the innerproduct between the explicit mappings
of two patterns. This method is computationally
intensive when the lengths of pattern are high.
Methods for designing the probabilistic sequence
kernel, Kullback-Leibler divergence kernel, GMM
supervector kernel, Bhattacharyya distance based
kernel, and earth movers distance kernel involve
building a probabilistic model for each of the se-
quential patterns. These methods are suitable for
long patterns considered as sets of feature vectors.
The intermediate matching kernel is designed by
matching the feature vectors in two patterns with
elements of a set of virtual feature vectors. The
choice of a suitable set of virtual feature vector is
important in the design of intermediate matching
kernel. The pyramid matching kernel is designed
by computing the multiresolution histogram rep-
resentations of two patterns and then matching
the histograms at different levels.

In the next section we present a review of
kernel method based approaches to sequential
pattern analysis.

REVIEW OF KERNEL METHOD
BASED APPROACHES TO
CLASSIFICATION AND CLUSTERING
OF CONTINUOUS FEATURE
VECTOR SEQUENCES

A speech utterance, an image, an audio clip, a
video clip or time series data such as handwritten

46

A Review of Kernel Methods Based Approaches, Part I

character data, sensor recordings in a chemical
plant, stock market data, and network traffic data
are all represented as sequences of continuous
feature vectors. In this section, we present pattern
analysis tasks such as classification and clustering
of sequence of continuous feature vectors using
dynamic kernels.

Sequential pattern analysis tasks such as
speaker recognition, speech emotion recogni-
tion and spoken language identification involve
dynamic kernels on sequences of continuous fea-
ture vectors corresponding to speech utterances.
Every such continuous feature vector corresponds
to features obtained by the spectral analysis of a
frame of the speech signal. For all these tasks an
example is represented as a set of feature vectors.
The task of speaker recognition corresponds to
either speaker identification or speaker verification
(Campbell et al., 2006a). Speaker identification
involves identifying a speaker among a known
set of speakers based on the speech utterance
produced by the speaker. Speaker verification
involves whether to accept or reject the claim
of a speaker based on a speech utterance and is
used in a voice based authentication system. The
GLDS kernel is used for speaker recognition in
(Campbell, 2002; Campbell et al., 2006a). The
KL-divergence based kernel is used for speaker
verification in (Dehak & Chollet, 2006). The
GMM supervector kernel was used for speaker
verification in (Campbell et al., 2006c,b). Here
the distance between the two GMM supervec-
tors is computed as the KL divergence between
the respective GMMs. Bhattacharyya distance is
an alternative measure of distance between two
distributions. The Bhattacharyya distance based
kernel is used for speaker recognition in (You et
al., 2009b). The continuous feature vectors are
transformed using the kernel Fisher discriminant
analysis and the Bhattacharyya distance based
kernel is used for speaker recognition in (Chao
et al., 2005). An approach for speaker verifica-
tion based on the probabilistic sequence kernel is
proposed in (Lee et al., 2007). Dileep and Sekhar

(2011) used the intermediate matching kernel
for speaker identification task. Spoken language
recognition involves determining the language
of an utterance from a set of known languages.
Here an utterance is represented as a set of fea-
ture vectors. The GLDS kernel (Campbell et al.,
2006a) and covariance kernel (Campbell, 2008)
are used for language recognition using SVMs.
Speech emotion recognition involves identifying
the emotion with which a given speech utterance
is produced among a set of predefined emotions.
The GMM supervector kernel (Campbell et al.,
2006c) was used for speech emotion recognition
in (Hu et al., 2007). Kernel based clustering was
used by Satish (2005) in order to discritize the
continuous feature vectors so as to make use of
discrete HMMs in the kernel feature space for
speech recognition tasks involving the recognition
of confusable classes of subword units. A similar
approach was also used for a task in handwritten
character recognition (Satish, 2005).

Local feature vectors extracted from an image
used to represent an image as a set of feature vec-
tors and dynamic kernels are used for tasks such
as image retrieval and object detection. In content-
based image retrieval (CBIR) all the images in
the database that are relevant to a user’s query
are retrieved. Understanding the user’s intention
is an issue to be addressed in a CBIR system. In
order to address this issue, CBIR systems use the
relevance feedback mechanism where the user’s
intention is understood iteratively based on the
feedback provided by the user. Dynamic kernels
can be used for matching the query image and the
set of images in a database. In the relevance feed-
back based CBIR system, dynamic kernel based
SVMs are used for identifying the relevant and
irrelevant images for the query. For example, the
EMD kernel based SVM was used in (Jing et al.,
2003) for the relevance feedback approach based
CBIR. Object recognition is required in a CBIR
system in order to obtain a better understanding
of the content of an image. Object recognition
involves categorizing a given object image or a

47

A Review of Kernel Methods Based Approaches, Part I

region in an image to one of the priorly known
object categories. An object image or a region in an
image is represented using a set of local features.
In (Boughorbel et al., 2005), the IMK was used for
SVM based object recognition. Multiple resolu-
tion features are considered for object recognition
using the pyramid match kernel in (Grauman &
Darrell, 2005; 2007).

We presented the dynamic kernel based
approaches for sequential pattern analysis of
speech and image data. The dynamic kernels for
sequences of continuous feature vectors presented
in this chapter can also be used for variable length
multimedia sequence data. The term multimedia
refers to the diversity of modalities (for example
images, video, text, music, speech) and also to the
complex, compound (multimodal) data sets (for
example a video with an accompanying sound
track and closed caption) (Hanjalic et al., 2008).
The KL divergence based kernel was used for
SVM based classification of multimedia data in
(Moreno et al., 2004).

SUMMARY

In this chapter, we presented a review of ap-
proaches to sequential pattern classification and
clustering using kernel methods. The focus is
on design of suitable kernel functions for differ-
ent types of sequential patterns. We presented
the methods for design of dynamic kernels for
sequences of continuous valued feature vec-
tors. Three categories of methods for designing
dynamic kernels are as follows: (1) Construct a
higher-dimensional representation using an ex-
plicit mapping for each of the sequential patterns
and then compute an inner product between the
higher-dimensional representations, (2) Construct
a probabilistic model for distribution of the data of
each of the sequential patterns and then compute
a kernel function using a measure of similarity
between the distributions, (3) Match the sequen-

tial patterns of the different lengths using a fixed
size set of virtual feature vectors and construct a
kernel using the matching parts of patterns. The
generalized linear discriminant sequence kernel
and probabilistic sequence kernel for sequences
of continuous feature vectors belong to the first
category. The GMM supervector kernel, Bhat-
tacharyya distance based kernel and earth mover’s
distance kernel belong to the second category.
The intermediate matching kernel belongs to the
third category. Pyramid match kernel matches
the multiresolution histograms of sequential
patterns. It may be noted that all these dynamic
kernels for continuous feature patterns consider
a pattern as a set of feature vectors rather than
as a sequence of feature vectors. In other words,
the sequence information in the patterns is not
considered in the method used for design of the
dynamic kernel. Fisher kernel for discrete symbol
sequences uses the sequence information in the
patterns. The score-space kernel (Smith & Gales,
2002) extends the Fisher kernel for sequences of
continuous feature vectors. Dynamic kernels for
sequences of continuous valued feature vectors
have been explored for several tasks speech and
audio processing, image processing and video
processing. Kernel methods using dynamic kernels
have been shown to be effective for sequential
patterns analysis in these tasks.

REFERENCES

Allwein, E. L., Schapire, R. E., & Singer, Y.
(2001). Reducing multiclass to binary: A uni-
fying approach for margin classifiers. Journal
of Machine Learning Research, 1, 113–141.
doi:10.1162/15324430152733133

Ben-Hur, A., Horn, D., Siegelmann, H., & Vap-
nik, V. (2001). Support vector clustering. Journal
of Machine Learning Research, 2, 125–137.
doi:10.1162/15324430260185565

48

A Review of Kernel Methods Based Approaches, Part I

Bhattacharyya, A. (1943). On a measure of diver-
gence between two statistical populations defined
by their probability distributions. Bulletin of the
Calcutta Mathematical Society, 35, 99–109.

Boughorbel, S., Tarel, J. P., & Boujemaa, N.
(2005). The intermediate matching kernel for
image local features. In Proceedings of the Inter-
national Joint Conference on Neural Networks,
(pp. 889–894). Montreal, Canada.

Burges, C. J. C. (1998). A tutorial on support
vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2(2), 121–167.
doi:10.1023/A:1009715923555

Campbell, W. (2008). A covariance kernel for
SVM language recognition. In Proceedings of
International Conference on Acoustics, Speech
and Signal Processing, 2008 (ICASSP 2008), (pp.
4141–4144). Las Vegas, Nevada, USA.

Campbell, W., Assaleh, K., & Broun, C. (2002).
Speaker recognition with polynomial classi-
fiers. IEEE Transactions on Speech and Audio
Processing, 10(4), 205–212. doi:10.1109/
TSA.2002.1011533

Campbell, W., Sturim, D. E., Reynolds, D. A.,
& Solomonoff, A. (2006c). SVM based speaker
verification using a GMM supervector kernel
and NAP variability compensation. In IEEE
International Conference on Acoustics, Speech
and Signal Processing, 2006. ICASSP 2006, vol.
1, (pp. 97–100).

Campbell, W. M. (2002). Generalized linear
discriminant sequence kernels for speaker rec-
ognition. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2002,
ICASSP ’02, vol. 1, (pp. 161–164). Orlando,
Florida, USA.

Campbell, W. M., Campbell, J. P., Reynolds,
D. A., Singer, E., & Torres-Carrasquillo, P. A.
(2006a). Support vector machines for speaker
and language recognition. Computer Speech &.
Language, 20(2-3), 210–229.

Campbell, W. M., Sturim, D. E., & Reynolds, D.
A. (2006b). Support vector machines using GMM
supervectors for speaker verification. IEEE Signal
Processing Letters, 13(5), 308–311. doi:10.1109/
LSP.2006.870086

Chao, Y.-H., Wang, H.-M., & Chang, R.-C. (2005).
GMM-based Bhattacharyya kernel Fher discrimi-
nant analysis for speaker recognition. In IEEE
International Conference on Acoustics, Speech
and Signal Processing, 2005, ICASSP 2005, Vol.
1, (pp. 649–652). Philadelphia, PA, USA.

Cristianini, N., & Shawe-Taylor, J. (2000). An
introduction to support vector machines and
other kernel-based learning methods. The Ed-
inburgh building. Cambridge, UK: Cambridge
University Press.

Dehak, N., & Chollet, G. (2006). Support vector
GMMs for speaker verification. In IEEE Odyssey
2006: The Speaker and Language Recognition
Workshop, (pp. 1–4).

Dehak, R., Dehak, N., Kenny, P., & Dumouchel,
P. (2007). Linear and non linear kernel GMM
supervector machines for speaker verification. In
Proceedings of INTERSPEECH, (pp. 302–305).
Antwerp, Belgium.

Dileep, A. D., & Sekhar, C. C. (2011). Speaker
recognition using intermediate matching kernel
based support vector machines pairwise classifi-
cation and support vector machines. In Neustein,
A., & Patil, H. (Eds.), Speaker forensics: New
developments in voice technology to combat crime
and detect threats to homeland security.

49

A Review of Kernel Methods Based Approaches, Part I

Girolami, M. (2002). Mercer kernel-based clus-
tering in feature space. IEEE Transactions on
Neural Networks, 13(3), 780–784. doi:10.1109/
TNN.2002.1000150

Grauman, K., & Darrell, T. (2005). The pyramid
match kernel: Discriminative classification with
sets of image features. In Tenth IEEE International
Conference on Computer Vision, 2005. ICCV
2005, vol. 2, (pp. 1458–1465).

Grauman, K., & Darrell, T. (2007). The pyramid
match kernel: Efficient learning with sets of fea-
tures. Journal of Machine Learning Research,
8, 725–760.

Hanjalic, A., Lienhart, R., Ma, W.-Y., & Smith, J. R.
(2008). The holy grail of multimedia information
retrieval: So close or yet so far away? Proceed-
ings of the IEEE, 96(4), 541–547. doi:10.1109/
JPROC.2008.916338

Haykin, S. (1999). Neural networks: A compre-
hensive foundation (2nd ed.). Upper Saddle River,
NJ: Prentice-Hall.

Hitchcock, F. L. (1941). The distribution of a prod-
uct from several sources to numerous localities.
Journal of Mathematics and Physics, 20, 224–230.

Hu, H., Xu, M.-X., & Wu, W. (2007). GMM
supervector based SVM with spectral features
for speech emotion recognition. In IEEE Inter-
national Conference on Acoustics, Speech and
Signal Processing, 2007, ICASSP 2007, vol. 4,
(pp. 413–416). Honolulu, Hawaii, USA.

Jaakkola, T., Diekhans, M., & Haussler, D.
(2000). A discriminative framework for de-
tecting remote protein homologies. Journal
of Computational Biology, 7(1-2), 95–114.
doi:10.1089/10665270050081405

Jing, F., Li, M., Zhang, H.-J., & Zhang, B. (2003).
Support vector machines for region-based image
retrieval. In Proceedings of the 2003 International
Conference on Multimedia and Expo, (pp. 21–24).
Washington DC, USA.

Kailath, T. (1967). The divergence and Bhattacha-
ryya distance measures in signal selection. IEEE
Transactions on Communication Technology,
15(1), 52–60. doi:10.1109/TCOM.1967.1089532

Kaufman, L. (1999). Solving the quadratic pro-
gramming problem arising in support vector clas-
sification. In Scholkopf, B., Burges, C., & Smola,
A. (Eds.), Advances in kernel methods: Support
vector learning (pp. 147–167). Cambridge, MA:
MIT Press.

Kondor, R., & Jebara, T. (2003). A kernel between
sets of vectors. In Proceedings of International
Conference on Machine Learning, (ICML 2003).
Washington DC, USA.

Kressel, U. H.-G. (1999). Pairwise classification
and support vector machines. In Scholkopf, B.,
Burges, C., & Smola, A. (Eds.), Advances in kernel
methods: Support vector learning (pp. 255–268).
Cambridge, MA: MIT Press.

Kullback, S., & Leibler, R. A. (1951). On
information and sufficiency. Annals of Math-
ematical Statistics, 22(1), 79–86. doi:10.1214/
aoms/1177729694

Lee, K.-A., You, C. H., Li, H., & Kinnunen, T.
(2007). A GMM-based probabilistic sequence
kernel for speaker verification. In Proceedings
of INTERSPEECH, (pp. 294–297). Antwerp,
Belgium.

Moreno, P. J., Ho, P. P., & Vasconcelos, N. (2004).
A Kullback-Leibler divergence based kernel for
SVM classification in multimedia applications. In
Thrun, S., Saul, L., & Schölkopf, B. (Eds.), Ad-
vances in Neural Information Processing Systems
16. Cambridge, MA: MIT Press.

Reynolds, D. A., Quatieri, T. F., & Dunn, R. B.
(2000). Speaker verification using adapted Gauss-
ian mixture models. Digital Signal Processing,
10(1-3), 19–41. doi:10.1006/dspr.1999.0361

50

A Review of Kernel Methods Based Approaches, Part I

Rubner, Y., Tomasi, C., & Guibas, L. J. (2000). The
earth mover’s distance as a metric for image re-
trieval. International Journal of Computer Vision,
40(2), 99–121. doi:10.1023/A:1026543900054

Satish, D. S. (2005). Kernel based clustering
and vector quantization for pattern classifica-
tion. Master of Science thesis, Indian Institute of
Technology Madras, Chennai.

Scholkopf, B., Mika, S., Burges, C., Knirsch, P.,
Muller, K.-R., Ratsch, G., & Smola, A. (1999).
Input space versus feature space in kernel-based
methods. IEEE Transactions on Neural Networks,
10(5), 1000–1017. doi:10.1109/72.788641

Sekhar, C. C., Takeda, K., & Itakura, F. (2003).
Recognition of subword units of speech using
support vector machines. In Recent research de-
velopments in electronics and communication (pp.
101–136). Trivandrum, Kerala, India: Transworld
Research Network.

Shawe-Taylor, J., & Cristianini, N. (2004). Ker-
nel methods for pattern analysis. Cambridge,
UK: Cambridge University Press. doi:10.1017/
CBO9780511809682

Smith, N., & Gales, M. (2002). Speech recogni-
tion using SVMs. In Proceedings of the 2002
Conference on Advances in Neural Information
Processing Systems, (pp. 1197–1204). Cambridge,
MA: MIT Press.

Wan, V., & Renals, S. (2002). Evaluation of kernel
methods for speaker verification and identifica-
tion. In Proceedings of IEEE International Confer-
ence on Acoustics, Speech and Signal Processing,
(pp. 669-672). Orlando, Florida, US.

You, C. H., Lee, K. A., & Li, H. (2009a). A
GMM supervector kernel with the Bhattacharyya
distance for SVM based speaker recognition. In
Proceedings of IEEE International Conference
on Acoustics, Speech and Signal Processing, (pp.
4221–4224). Taipei, Taiwan.

You, C. H., Lee, K. A., & Li, H. (2009b). An
SVM kernel with GMM-supervector based on the
Bhattacharyya distance for speaker recognition.
IEEE Signal Processing Letters, 16(1), 49–52.
doi:10.1109/LSP.2008.2006711

51

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3

DOI: 10.4018/978-1-61350-056-9.ch003

Veena T.
Indian Institute of Technology, India

Dileep A. D.
Indian Institute of Technology, India

C. Chandra Sekhar
Indian Institute of Technology, India

A Review of Kernel Methods
Based Approaches to

Classification and Clustering
of Sequential Patterns, Part II:

Sequences of Discrete Symbols

ABSTRACT

Pattern analysis tasks on sequences of discrete symbols are important for pattern discovery in bioinfor-
matics, text analysis, speech processing, and handwritten character recognition. Discrete symbols may
correspond to amino acids or nucleotides in biological sequence analysis, characters in text analysis,
and codebook indices in processing of speech and handwritten character data. The main issues in kernel
methods based approaches to pattern analysis tasks on discrete symbol sequences are related to defining
a measure of similarity between sequences of discrete symbols, and handling the varying length nature of
sequences. We present a review of methods to design dynamic kernels for sequences of discrete symbols.
We then present a review of approaches to classification and clustering of sequences of discrete symbols
using the dynamic kernel based methods.

52

A Review of Kernel Methods Based Approaches, Part II

INTRODUCTION

Kernel methods for pattern classification and
clustering were presented in the previous chapter.
We also explained the design of dynamic kernels
for sequences of continuous feature vectors. In
this chapter, we present a review on the design of
dynamic kernels for discrete symbol sequences.

A discrete symbol sequence comprises of a
sequence of symbols, belonging to an alphabet
∑, observed or recorded during a process. For
example, in coin tossing experiment, the observa-
tions being either head (H) or tail (T) may result
in a discrete observation sequence HHTHTTH.
Here the alphabet ∑ is a set of two symbols {H,
T} and the length of the observation sequence
is seven. The discrete observation sequence ob-
tained in another coin tossing experiment may be
THHHTTHHT resulting in a sequence of different
length. One major issue in handling discrete sym-
bol sequences is that the observation sequences
are of varying length in nature. This applies to
any sequence data. A major source of discrete
symbol sequences is the biological sequences
such as protein sequences, DNA sequences and
RNA sequences. The DNA sequences are strings
over four nucleotides, represented by the alphabet
∑={A,C,G,T}. The RNA sequences are strings
over the alphabet ∑={A,C,G,U}. The symbols in
the alphabet for DNA and RNA correspond to the
following nucleotides: A(adenine), C(cytosine),
G(guanine), T(thymine), and U(uracil). The posi-
tions of occurrence of these nucleotides in the chain
molecule of DNA or RNA signify the functioning
of that DNA or RNA. An example DNA sequence
of length 50 is ATAATAAAAAATAAAAATA-
AAAAAAATTAAAAAATATTAAAAAATAAAAA.
Protein sequences are strings over an alphabet
of 20 amino acids which are the building blocks
of proteins. The kinds of amino acids occurring,
their frequency of occurrence and their relative
positions of occurrence in a protein sequence in-
fluence the functionality of a protein. An example
of a protein sequence is MGTPTLAQPVVTGM-

FLDPCH. Discrete symbol sequences are also
used to analyze text data.

A paragraph is considered as a sequence of
words. In text analysis, words are the observa-
tion symbols derived from a vocabulary of all the
words. Discrete observation sequences are also
derived by vector quantization of the continuous
feature vector sequences extracted from speech
data and online handwritten character data. Pattern
analysis tasks involving discrete symbol sequences
are classification and clustering. In order to use
kernel methods for these tasks, it is necessary to
address the issue of handling the varying length
nature of sequences. In some approaches, an
explicit feature map (Ding & Dubchak, 2001;
Jaakkola et al., 2000; Leslie et al., 2002; Leslie
& Kuang, 2003; Liao & Noble, 2002; Lodhi et
al., 2002; Logan et al., 2001) is used to obtain a
fixed length representation for each of the vary-
ing length sequences. In some other approaches,
a kernel is designed directly from the varying
length sequences (Saigo et al., 2004; Tsuda et al.,
2002; Vert et al., 2004; Watkins, 1999). Kernels
designed using any of these two methods are called
as dynamic kernels for discrete symbol sequences.

The organization of the rest of the chapter is as
follows: The next section describes the methods
for the design of dynamic kernels for discrete sym-
bol sequences. Then a review of kernel methods
based approaches to sequential pattern analysis
involving discrete symbol sequences is presented.

DESIGN OF DYNAMIC
KERNELS FOR DISCRETE
SYMBOL SEQUENCES

The main issue in designing a kernel for discrete
observation symbol sequence is to handle the vary-
ing length nature of the sequences. The varying
length sequences of discrete observation symbols
may be explicitly mapped onto a fixed dimensional
feature vector and then the kernel is computed as
an innerproduct in that fixed dimensional space.

53

A Review of Kernel Methods Based Approaches, Part II

Instead of obtaining an explicit feature map, kernel
between a pair of discrete symbol sequences can
also be computed implicitly either by defining
a function or an operation between the pair of
sequences. In this section we present the design
of various dynamic kernels for discrete symbol
sequences.

Consider two discrete symbol sequences, P =
p1p2... pm... pM and Q = q1q2... qn... qN of lengths M
and N respectively defined over an alphabet Σ. A
dynamic kernel between the sequences

P and Q is defined as

K (P,Q)= ¦ (P) ¦ (Q), (1)

Where Φ(P) and Φ(Q) correspond to an im-
plicit or explicit feature map for P and Q respec-
tively and ., . denotes the innerproduct operation.
The kernel function K(P,Q) represents a measure
of similarity between the two sequences. For
example, in Figure 1, the feature map Φ(.)maps
variable length sequences of symbols to points in
a fixed dimensional space. The transformation is
expected to increase the discrimination between
the families of sequences. In this section, we
present the feature maps Φ(.) designed for differ-
ent dynamic kernels.

Pairwise Comparison Kernel

A common task involving discrete symbol se-
quences is to assign a sequence to a family of
sequences.

For example, protein homology detection pro-
cess involves understanding the structure and func-
tionality of an unannotated protein and assigning
it to a family of proteins whose structure is known
and with which the given protein is similar. This
requires detecting similarities among sequences.
Pairwise comparison kernel (Liao & Noble, 2002;
2003) uses an empirical feature map that maps a
discrete symbol sequence to a fixed dimension
vector of pairwise similarity scores. Empirical
feature map (Tsuda, 1998) involves representing
an object by measures of its similarity to the ref-
erence objects. The empirical feature map used
by the pairwise comparison kernel represents a
sequence by a set of scores indicating how similar
the sequence is to the reference sequences.

Let P = p1p2... pm... pM be a discrete observation
sequence. Let P= {P1, P2,..., Pr,..., PR} be the set
of reference sequences used for mapping. Pairwise
comparison score based feature map for P is

given by Φ pair-comparison(P)= ϕ
r r

R
P()()

=1
 (2)

Figure 1. Illustration of a feature map for variable length sequences

54

A Review of Kernel Methods Based Approaches, Part II

Where φr(P) denotes the similarity score be-
tween the sequence P and the reference sequence
Pr. The similarity score φr(P) is computed using
any of the string similarity metrics such as, edit
distance based measures, city block distance,
Needleman-Wunsch algorithm (Needleman &
Wunsch, 1970), or Smith-Waterman dynamic
programming algorithm (Smith & Waterman,
1981). In (Liao & Noble, 2002; 2003), Smith-
Waterman dynamic programming algorithm is
used for computing the similarity between two
sequences. Pairwise comparison kernel for two
sequences P and Q using this empirical feature
map is defined as

Kpair-comparison(P,Q)=
Φ Φpair comparision pair comparisionP Q− −(), () (3)

The pairwise comparison score based feature
map uses the information present in various
families of sequences. It differs from the other
aggregate statistics based approaches such as
profiles (Gribskov et al., 1990) and hidden Mar-
kov models (HMMs) (Baldi et al., 1994, Krogh
et al., 1994) in that it captures the discriminatory
information between the families of sequences.
The discriminatory information between the
families of sequences was also considered in the
Fisher score based feature map (Jaakkola et al.,
1999, 2000). This involves modeling the aggregate
statistics for a family of sequences by training a
HMM. Pairwise comparison score based feature
map is simpler when compared to the Fisher score
based feature map because it does not need train-
ing of HMMs.

Composition Kernel

A composition kernel defines a feature map of
a sequence that characterizes the composition
of various discrete observation symbols or their
properties. The feature map is defined as

Φcomposition(P)=(φr(P))pϵΣ (4)

where φr(P) is the number of occurrences of the
symbol p in the sequence P. For example, a feature
map for a protein sequence may be a 20-dimen-
sional vector that contains the frequency of occur-
rence of each amino acid. For a protein sequence
P = MGTPTLAQPVVTGMFLDPCHTWTVM, the
feature map Φcomposition(P) is [1 1 1 0 1 2 1 0 0 2 3
0 3 1 0 0 5 3 1 0]T. Significant amount of informa-
tion present in the sequence is neglected in the
composition feature map of (4). The composition
feature map of (4) can be enhanced by appending
additional features as follows:

Φcomposition(P)=(φr(P))pϵΣ, ϕs s

m
P()()

=1

 (5)

where ϕ
s s

m
P()()

=1
 correspond to m features rep-

resenting the structural or physico-chemical or
sequence information. In (Ding & Dubchak, 2001),

ϕ
s s

m
P()()

=1
 comprises of 5 sets of features related

to structural and physico-chemical properties of
the amino acids present in a given protein se-
quence. The 5 sets of features with 21 features in
each set contain the information about the follow-
ing: (1) predicted secondary structure, (2) hydro-
phobicity, (3) normalized van der Waals volume,
(4) polarity, and (5) polarizability. A protein se-
quence is mapped onto a 125-dimensional feature
vector consisting of 5 sets of features along with
the 20 compositional features. In (Wang et al.,
2004; Zhang et al., 2003), sequence information
is used as the m features. Every amino acid sym-
bol in the protein sequence is represented by a
numerical index so as to obtain a numerical se-
quence, H = h1h2... hn... hN corresponding to the
discrete symbol sequence P = p1p2... pn... pN. An
autocorrelation function defined as follows is used
to obtain the m features:

55

A Review of Kernel Methods Based Approaches, Part II

r
N j

h h j m
j i i j

i

N j

=
−

=+
=

−

∑1
12

1

, ,. ,

(6)

The composition kernel for two sequences P
and Q is given by

Kcomposition(P,Q)= Φ Φcomposition compositionP Q(), ()
(7)

The composition kernel that uses the feature
maps corresponding to the frequencies of occur-
rence of symbols and sequencing information is
called as physico-chemical kernel in (Zhang et
al., 2003). In the next subsection, we describe the
spectrum kernel for strings defined as a composi-
tion kernel based on substrings.

Spectrum Kernel

Spectrum kernel is a string kernel based on the
sequence similarity. The sequence similarity is
computed using k-mers that correspond to sub-
strings of k contiguous symbols occurring in a
sequence. Figure 2 illustrates all possible 3-mers
for a given sequence.

The similarity score for two sequences is re-
lated to the number of common k-mers. The k-
spectrum of a sequence is defined as the set of all
possible k-length substrings in the sequence (Les-

lie et al., 2002). The feature map based on k-mers
for a sequence is given by

Φk
spectrum(P)= (φu(P))uϵΣ

k (8)

where φu(P) is the frequency of occurrence of a k-
mer u in P. The spectrum kernel for two sequences
P and Q is computed as

Kk
spectrum(P,Q)= Φ Φ

k
spectrum

k
spectrumP Q(), () (9)

The computation of spectrum kernel func-
tion between two given sequences is illustrated
in Figure 3.

The k-spectrum feature map, Φk
spectrum(P), re-

sults in a high dimensional sparse feature vector.
For example, when k = 5 and the size of the al-
phabet is 20, each feature vector consists of 520
elements. However, the spectrum kernel can be
computed implicitly using data structures such as
trie or suffix trees, without obtaining an explicit
feature map. The k-spectrum feature map proposed
in (Leslie et al., 2002) considers an equal weight
for every k-mer. Weighted sum of k-mers is pro-
posed in (Vishwanathan & Smola, 2003) that uses
different weights for different k-mers. Spectrum
kernel computes a measure of similarity between
the sequences by considering the exact match
between the k-mers. Many problems involving
the sequence similarity computation need to
consider some amount of mismatch between the

Figure 2. The k-mers and their frequencies of occurrence for a given sequence using k = 3

56

A Review of Kernel Methods Based Approaches, Part II

k-mers of the two sequences. For example, in
molecular biology, proteins of a family may not
match exactly due to mutations. With some extent
of mismatch tolerated, all of them are considered
to be similar and belonging to the same family.
In the next subsection, we describe the mismatch
kernel to compute a measure of similarity between
sequences when there are some mismatches.

Mismatch Kernel

Mismatch kernel is a generalization of a spectrum
kernel. The value of the spectrum kernel func-
tion computed between a pair of sequences is
high when many common k-mers are present in
both the sequences. This notion is generalized in
the mismatch kernel (Leslie et al., 2003; 2004).
If there are many number of k-length substrings
that mismatch by at most l symbols and occur
commonly between a pair of sequences, then the
measure of similarity between them is high. For
example, consider a 5-mer VTWTA that would
match with the sequences such as VTATA, VCWTA,
or VTWTK when l = 1. For a given k-mer, all the
k-length substrings that differ from it by at most l
symbols form a (k, l) neighborhood for the k-mer.

For a k-mer, u = u1u2... uk, the (k, l) neighborhood
is the set of all k-length subsequences v ∈ Σk that
mismatch from u by at most l symbols. For a k-
mer u, the feature map is defined as

Ψ Ψ
Σ(,)

() ()
k l
mismatch

v v
u u

k
= ()

∈
 (10)

where Ψv(u)=1 if v belongs to the (k, l) neigh-
borhood of u and Ψv(u)=0 otherwise. Mismatch
feature map for a sequence P is obtained by sum-
ming the feature vectors from the feature maps of
all the k-mers as given below:

Φ Ψ
(,) (,)

() ()
k l
mismatch

k l
mismatchP u

u P

=
∈
∑ (11)

The (k, l) mismatch kernel for two sequences
P and Q is computed as

K P Q P Q
k l
mismatch

k l
mismatch

k l
mismatch

(,) (,) (,)
(,) (), ()= Φ Φ

(12)

An illustration of computation of the mismatch
kernel between two sequences is given in Figure 4.

Figure 3. Illustration of computing the spectrum kernel function between two sequences for k = 2

Figure 4. An illustration for the computation of mismatch kernel between two sequences P and Q for
k = 3 and l = 1

57

A Review of Kernel Methods Based Approaches, Part II

A specific case of mismatch kernel when l =
0 is the spectrum kernel. The mismatch feature
map proposed in (Leslie et al., 2003;2004) is
extended using other kinds of inexact string
matching that involve restricted gaps (restricted
gappy kernel), probabilistic substitutions (substi-
tution kernel) or wildcards (wildcard kernel) in
(Leslie & Kuang, 2003). Explicit mismatch feature
map involves considering all possible k-mers and
results in high dimensional feature vectors. How-
ever, the mismatch kernel function between the
two sequences, K

k l(,)
mismatch (P,Q), can be computed

implicitly using data structures like tries.

String Subsequence Kernel
or Gappy N-Gram Kernel

String kernels such as spectrum kernel and mis-
match kernels consider two sequences to be similar
if they share many common substrings, where a
substring is a contiguous sequence of symbols.
In this section, we present a string kernel that
considers two sequences to be similar when they
have many common subsequences, where a subse-
quence is a non-contiguous sequence of symbols.
For example, the pattern car occurs as a subse-
quence in both the sequences card and custard.
The string subsequence feature map (Lodhi et al.,
2002) maps a string into a feature vector whose
dimension is equal to the number of all possible
subsequences of a particular length. However,
in order to compensate for the non-continuities
while matching, a decay factorλ∈(0,1) is used to
weigh each feature.

Given an alphabet Σ, a string P is a finite length
sequence of symbols from Σ denoted by

P = p1p2... p|P|, where |P| is the length of the
string P. Then a subsequence u of P is defined
as follows: u is a subsequence of P, if there exist
indices i = (i1, i2,..., i|u|), with 1 ≤ i1 ≤... ≤ i|u| ≤|P|,
such that uj = Pij, for j = 1, 2,..., |u|, or u = P[i].
The length l(i) of the subsequence in P is i|u| − i1 +
1 The set of all strings of length k is denoted by Σ k.
The string subsequence feature map is defined as

Φk
subsequence(P)=(φu(P))u∈Σ

k (13)

where φu(P) is given by

φu(P)= λl i
i u P i

()

: =

∑ (14)

The subsequence kernel for two sequences P
and Q is given by,

K
k k k
subsequence(P,Q)=

subsequence subsequenceΦ Φ(, (P) Q)

=

=
∈

+

∑ ϕ ϕ

λ

u u
u

l i l j

j

P Q
k

(), ()

() ()
Σ

:: []: [] u Q ji u P iu k ==∈

∑∑∑
Σ

(15)

For example, the two sequences DIARY and
DAILY are mapped onto a 15-dimensional feature
space by considering the subsequences of length
2 as shown in Table 1.

It is seen that the features are weighted by a
decay factor proportional to the length of the
subsequences. For example for the feature DA,
the weight used for the string DIARY is λ3,
whereas for the string DAILY, the weight factor
is λ2. The value of subsequence kernel between
the two sequences DIARY and DAILY for k = 2

Table 1.

DL DI DA DR DY IA IR IY IL AR AY AL AI RY LY

Φ2
subsequence(DIARY) 0 λ2 λ3 λ4 λ5 λ2 λ3 λ4 0 λ2 λ3 0 0 λ2 0

Φ2
subsequence(DAILY) λ4 λ3 λ2 0 λ5 0 0 λ3 λ2 0 λ4 λ3 λ2 0 λ2

58

A Review of Kernel Methods Based Approaches, Part II

is, K2
subsequence(DIARY,DAILY)=2 λ5+2 λ7+ λ10. String

subsequence kernel was proposed as a measure
of similarity between two text documents. The
text documents are considered as long sequences
of words. This representation is better than the
bag-of-words representation (Salton et al. 1975),
where the sequential information between the
words in the text document is neglected. String
subsequence kernel for two sequences is com-
puted as the inner product between the explicit
feature maps corresponding to the two sequences.
Since the explicit feature map results in a high
dimensional feature vector, whose dimension is
given by the total number of k-mers possible for
a given alphabet, computation of the kernel func-
tion becomes impractical even for small values
of k. However, the kernel formulation is shown
to be of recursive nature in (Lodhi et al., 2002),
so that the dynamic programming based ap-
proaches can be used for efficient computation.

Term Frequency Log
Likelihood Ratio Kernel

The string kernels such as spectrum kernel and
subsequence kernel map a discrete symbol se-
quence onto a feature space corresponding to
the frequency of occurrence of certain patterns
like k-mers or subsequences of length k. In case
of term frequency log likelihood ratio based fea-
ture map, probabilities of occurrence of k-mers
are considered (Campbell et al., 2004a,b; 2007).
Given a sequence P = p1 p2...pn...pN, let the K k-mers
occurring in P be denoted as u1

P, u2
P,…,uk

P. For
example, given the sequence ABCABC, the 2-mers
in the sequence are given by AB, BC, CA, AB, BC.
Let the unique k-mers occurring in a corpus be uj,
j = 1, 2,..., D. Here the corpus comprises of all the
sequences available in the training data set. Let
L denote the total number of k-mers occurring in
the corpus. The probability of observing a k-mer
uj in a sequence P is given by

p(uj|P)=
n

K
j
P

 (16)

where nj
Pis the frequency of occurrence of uj in P.

The probability of occurrence of uj in the corpus
is given by

p(uj)=
n

L
j (17)

where nj is the frequency of occurrence of uj in
the corpus. The feature map used by the term
frequency log likelihood ratio (TFLLR) kernel
is given by

Ψ
k
TFLLR

j j

D

P p u P() ()= ()
=1

 (18)

The elements of the feature vector in (18)
correspond to the term frequencies. Here ‘term’
refers to a k -mer. In order to normalize the ele-
ments of the feature vector in (18), every element
in the feature vector is weighted using the cor-
responding term frequencies in the corpus. This
is explained below along with the description of
the TFLLR kernel.

The TFLLR kernel considers a sequence P to
be similar to a sequence Q if the probability of
occurrence of k-mers of P in Q is high. The prob-
ability of occurrence of the k-mers of P in Q is
computed using the likelihood ratio given below:

Likelihood ratio score =
p u Q

p u
i
P

i
P

i

K ()

()=
∏

1

 (19)

where p
i

()u QP denotes the probability of a k-mer
of P, ui

p also occurring in Q. The TFLLR kernel
is obtained by considering the log of the likelihood
ratio (19) and normalizing it by the number of
observations in P as follows:

59

A Review of Kernel Methods Based Approaches, Part II

K P Q
K

p u Q

p uk
TFLLR i

P

i
P

i

K

(,) log
()

()
=

=
∑1

1

 (20)

Expressing in terms of unique k-mers in the cor-
pus, the TFLLR kernel function can be written as

K P Q
p u Q

p uk
TFLLR n

K
j

D
j

j

j
P

(,) log
()

()
=

=
∑

1

 (21)

From (16) it follows that

K P Q p u P
p u Q

p uk
TFLLR

j
j

D
j

j

(,) () log
()

()
=

=
∑

1

(22)

Linearizing the log function in (22) using
log(x) ≈ x − 1,

K P Q p u P
p u Q

p u
p u P

k
TFLLR

j

j

jj

D

j
j

D

(,) ()
()

()
()≈ −

= =
∑ ∑

1 1

= −

=

=
∑ p u P

p u Q

p u

p u P

p u

j
j

D
j

j

j

j

()
()

()

()

()

1

1

jj

D
j

j

p u Q

p u=
∑ −

1

1
()

()

(23)

From (23) it is seen that the elements of the
feature vector in (18) are weighted using the fac-
tor 1 p u

j
() . Hence the TFLLR feature map is

Φ
k
TFLLR

j j

D
P P() ()= ()

=
ϕ

1
 (24)

where ϕ
j

j

j

P
p u P

p u
()

()

()
= . The TFLLR kernel

between two sequences P and Q is computed as

K P Q P Q
k
TFLLR

k
TFLLR

k
TFLLR(,) (), ()= Φ Φ .

(25)

Motif Kernels

Pattern analysis tasks involving discrete symbol
sequences need to compute a measure of similarity
between two sequences. Kernels such as pairwise
comparison kernel, composition kernel, spectrum
kernel, subsequence kernel and TFLLR kernel
compute a measure of similarity by considering
common patterns in the two sequences. However,
there are situations where the pattern analysis
tasks need to be carried out even when the se-
quences have low similarity or share only a few
common patterns. In molecular biology, remote
homology detection involves protein homology
detection even when the sequence similarities
are low. Though the sequences are globally dis-
similar, certain portions in protein sequences that
represent the information regarding the protein’s
functionality are found to be similar in homolo-
gous proteins. These highly conserved regions in
protein sequences that are functionally important
are known as motifs. Protein sequence motifs are
used to compute a measure of similarity between
protein sequences. Protein sequences that share
many number of motifs are considered as similar
sequences. Motifs are constructed from multiple
sequence alignments of related sequences. Motifs
can be represented as discrete sequence motifs
(Ben-Hur & Brutlag, 2003) or position specific
scoring matrices (PSSMs) (Logan et al., 2001).
Given a protein sequence, substrings of the same
length as that of the motifs called ‘blocks’ are
considered and are scored against the set of all
available motifs.

A discrete sequence motif is defined as fol-
lows. A motif is a sequence of elements where
an element is a symbol in the alphabet Σ, or a
substitution group, or a wild card character *. A
substitution group is a subset of Σ. For example,
consider the motif m = [AS] *DKF[FILMV]

60

A Review of Kernel Methods Based Approaches, Part II

[FILMV] *L[AS T], with length |m| =14.
Here [AS], [FILMV], and [AS T] are substitution
groups. A sequence P = p1p2... pN is said to contain
a motif m = m1m2...m|m| at a position i, if one of
the following properties is satisfied for every j =
1, 2,..., |m|:

1. pi+j-1 = mj, if mj ∈Σ
2. pi+j-1 ∈ S, if mj ∈ S, where S is a substitution

group
3. pi+j-1 ∈Σ if mj = *

An illustration of a discrete sequence motif
of length 14 is shown in Figure 5 along with
four protein blocks of the same length which are
compared with the motif. The first two blocks b1
and b2 match with the motif whereas the blocks b3
and b4 do not match with the motif. The elements
in blocks b3 and b4 that do not match with the
corresponding elements in m are shown in bold.

A sequence P is mapped onto the fixed dimen-
sion motif feature space as

Φmotif(P)= ϕ
m m M
P()()

∈
 (26)

where M is the set of all motifs and φm(P) is the
frequency of occurrence of the motif m in P. Motif
kernel for two sequences P and Q is defined as

Kmotif(P,Q)= Φ Φmotif motifP Q(), () (27)

A motif can also be represented as a position
specific scoring matrix (PSSM) (Logan et al.

2001). The PSSMs are used to map the sequences
onto the motif feature space. A motif is represented
by a T × L matrix, MPS SM, where each of the T rows
corresponds to a symbol from the alphabet. For
protein motifs, each of the T rows corresponds to
an amino acid. Here L corresponds to the length of
the motif and a column corresponds to a position
in the motif. An element in the matrix MPS SM(at,
posl) represents the probability of occurrence of
tth amino acid, at, at lth position, posl, in the motif.

As a large number of motifs are considered, the
dimension of motif feature vector space is high.
Motif kernel computation between two sequences
involves computation of inner product between
such high dimensional feature vectors, that is
computationally intensive. However, the motif
kernel can be computed implicitly by storing the
motifs in data structures such as tries.

Marginalised Kernels

String kernels such as spectrum kernel, mis-
match kernel and subsequence kernel consider
the frequency of occurrence of certain patterns
called k-mers in a given sequence to obtain a
measure of similarity between two sequences.
The composition kernel uses such frequency
based features to obtain a measure of similarity
between sequences. Instead of using the frequency
of occurrence based features, term frequency log
likelihood ratio kernel considers the probability of
occurrence of a pattern for mapping a sequence to
a fixed dimension feature vector. However, none
of these approaches for feature mapping consider
the context information associated with the sym-

Figure 5. Matching a discrete sequence motif with four protein blocks

61

A Review of Kernel Methods Based Approaches, Part II

bols in the sequence. The context information
corresponds to the circumstances under which
a discrete symbol is observed. Some discrete
symbols observed in two different contexts may
have different meanings. For example, consider
the following two text sentences where words are
the discrete observation symbols: ‘I purchased a
book’ and ‘I am planning to book a ticket’. The
word ‘book’ has a different meaning depending
on the context of its appearance. For processing
text sequences, say in text classification, consider-
ing the context information is useful. Biological
sequences such as DNA sequences are also context
sensitive. The DNA sequences have coding and
noncoding regions that have different statistical
properties. A particular residue occurring in a
coding region has a different meaning when it
occurs in a non-coding region. The coding and
non-coding regions provide the context informa-
tion that is hidden from the discrete observation
symbols. In a generative perspective, we can
consider an observation symbol being emitted
by a hidden state corresponding to the context.
Figure 6 shows a discrete symbol sequence P and
the corresponding hidden state sequence H with
the states representing the coding and non-coding
regions of DNA.

Marginalized kernels (Tsuda et al. 2002) con-
sider the context information in the form of the
hidden state information for computing a measure
of similarity between sequences. First, a joint
kernel is defined as a measure of similarity between
sequences assuming that the hidden state sequence
is available. However, the information about hid-
den state sequence is not available. The marginal-
ized kernel takes the expectation of the joint

kernel with respect to the hidden state sequence.
The posterior distribution of the hidden state
sequence is estimated using the probabilistic
models such as HMMs.

Let P = p1p2... pn... pN and Q = q1q2... qm... qM be
two sequences on an alphabet Σ. Let HP = h1h2... hn...
hN and HQ = h1h2... hm... hM be the corresponding
sequences of hidden states. Here, hi corresponds to
a hidden state such that hi ∈ H, where H is the set
of hidden states. A combined sequence ZP can be
written as, ZP = z1z2... zn... zN = {p1, h1}{p2, h2}...
{pn, hn}... {pN, hN}. The hidden state sequence
information is used in defining the joint kernel
Kjoint(ZP, ZQ). The marginalized kernel is derived
from the joint kernel by taking the expectation
with respect to hidden state sequence as follows:

Kmarginalized(Zp,ZQ)=
p H P p H Q K Z Z

P
HH

Q
jo

P Q

QP

() () (,)int∑∑ (28)

The posterior distribution, p(HP|P), is estimated
using the probabilistic models such as HMMs. An
important example of a marginalized kernel is the
marginalized count kernel that incorporates the
context information into a count kernel. Given the
two sequences P and Q, a count kernel is defined as

Kcount(P,Q)= C C
k

k
k

((P) Q)
∈
∑
Σ

 (29)

where Ck(P) is the frequency of occurrence of
the symbol k in the sequence P, normalized by
the length of the sequence. The count kernel is
extended to the combined sequences ZP and ZQ as

Figure 6. Illustration of a biological sequence with context information in the form of hidden states
corresponding to coding (1) and non-coding (2) regions

62

A Review of Kernel Methods Based Approaches, Part II

K Z Z C Z C Z
combined
count

P Q kl P kl Q
l Hk

(,) () ()=
∈∈
∑∑

Σ

(30)

where Ckl(ZP) is the number of instances in which
a discrete observation symbol k is observed by
being in the state l. The marginalized count kernel
is derived from the joint count kernel as

Kmarginalized-count(P,Q)= ψ ψ
kl

l Hk
kl

P Q() ()
∈∈
∑∑

Σ

 (31)

where ψ
kl PH kl P
P p H P C Z

P

() () ()=∑ . If HMMs

are used to model the distribution of the sequenc-
es, then the posterior probability of the hidden
state sequence p(HP|P) is computed in an efficient
manner using the forward-backward algorithm.
The marginalized count kernel enhances the count
kernels by considering the context information.
However, the adjacency relationships between
symbols are totally ignored while computing the
measure of similarity between the sequences. In
order to consider the adjacency relationships
between the symbols, the second order marginal-
ized count kernels are proposed in (Tsuda et al.,
2002). It is also shown that the Fisher kernel
(Jaakkola et al., 2000) is a special case of mar-
ginalized kernel. In the next subsection, we pres-
ent the Fisher kernel.

Fisher Kernel

Fisher kernel (Jaakkola et al., 2000) for discrete
symbol sequences is designed using a global dis-
crete hidden Markov model (DHMM) built using
the training examples of all the classes. Let the
set of parameters of the global DHMM be θ. Let
the number of parameters of the global DHMM
be R. The log-likelihood of a discrete symbol
sequence P is given by

Lθ(P)=1np(P| θ) (32)

where p(P| θ), the probability of the global
DHMM generating the discrete symbol sequence
P, is computed using the forward method or the
backward method (Rabiner & Juang, 1993). The
Fisher score vector corresponds to the gradient
vector of the log-likelihood and is given by

g P
P

i i

R

θ
θ

θ
()

()
=
∂

∂

=

1

 (33)

The Fisher information matrix Iθ is given by

I
L

g P g P
l

l

L

l

t

θ θ θ= ()()
=
∑1

1

() () (34)

where L is the number of training examples used
to build the global DHMM.

The Fisher kernel for two sequences of discrete
symbols, P and Q is given by

K g g
tFisher(((P,Q) P) I Q)= () ()−

θ θθ

1 (35)

Pair HMM Kernel

A pair hidden Markov model (pHMM) (Watkins,
1999) shown in Figure 7 is an HMM that generates
two symbol sequences, P and Q, simultaneously.
The two sequences need not be of the same length.

A pHMM consists of a set of states S compris-
ing of four subsets of states, a START state and
an END state. The subset SPQ includes the states
that emit two symbols simultaneously, one for the
sequence P and one for the sequence Q. The
subsets SP and SQ include the states that emit one
symbol only for the sequences P and Q respec-
tively. The subset S−1 includes the states that emit
no symbols. The pHMM defines a joint probabil-
ity distribution over pairs of discrete symbol se-
quences of finite length. The joint probability
p(P,Q) of two sequences, P and Q, is related to
the score obtained by global alignment of two

63

A Review of Kernel Methods Based Approaches, Part II

sequences (Haussler, 1999; Needleman & Wunsch,
1970; Watkins, 1999). Haussler (1999) showed
that the joint probability p(P,Q) obtained using a
pHMM corresponds to the value of a valid string
kernel. However, the joint probability values
obtained are too small to be considered as the
kernel function values. In situations where a fam-
ily of sequences may not get aligned globally and
still they have some localized similarity, global
alignment based schemes such as pHMM may be
of little use. For example, homologous proteins
may have little global similarity. In such cases,
local similarity measures like Smith-Waterman
score (Smith & Waterman, 1981) are useful. In
the next subsection, we present a convolution
kernel that uses the local alignment between se-
quences.

Local Alignment Kernel

Local alignment kernel is based on alignment of
sequences and is obtained by convolving simple
kernels. Haussler (1999) has shown that convo-
lution of two string kernels is a string kernel.
Given two string kernel functions, K1 and K2, the
convolution of the two kernels, K1 * K2, is given as

K (P, Q) = K 1* K 2=
P P P Q Q Q1 2 1 2. , .= =
∑ K 1(P 1, Q 1)

K2(P2,Q2) (36)

where P1.P2 denotes the concatenation of two
substrings P1 and P2 to form the string P. A
string can be expressed as a concatenation of two
strings in many ways. For example the string S
EQUENCE can be expressed as S EQ.UENCE, S
EQU.ENCE, S E.QUENCE, S EQUEN.CE, etc.
While computing the kernel function in (36), all
the possible ways of concatenation are considered
in the summation. Given any two sequences P and
Q, an alignment (with gaps) π of n ≥ 0 positions
between them is specified by a pair of n-tuples
(Vert et al. 2004):

π π π π π= () ()()P P Q Q
n n(), , () , (), , ()1 1

(37)

that satisfies

1 1 2≤ < < < ≤π π π
P P P

n P() () ()

1 1 2≤ < < < ≤π π π
Q Q Q

n Q() () ()

Figure 7. Pair hidden Markov model (pHMM) for generation of two sequences P and Q simultaneously

64

A Review of Kernel Methods Based Approaches, Part II

where |P| and |Q| are the lenghts of sequences P
and Q respectively. An example for one possible
alignment for two sequences is shown in Figure
8. The alignment can be represented as a pair of
15-tuples as π=((πP),(πQ)), where πP = (1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17) and πQ =

(2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17).

It is seen that the symbols in the two sequenc-
es get aligned either to exactly match or to have
mismatches. It is also seen that some insertions
or deletions are required in order to align the two
sequences. Few possible alignments between two
sequences HAWGEG and AGEHV are given in
Figure 9. It is seen that the number of symbols
aligned varies from one alignment to another. It
is also seen that for the same number of symbols
aligned, the combination of the alignment varies.

For a given alignment of n symbols between
two sequences P and Q, the local alignment ker-
nel is defined as the convolution of three basic
kernels, K0(P,Q), K P Q

ai
β(,) , and K P Q

gi
β(,) as

shown in Figure 10. The first basic kernel is de-
fined as

K0(P,Q)=1 (38)

It is used to compare the parts of the two se-
quences that do not contribute to the local align-

ment. The other two basic kernels, K P Q
ai
β (,) ,

and K P Q
gi
β(,) are used to compute a measure of

similarity between the n symbols aligned with
possible gaps. For every aligned position π (i),
for i = 1,..., n, the kernel K P Q

ai
β(,) is defined as

K P Q e
ai

S P i Q iP Qβ β π π
(,)

,
=

()() ()()() (39)

where P(πP(i)) indicates the ith aligned symbol in
P, β ≥ 0 is a parameter whose value decides the
positive definiteness of the kernel matrix and S

Figure 8. Illustration for one possible alignment of two sequences P and Q

Figure 9. Illustration of multiple alignments be-
tween two sequences

65

A Review of Kernel Methods Based Approaches, Part II

is the substitution matrix. Substitution matrix
contains values proportional to the probability
that a symbol in one sequence possibly gets sub-
stituted to the same or another symbol in the other
sequence in order to get aligned with the other
sequence. Substitution matrices are constructed
by assessing a large and diverse sample of verified
pairwise alignments of sequences. A substitution
matrix used for protein sequence alignments is of
size 20×20. The elements of the matrix denote
the probability of one amino acid mutating to
another amino acid. Though some of the amino
acids mutate, the two proteins remain homologous.

In order to consider the possible gaps between
the n aligned symbols, the kernel K P Q

gi
β(,) is

defined as

K P Q e
gi

g i i g i iP P Q Qβ β π π π π
(,)=

+()− ()()+ +()− ()()()1 1
 (40)

where g: N → R is a gap penalty function such
that g(0) = 0. The gap penalty function may be a
regular gap penalty function that adds a constant

penalty for every insertion or deletion operation,
or an affine gap penalty function given as g(l) =
d +e(l -1). Here l indicates the length of the gap,
d indicates a gap opening cost and e indicates the
gap extension cost. Affine gap penalty increases
the kernel value when there are extended gaps
rather than having multiple fragments of gaps.

For an alignment of n symbols between the
sequences, P and Q, a kernel is obtained by con-
volving the three basic kernels, K0(P,Q), K P Q

ai
β(,)

and K P Q
gi
β(,) as Equation 41 in Box 1.

This kernel gives a measure of similarity be-
tween the two sequences P and Q when n symbols
are exactly aligned. The convolution operation
sums up the contribution of all possible decom-
positions of the sequences P and Q or all possible
alignments of P and Q. In order to consider align-
ments of different number of symbols as shown
in Figure 9, the local alignment kernel for two
sequences, P and Q is defined as

Figure 10. Illustration of the computation of the local alignment kernel for two sequences

Box 1.

K P Q K P Q K P Q K P Q K P Q K P
n ai gi

n

ai
β β β β(,) (,) * (,) * (,) (,) * (,= () −()

0

1

0
QQ K P Q

gi

n
) * (,)β() −()1

 (41)

66

A Review of Kernel Methods Based Approaches, Part II

K P Q K P Qlocal alignment
i

i
β

β−

=

∞

= ∑(,) (,)
0

 (42)

The complexity of direct computation of (42) is
exponential in |P| and |Q|. Alternative methods that
make use of dynamic programming approaches
are proposed (Vert et al., 2004).

Each of the dynamic kernels presented in
this section computes a measure of similarity
between two sequences of discrete observation
symbols either by constructing an explicit feature
map or by computing the value of a kernel func-
tion directly. Frequency of occurrence of each
of groups of symbols such as k-mers is used to
construct the feature map in the spectrum kernel,
the composition kernel, the mismatch kernel, and
the subsequence kernel. The mismatch kernel dif-
fers from the spectrum kernel in that, it tolerates
mismatches between sequences. The subsequence
kernel is based on the subsequences present in the
sequences, with the non-continuities penalized
using appropriate decay factors. The pairwise
comparison kernel uses an empirical feature map
for mapping a sequence onto a fixed dimensional
feature vector. Each element of the feature vec-
tor corresponds to the similarity of the given
sequence to one of the reference sequences. The
TFLLR kernel uses the probabilities of occurrence
of k-mers in the sequences. If the probability of
k-mers from one sequence occurring in the other
sequence is high, then the measure of similarity
between the two sequences computed using the
TFLLR kernel is high. The pair HMM kernel gives
a high value of a measure of similarity between
two sequences, if their joint probability computed
using a pair HMM is high. In biological sequences,
it is common that the two sequences that may not
be similar globally, may still belong to the same
family of sequences. The two sequences may have
same locally conserved regions that are similar.
These characteristics of sequences are used in
the motif kernel and the local alignment kernel.
Although the computation is intensive for many

dynamic kernels presented in this section, faster
methods using data structures such as tries or us-
ing dynamic programming based techniques can
be considered. The dynamic kernels presented
in this section are used for tasks such as protein
classification, protein function prediction, protein
structure prediction, text categorization, speaker
verification, and online handwritten character
recognition. A brief description of the approaches
using the kernel methods for classification and
clustering of sequences of discrete symbols is
presented in the next section.

REVIEW OF KERNEL METHODS
BASED APPROACHES TO
CLASSIFICATION AND CLUSTERING
OF DISCRETE SEQUENCES

Various kinds of discrete symbol sequences are
biological sequences (for example proteins, DNA,
RNA etc.), text data and the sequences obtained
from tokenizing the continuous feature vector
sequences extracted from speech signal data or
handwritten character data. In this section we pres-
ent approaches used for classification of discrete
symbol sequences using the dynamic kernels.

Protein sequences are strings over an alpha-
bet of 20 symbols that correspond to the amino
acids which are the building blocks of proteins.
Dynamic kernels are used for pattern analysis
tasks such as protein classification, protein func-
tion prediction and protein structure prediction.
Protein classification involves assigning an unan-
notated protein sequence to a category of proteins
based on the sequence similarity between a pair
of sequences. Spectrum feature map was used to
map an unannotated protein sequence to a fixed
dimension feature vector, in (Leslie et al., 2002).
Since exact sequence similarity is very rare to
occur in biological sequences like proteins, some
degree of mismatch was tolerated in the feature
map of (Leslie et al., 2003; 2004). The mismatches
tolerated in biological sequences correspond to

67

A Review of Kernel Methods Based Approaches, Part II

the mutations happening in the cell. The notion
of mismatch was extended to restricted gaps,
substitutions and wildcard characters in (Leslie
& Kuang, 2003). The composition feature map
involving frequency of occurrence of the amino
acids as well as the autocorrelation coefficients is
used in (Wang et al., 2004) to predict the type of
the membrane proteins. Protein function predic-
tion involves detecting the functionality of any
unannotated protein by analyzing their amino
acid sequences. Protein homology prediction is a
process of detecting the functionality of a protein
where the given protein sequence is compared with
a family of protein sequences of known functional-
ity. Difficulty in homology prediction is that there
is less similarity between the sequences in terms
of overall composition. However, the proteins in
a family might have been generated from a com-
mon source and undergone multiple mutation
cycles. The common functionality exhibited by
the proteins in a family despite the differences
in sequence similarities may be attributed to the
remote source of common origin in the evolution-
ary hierarchy. Protein homology prediction is ap-
propriately called as remote homology prediction.
A dynamic kernel based on Fisher feature map
was used for remote homology prediction by
Jaakkola et al. (1999; 2000). Here, the statistical
distribution of the protein sequences of a family
is modeled using a HMM and the gradient of the
log likelihood of an unannotated protein sequence
in the HMM parameter space gives the Fisher
feature map. The dimension of the feature vector
is equal to the number of parameters of the HMM.
The Fisher kernel needs a HMM to be trained
for each family of proteins in order to obtain the
statistics of that family. Liao ans Noble (2002;
2003) used the pairwise comparison kernel for
remote homology prediction by mapping a protein
sequence onto a fixed dimension feature vector
of pairwise similarity scores of the sequence with
a set of reference protein sequences. The set of
reference protein sequences consists of protein
sequences belonging to all the known families.

A 125-dimensional feature vector consisting
of both the amino acid composition as well as
the physico-chemical properties of the protein
sequence is used for protein function prediction
in (Cai et al., 2003). Though there is less global
similarity between the sequences in a family of
proteins with common functionality, there are cer-
tain regions in the sequences that are similar which
correspond to the common functionality. These
locally conserved regions of protein sequences are
used as protein sequence motifs by Ben-Hur and
Brutlag (2003) and Logan et al. (2001). Blocks
of an unannotated protein sequence are matched
against every motif in the set of motifs to verify
the presence of a motif and the protein sequence
is mapped onto a fixed dimensional feature vec-
tor of frequency of occurrence of motifs. Local
sequence similarities among a family of proteins
are utilized in the local lignment kernel (Saigo et
al., 2004; Vert et al., 2004) for remote homology
prediction. Protein structure prediction involves
predicting the protein fold structure or quaternary
structure of proteins using only the primary se-
quence. Structure prediction helps in predicting
the functionality, understanding the cellular func-
tion, and discovery of new drugs and therapies.
It is found that structurally similar proteins have
less sequence similarities. However, considerable
information regarding the structure is available in
the primary sequence. Composition kernel was
used in (Ding & Dubchak, 2001; Hua & Sun,
2001; Park & Kanehisa, 2003; Zhang et al., 2003)
for protein structure prediction. Classification of
bacterial gyrB amino acid sequence is carried out
using marginalised kernel in (Tsuda et al., 2002).
Spectrum and motif kernels were used to predict
protein-protein interactions by Ben-Hur and Noble
(2005). Understanding such interactions is useful
to learn the functionality of proteins as proteins
perform their functions by interacting with the
other proteins.

Text data comprises of a sequence of words
belonging to a language. Dynamic kernels are
used for categorizing text documents and iden-

68

A Review of Kernel Methods Based Approaches, Part II

tification of the language of the written text. For
categorizing text documents, Lodhi et al. (2002)
considered a text document as a long sequence
of symbols by concatenating the words in their
order of occurrence. A sequence corresponding
to a document is mapped onto a fixed dimen-
sion feature vector using the string subsequence
feature map and classified using a SVM based
classifier. Language of the text is identified using
the spectrum kernel in (Kruengkrai et al., 2005).
Every text is represented as a string of bytes and
the spectrum kernel is computed using suffix trees.

The TFLLR kernel is used for speaker verifica-
tion in (Campbell et al., 2004a,b, 2007; Stoicke
et al. 2008). Speaker verification involves either
to accept or reject the claim made by a speaker
based an utterance given by the speaker. The
speech signal of an utterance is first converted into
a sequence of tokens such as words or phonemes.
The sequence of tokens is classified using the
TFLLR kernel based SVM classifier. The sequence
corresponding to the speech signal of an utterance
is tokenized in order to make use of high-level
features like idiolects. This corresponds to the
observation that every speaker has an unique way
of language usage in terms of the words used and
the order in which the words are used.

Online handwritten character recognition
(OHCR) refers to the task of identifying char-
acters in a script. A stroke based OHCR for an
Indian language script, Telugu, is proposed in
(Jayaraman, 2008). A character is written as a
sequence of strokes, where a stroke is defined as
the trajectory of pen from a pen-down event to a
pen-up event. The number of strokes is different
for different characters. A stroke is represented as
a sequence of discrete symbols corresponding to
the structural or segmental features, resulting in
a varying length representation. An SVM based
classification approach is used to classify a stroke
to a known category using the string subsequence
kernel. A character is recognized as combination
of strokes using ternary search trees (TSTs). Time
series data corresponding to measurements done

in a chemical process is tokenized and classified
using the pHMM kernel and the string subsequence
kernel in (Ruping, 2001).

CONCLUSION

In this chapter, we presented a review on the
design of dynamic kernels for the sequences of
discrete observation symbols. The focus is on
design of suitable kernel functions for different
kinds of discrete symbol sequences. Two catego-
ries of methods for designing dynamic kernels
for discrete symbol sequences are as follows:
(1) Construct a higher-dimensional representa-
tion using an explicit mapping for each of the
discrete symbol sequences and then compute an
innerproduct between the higher-dimensional
representations, (2) Compute the kernel function
without explicitly mapping the discrete symbol
sequences onto higher-dimensional feature space.
Most of the dynamic kernels presented in this
chapter such as, the pairwise comparison kernel,
the composition kernel, the spectrum kernel, the
mismatch kernel, the string subsequence kernel,
and the motif kernel belong to the first category.
Instead of explicitly mapping the discrete sym-
bol sequence onto a higher-dimensional feature
space, the TFLLR kernel is computed based on
the probability of occurrence of the features of
one discrete symbol sequence in the other discrete
symbol sequence. All these dynamic kernels for
discrete symbol sequences do not consider the
sequence information. The local alignment kernel,
the pair HMM kernel, the marginalized kernel, and
the Fisher kernel consider the sequence informa-
tion. In addition to the sequence information, the
marginalized kernel also considers the context
information. The Fisher kernel is a special case
of the marginalized kernel. Dynamic kernels for
sequences of discrete symbols have been explored
for several tasks in bioinformatics, text analysis,
speaker verification, and handwritten character
recognition. Kernel methods using dynamic ker-

69

A Review of Kernel Methods Based Approaches, Part II

nels have been shown to be effective for sequential
patterns analysis in these tasks.

REFERENCES

Baldi, P., Chauvin, Y., Hunkapiller, T., & McClure,
M. A. (1994). Hidden Markov models of biologi-
cal primary sequence information. Proceedings of
the National Academy of Sciences of the United
States of America, 91(3), 1059–1063. doi:10.1073/
pnas.91.3.1059

Ben-Hur, A., & Brutlag, D. (2003). Remote
homology detection: A motif based approach.
Bioinformatics (Oxford, England), 19, i26–i33.
doi:10.1093/bioinformatics/btg1002

Ben-Hur, A., & Noble, W. S. (2005). Kernel meth-
ods for predicting protein-protein interactions.
Bioinformatics (Oxford, England), 21(1), i38–i46.
doi:10.1093/bioinformatics/bti1016

Cai, C. Z., Wang, W. L., Sun, L. Z., & Chen,
Y. Z. (2003). Protein function classification via
support vector machine approach. Mathemati-
cal Biosciences, 185(1), 111–122. doi:10.1016/
S0025-5564(03)00096-8

Campbell, W. M., Campbell, J. P., Gleason, T.
P., Reynolds, D. A., & Shen, W. (2007). Speaker
verification using support vector machines and
high-level features. IEEE Transactions on Au-
dio Speech and Language Processing, 15(7),
2085–2094. doi:10.1109/TASL.2007.902874

Campbell, W. M., Campbell, J. P., Reynolds, D.
A., Jones, D. A., & Leek, T. R. (2004a). High-
level speaker verification with support vector
machines. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 1,
(pp. I–73–76). Montreal, Quebec, Canada.

Campbell, W. M., Campbell, J. P., Reynolds, D.
A., Jones, D. A., & Leek, T. R. (2004b). Phonetic
speaker recognition with support vector machines.
In Advances in neural information processing
systems, (pp. 1377–1384). Vancouver, Canada.

Ding, C. H. Q., & Dubchak, I. (2001). Multi-class
protein fold recognition using support vector
machines and neural networks. Bioinformatics
(Oxford, England), 17(4), 349–358. doi:10.1093/
bioinformatics/17.4.349

Gribskov, M., Luthy, R., & Eisenberg, D. (1990).
Profile analysis. Methods in Enzymology, 183,
146–159. doi:10.1016/0076-6879(90)83011-W

Haussler, D. (1999). Convolution kernels on
discrete structures (Tech. Rep. No.UCSC-
CRL-99-10). University of California at Santa
Cruz: Department of Computer Science.

Hua, S., & Sun, Z. (2001). A novel method of
protein secondary structure prediction with high
segment overlap measure: Support vector machine
approach. Journal of Molecular Biology, 308,
397–407. doi:10.1006/jmbi.2001.4580

Jaakkola, T., Diekhans, M., & Haussler, D. (1999).
Using the Fisher kernel method to detect remote
protein homologies. In Seventh International
Conference on Intelligent Systems for Molecular
Biology, (pp. 149–158). Menlo Park, CA.

Jaakkola, T., Diekhans, M., & Haussler, D.
(2000). A discriminative framework for de-
tecting remote protein homologies. Journal
of Computational Biology, 7(1-2), 95–114.
doi:10.1089/10665270050081405

Jayaraman, A. (2008). Modular approach to on-
line handwritten character recognition of Telugu
script. Master’s thesis, Department of CSE, IIT
Madras, Chennai-36.

70

A Review of Kernel Methods Based Approaches, Part II

Krogh, A., Brown, M., Mian, I. S., Sjolander, K.,
& Haussler, D. (1994). Hidden Markov models
in computational biology: Applications to protein
modeling. Journal of Molecular Biology, 235,
1501–1531. doi:10.1006/jmbi.1994.1104

Kruengkrai, C., Srichaivattana, P., Sornlertlam-
vanich, V., & Isahara, H. (2005). Language
identification based on string kernels. In IEEE
International Symposium on Communications
and Information Technology, 2005. ISCIT 2005.,
vol. 2, (pp. 926–929).

Leslie, C., Eskin, E., Cohen, A., Weston, J., &
Noble, W. S. (2004). Mismatch string kernels for
discriminative protein classification. Bioinformat-
ics (Oxford, England), 20, 467–476. doi:10.1093/
bioinformatics/btg431

Leslie, C., Eskin, E., & Noble, W. S. (2002). The
spectrum kernel: A string kernel for SVM protein
classification. In The Pacific Symposium on
Biocomputing, (pp. 564–575). River Edge, NJ.

Leslie, C., Eskin, E., Weston, J., & Noble, W. S.
(2003). Mismatch string kernels for SVM protein
classification. In Becker, S., Thrun, S., & Ober-
mayer, K. (Eds.), Advances in neural information
processing (pp. 1417–1424). Cambridge, MA:
MIT Press.

Leslie, C., & Kuang, R. (2003). Fast kernels for
inexact string matching. In B. Scholkopf & M.
Warmth (Ed.), 16th Annual Conference on Learn-
ing Theory and 7th Annual Workshop on Kernel
Machines, vol. 2777, (pp. 114–128). Heidelberg,
Germany: Springer Verlag

Liao, L., & Noble, W. S. (2002). Combining
pairwise sequence similarity and support vector
machines for remote protein homology detection.
In Sixth Annual International Conference on
Computational Molecular Biology, (pp. 225–232).
Washington, DC, USA.

Liao, L., & Noble, W. S. (2003). Combining
pairwise sequence similarity and support vec-
tor machines for detecting remote protein evo-
lutionary and structural relationships. Journal
of Computational Biology, 10(6), 857–868.
doi:10.1089/106652703322756113

Lodhi, H., Saunders, C., Shawe-Taylor, J.,
Christianini, N., & Watkins, C. (2002). Text
classification using string kernels. Journal
of Machine Learning Research, 2, 419–444.
doi:10.1162/153244302760200687

Logan, B., Moreno, P., Suzek, B., Weng, Z., &
Kasif, S. (2001). A study of remote homology de-
tection (Tech. Rep. No.CRL 2001/05). Cambridge,
MA: Compaq Computer Corporation, Cambridge
Research Laboratory.

Needleman, S. B., & Wunsch, C. D. (1970). A
general method applicable to the search for simi-
larities in the amino acid sequences of two pro-
teins. Journal of Molecular Biology, 48, 443–453.
doi:10.1016/0022-2836(70)90057-4

Park, K.-J., & Kanehisa, M. (2003). Prediction
of protein sub-cellular locations by support vec-
tor machines using compositions of amino acids
and amino acid pairs. Bioinformatics (Oxford,
England), 19(13), 1656–1663. doi:10.1093/bio-
informatics/btg222

Rabiner, L., & Juang, B.-H. (1993). Fundamentals
of speech recognition. United States: Prentice Hall.

Ruping, S. (2001). SVM kernels for time series
analysis. In Klinkenberg, R., Ruping, S., Fick, A.,
Henze, N., Horzog, C., Molitor, R., & Schroder,
O. (Eds.), LLWA 01-Tagungsband der G1-Work-
shop-Woche Lemen-Lehren Wissen-Adaptivitet
(pp. 43–50).

Saigo, H., Vert, J.-P., Ueda, N., & Akutsu, T.
(2004). Protein homology detection using string
alignment kernels. Bioinformatics (Oxford, Eng-
land), 20(11), 1682–1689. doi:10.1093/bioinfor-
matics/bth141

71

A Review of Kernel Methods Based Approaches, Part II

Salton, G., Wong, A., & Yang, C. (1975). A
vector space model for automatic indexing.
Communications of the ACM, 18(11), 613–620.
doi:10.1145/361219.361220

Smith, N., & Gales, M. (2002). Speech recogni-
tion using SVMs. In Proceedings of the 2002
Conference on Advances in Neural Information
Processing Systems, (pp. 1197–1204). Cambridge,
MA: MIT Press.

Smith, T. F., & Waterman, M. S. (1981). Iden-
tification of common molecular subsequences.
Journal of Molecular Biology, 147, 195–197.
doi:10.1016/0022-2836(81)90087-5

Stoicke, A., Kajarekar, S., & Ferrer, L. (2008).
Nonparametric feature normalization for SVM-
based speaker verification. In IEEE International
Conference on Acoustics, Speech, and Signal
Processing 2008, ICASSP 2008, (pp. 1577–1580).
Las Vegas, NV.

Tsuda, K. (1998). Support vector classifier
with asymmetric kernel functions. In European
Symposium on Artificial Neural Networks, (pp.
183–188). Bruges, Belgium.

Tsuda, K., Kin, T., & Asai, K. (2002). Marigi-
nalized kernels for biological sequences. Bio-
informatics (Oxford, England), 18, S268–S275.
doi:10.1093/bioinformatics/18.suppl_1.S268

Vert, J.-P., Saigo, H., & Akutsu, T. (2004). Local
alignment kernels for biological sequences. In
Scholkopf, B., Tsuda, K., & Platt, J. (Eds.), Kernel
methods in computational biology (pp. 131–154).
Cambridge, MA: MIT Press.

Vishwanathan, S. V. N., & Smola, A. J. (2003). Fast
kernels for string and tree matching. In Becker,
S., Thrun, S., & Obermayer, K. (Eds.), Advances
in neural information processing (pp. 569–576).
Cambridge, MA: MIT Press.

Wang, M., Yang, J., Liu, G.-P., Xu, Z.-J., & Chou,
K.-C. (2004). Weighted-support vector machines
for predicting membrane protein types based on
pseudo-amino acid composition. Protein Engi-
neering, Design & Selection, 17(6), 509–516.
doi:10.1093/protein/gzh061

Watkins, C. (1999). Dynamic alignment kernels
(Tech. Rep. No.CSD-TR-98-11). Royal Holloway,
London, UK: University of London, Department
of Computer Science.

Zhang, S.-W., Pan, Q., Zhang, H.-C., Zhang, Y.-L.,
& Wang, H.-Y. (2003). Classification of protein
quaternary structure with support vector ma-
chine. Bioinformatics (Oxford, England), 19(18),
2390–2396. doi:10.1093/bioinformatics/btg331

Section 2
Techniques

73

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4

DOI: 10.4018/978-1-61350-056-9.ch004

INTRODUCTION

Detection or identification of statistically signifi-
cant sequences or mining interesting patterns from
a given string has lately emerged as an important
area of study (Denise et al., 2001; Ye & Chen,

2001). In such applications, we are given an input
string composed of symbols from an alphabet set
with a probability distribution defining the chance
of occurrence of each symbol, and the aim is to
find those portions of the string that deviate most
from their expected nature, and are thus potent
sources of hidden pattern and information. Such

Sourav Dutta
IBM Research Lab, India

Arnab Bhattacharya
Indian Institute of Technology Kanpur, India

Mining Statistically Significant
Substrings Based on the

Chi-Square Measure

ABSTRACT

With the tremendous expansion of reservoirs of sequence data stored worldwide, efficient mining of large
string databases in various domains including intrusion detection systems, player statistics, texts, and
proteins, has emerged as a practical challenge. Searching for an unusual pattern within long strings of
data is one of the foremost requirements for many diverse applications. Given a string, the problem is to
identify the substrings that differ the most from the expected or normal behavior, i.e., the substrings that
are statistically significant (or, in other words, less likely to occur due to chance alone). We first survey
and analyze the different statistical measures available to meet this end. Next, we argue that the most
appropriate metric is the chi-square measure. Finally, we discuss different approaches and algorithms
proposed for retrieving the top-k substrings with the largest chi-square measure.

74

Mining Statistically Significant Substrings Based on the Chi-Square Measure

solutions come handy in automated monitoring
systems, such as in a cluster of sensors sensing
the ambient temperature for possible fire alert, or
a network server sniffing the network for intru-
sion detection. Also, text analysis of blogs, stock
market trend deciphering, detection of protein
mutation and the identification of good and bad
career patches of a sports icon can be few of the
target applications. It is such diverse utility that
makes the study and development of this field
challenging and necessary.

STATISTICAL MODELS AND TOOLS

Establishing a relationship of the empirical or
observed results of an experiment to factors
affecting the system or to pure chance calls for
various statistical models and measures. In such
scenarios, an observation is deemed statistically
significant if its presence cannot be attributed to
randomness alone. The literature hosts a number
of statistical models to capture the uniqueness of
such observations such as p-value and z-score. In
the next few sections, we discuss different impor-
tant statistical tools that are used for this purpose.

Before venturing forward, we provide a formal
definition of the problem.

Problem 1. Given a string S of length l compris-
ing symbols from the alphabet set Σ of cardinal-
ity m, and with a given probability distribution
P modeling the chance of occurrence of each
symbol in Σ, the problem is to efficiently identify
and extract the top-k substrings that exhibit the
largest deviation from the expected nature, i.e., the
substrings that are most statistically significant.

It is this measure of deviation of a sequence
that we will capture by using various statistical
models. In the remainder of the chapter, we in-
terchangeably use the term string with sequence
and substring with subsequence.

Hypothesis Testing and P-value

Given an observation sample X (in this case a
substring), with an associated score of S(X), the
p-value of X is defined as the probability of obtain-
ing a random sample with score S(X) or greater
under the same probability model (Bejerano et al.,
2004; Regnier & Vandenbogaert, 2006). For each
such observation, we test the null hypothesis H0
that the substring is drawn from the given prob-
ability model P against the alternate hypothesis H1
that the subsequence is not drawn from the same
probability distribution. The p-value measures the
chance of rejecting the null hypothesis; in other
words, the less the p-value, the less likely it is
that the null hypothesis is true.

Figure 1 shows an example. For a particular
score S, the shaded area represents the chance of
having a sample with a score greater than the one
under consideration. In other words, the p-value
is the value of the cumulative density function
(cdf) measured at S subtracted from the total
probability, i.e.,

pvalue(S)=1-cdf(S).

If the probability density function (pdf) of the
scores is known, it is relatively simpler to compute
the p-value of a particular score using the above
formula. However, in most real situations, the pdf
is hard to estimate or can be non-parametric. The
accurate computation of the p-value then needs
all the possible outcomes to be listed, their scores

Figure 1. Computing the p-value of X with score S

75

Mining Statistically Significant Substrings Based on the Chi-Square Measure

computed, and the number of outcomes having
scores more than S counted. Since the number of
possible outcomes is large, and is exponential in
most cases, computing the p-value in such a man-
ner is practically infeasible.

To alleviate this problem, various branch-and-
bound techniques have been proposed (Bejerano
et al., 2004). In systems where such accuracy in
measurement is not a necessity and a small factor
of error can be tolerated, an approximation of the
p-value can be calculated using other statistical
tools (Rahmann, 2003).

Z-Score

The z-score (Regnier & Vandenbogaert, 2006) or
the standard score also measures the deviation
exhibited by a sample from its expected value.
It measures the number of standard deviations
that an observation differs from the mean value.
The z-score for an observation X with score S is
given by,

Z(S)=
S

x

x

− µ
σ

where μx and σx represent the mean and standard
deviation of the population respectively.

The z-score is suitable if data about the entire
population of the observations is known. If data
about only a sample is at hand, this measure is
known as the Student’s t-measure.

It has been shown that between the z-score
and the p-value, the latter is far more precise in
evaluating the statistical significance, i.e., the
deviation of a substring (Denise et al., 2001).
This follows from the observation that the p-value
actually computes all the possible outcomes and
accurately predicts the chance of the particular
outcome, whereas the z-score simply provides an
approximation using the mean and variance of the
population, without considering the probability at
all the points on the probability distribution curve.

Log-Likelihood Ratio (G2)

A statistical testing tool that is being increas-
ingly used is the log-likelihood ratio (G2) (Read
& Cressie, 1988). This measure quantifies the
significance of the result of an experiment based
on the deviation of the observed sample from the
given theoretical distribution. It takes into consid-
eration the expected outcome and the observed
outcome for all possibilities.

For an experiment having k possible outcomes
(here, a string is composed of characters from an
alphabet of size k), the G2 value is calculated as

G O n
O

Ei
i

ii

k
2

1

2 1=

=
∑

where Oi and Ei are the observed and expected
outcomes of the various possibilities respectively.
For a string, the outcomes are measured by the
observed and expected counts of the k different
characters.

It is interesting to note that the log-likelihood
ratio statistic G2 follows a distribution approximat-
ing the chi-square distribution (Read & Cressie,
1988; Read & Cressie, 1989). In fact, the G2 dis-
tribution is also characterized by the degrees of
freedom as the chi-square distribution discussed
later. However, G2 suffers from the problem of
instability of logarithm values when the expected
or observed counts are too small and approach 0.

Hotelling’sT2 Measure

The Hotelling’s T2 measure is a generalization
of the Student’s t-measure (Hotelling, 1947). It
takes into account the multivariate distribution
of the various outcomes to identify the abnormal
patterns. It measures the difference between the
mean of two observed group of outcomes, or in
other words, the distance of each observation from
the centre of the given test dataset. Hotelling’s T2
measure is calculated as

76

Mining Statistically Significant Substrings Based on the Chi-Square Measure

T n x C xT2 1= − −−() ()

µ µ

where n is the number of observations, x

 is a
column vector of observations of size k (where k
is the alphabet size), μ indicates the corresponding
means and C is the covariance matrix of size k×k.
However, measuring T2 is computationally very
intensive and is thus impractical.

Chi-Square Measure (x2)

The chi-square distribution (x2) is widely used to
compute the goodness-of-fit of a set of observa-
tions to the theoretical model describing a null
hypothesis. In most situations, the x2 distribution
provides a good approximation of the p-value
(Read & Cressie, 1988). However, when the
sample size is small or the null model is highly
uneven, it is better to compute the actual p-value.
In such situations, the chi-square distribution
tends to degenerate into the normal distribution,
and the approximation to the p-value is lost.
The Pearson’s chi-square measure is based on
the chi-square distribution and uses frequency
of occurrences of an outcome to test the fit of a
model by comparing it with the set of theoretical
frequencies of the events. The events are assumed
to be mutually exclusive and independent.

The Pearson’s chi-square measure for a string
of length l and an alphabet set Σ of size m is
measured as

x
O E

E
i i

ii

m
2

2

1

=
−

=
∑

()

where Oi is the observed frequency of occurrence
of symbol σi∈Σ and Ei is the expected frequency.
If pi denotes the probability of occurrence of the

symbol σi (where p
i

i

m

=
=
∑ 1
1

), the expected fre-

quency Ei is given by pi×l.

The chi-square distribution is characterized
by the degrees of freedom, which in the case of a
string is one less than the cardinality of the alphabet
set. Thus, the chi-square values of all substrings
follow the same distribution and can be easily
compared. Further, the chi-square distribution
is well-behaved; this implies that the chi-square
value is anti-monotonic with the p-value, i.e.,
larger the deviation of a subsequence from the
expected, greater is its x2 value, lower is the p-
value, and the more significant it is. The substring
with the highest score is considered to be the most
statistically significant substring.

However, if the expected frequencies of the
outcomes are small, the approximation of chi-
square measure to the actual p-value becomes
low. In other cases, even for multinomial models,
the x2 statistic approximates the importance of a
string more closely than the G2 measure (Read
& Cressie, 1988; Read & Cressie, 1989). In
time-series databases, categorizing a pattern as
surprising based on its frequency of occurrence
alone and mining it efficiently using suffix trees
has been proposed in (Keogh et al., 2002), but the
x2 measure seems to provide a better parameter
for judging whether a pattern is indeed interest-
ing. As the chi-square measure provides the best
way of efficiently approximating the p-value for
measuring the significance of an experimental
observation, in this chapter, we use it as the tool
for computing the statistical significance of a
substring.

ALGORITHMS

In this section we look at the various existing
algorithms and heuristics to efficiently mine the
most statistically significant substring using the
chi-square measure. The objective is to extract
the top-k substrings with the highest x2 values.

77

Mining Statistically Significant Substrings Based on the Chi-Square Measure

Naïve Algorithm

The simplest procedure to identify the substring
having the maximum x2 value involves extracting
all the substrings from the given input string and
individually computing their chi-square values.
The algorithm then returns the substring(s) having
the maximum or top- k scores (using a heap of k
elements) as the result.

As an example, consider the following sce-
nario.

Example 1. Assume an alphabet set Σ={a,b},
and the probabilities of occurrence for the symbols:
pa=0.2,pb=0.8. Consider the string S=aaaabbba.

Consider the substring a The observed frequen-
cies for a and b are 1 and 0 respectively, while
the expected frequencies are 0.2×1 and 0.8×1
respectively. The chi-square value, therefore, is:

x a2
2 21 0 2

0 2
0 0 8

0 8
4()

(.)
.

(.
.

=
−

+
−

=

Consider another substring aab. The chi-square
value can be similarly computed to be

x aab2
2 22 0 6

0 6
1 2 4

2 4
4 1()

(.)
.

(.)
.

.=
−

+
−

≈

Considering all such possible substrings, the
most significant substring is found to be aaaa
with the corresponding chi-square value as 16.

This simple approach, however, is computa-
tionally expensive. For a string of length n, we
obtain O(n2) substrings and hence the runtime
complexity of this algorithm is O(n2). (The time
complexity, more precisely, is O(n2m) where m is
the size of the alphabet set, as the computation
of x2 requires measuring the frequencies of m
symbols. However, for a given string, m is fixed.
Therefore, it can be treated as a constant and
we do not include it in the complexity analysis
any further.) For long strings (n in the order of

thousands), the quadratic complexity renders the
algorithm impractical, especially for real-time
applications. In the subsequent sections we look
at more efficient algorithms and heuristics.

Blocking Algorithm and its Variants

The blocking algorithm (Agarwal, 2009) reduces
the practical running time of the naïve algorithm,
although its theoretical runtime remains O(n2)
for a string of length n. The algorithm initially
partitions the string into blocks consisting of
identical symbols lying adjacent to each other in
the input string.

As an example, consider the string S=aaaabbba
given in Example 1. After “block”-ing identical
adjacent symbols, the string becomes S’=a1b2a3
where the bold face indicates blocks. The first
block a1 represents the first four a’s in the original
string, the next block b2 represents the three b’s
and the final a3 represents the single a. In most
cases, this step significantly reduces the length
of the input string.

The naïve algorithm is now run on this “block”-
ed string and the substring with the highest chi-
square value is returned as the answer. Note that
while the number of substrings is reduced in this
manner, the computation of the chi-square value
for each substring takes into account the frequency
of the symbol in each block (it is not taken as 1).

The above algorithm is optimal (Agarwal,
2009), the proof of which hinges on the follow-
ing fact: if the most significant substring selects
a symbol in a block, then it must select the entire
block associated with the symbol. In other words,
either a block is completely selected in the most
significant substring, or it is not selected at all.
There is no substring that selects the symbols of
a block partially and has a x2 value greater than
the two extreme alternatives – the substring that
selects the entire block and the substring that does
not select the block at all. Referring to Example
1, it can be verified that the substring aaaabhas
a x2 value (11.25) which is not greater than both

78

Mining Statistically Significant Substrings Based on the Chi-Square Measure

the possibilities (aaaabbb with x2=6.03 and
aaaanwith x2=16).

While the full proof is given in (Agarwal,
2009), we provide a sketch of the idea. Consider
the current substring to be sub with length lsub and
the adjacent block of length n to be composed of
the symbol σe∈Σ. Suppose that appending the first
σe of the block to sub increases the x2 value of the
new substring. Given that x x

sub sub+ ≥1
2 2 , denoting

the observed frequencies by θ, we have the equa-
tion in Box 1.

By algebraic manipulations of the above equa-
tion, we can show that x2

sub+j≥ x2
sub+j-1≥…≥ x2

sub+2≥
x2

sub+1. for any j. Hence, by including the entire
block the x2 value of the substring will increase.

The practical running time of the blocking
algorithm is considerably less than the naïve one.
However, in the worst case, adjacent symbols at
all positions of the input string may be dissimilar,
and there will be no benefit. The expected number
of blocks for an alphabet where the probability
distribution of occurrences of the symbols tend to
be uniform, is O(n) for a string of length n. Thus,
the running time remains O(n2).

An interesting optimization of the blocking
algorithm was proposed in (Agarwal, 2009) for
binary alphabets. It was shown that the most
significant substring must start and end with the
same symbol, i.e., for the above example, the
possibilities are restricted to a1,b2,a3, and a1,b2,a3
only. The two other substrings a1b2 and b2a3 cannot
have the largest x2 value.

A heap variant of the above algorithms was also
proposed in (Agarwal, 2009). However, it suffers
from high theoretical and practical running time
costs and is not discussed any further.

Local Maxima-Based Algorithms

A recent method proposed in (Dutta and Bhat-
tacharya, 2010) works on a similar strategy as that
of the blocking algorithm. It too initially partitions
the input string, but instead of constructing blocks
based on adjacent identical symbols, it constructs
local maxima. A local maximum is defined as a
substring such that while traversing through it the
inclusion of the next symbol does not decrease
the x2 score. In other words, when the inclusion
of the next symbol decreases the current x2 value,
the present local maximum ends. The next local
maximum begins at this symbol position. The
first local maximum starts at the beginning of the
string, and the last one finishes at the end.

Consider Example 1. The first substring a
has a x2 value of 4. Inclusion of the next char-
acter increases the x2 value of aa to 8. Thus,
the local maximum extends to aa. Continuing
in this fashion, we notice that x2(aaaa)=16 and
x2(aaaab)=11.25. Therefore, the first local maxima
is aaaa. Repeating this procedure for the entire
string S, all the local maxima present, namely,
aaaa., bbb and a are found. Note that they need
not be equivalent to the blocks.

The global maximum, i.e., the string with
the maximum x2 score may obviously start from
anywhere within the input string and not neces-
sarily from the starting positions of the local
maxima. So, after identifying the local maxima,
the method finds the suffix within each of the
maxima having the largest x2 score. The suffix
may be the whole local maximum itself (as it is
in the case in Example 1). The starting positions
of these suffixes are stored in a list A. These posi-

Box 1.

(())

()

(()
,

,

,
p l

p l

p l
i sub i sub

i subi i e

m
e sub e s

+ −

+
+

+ −+

= ≠
∑

1

1

1
1

2

1

θ θ
uub

e sub

i sub i sub

i subi i e

m
e sub

p l

p l

p l

p l+

= ≠+
≥

−
+∑1

2 2

11

)

()

(() (
,

,

θ −− θ
e sub

e sub
p l

,
)2

79

Mining Statistically Significant Substrings Based on the Chi-Square Measure

tions form the potential starting positions for the
global maximum.

To find the potential ending positions, the
string is reversed and the same procedure is re-
peated. The starting position of the suffixes of the
reversed string are stored in another list B. These
positions form the potential ending positions for
the global maximum.

It was conjectured in (Dutta & Bhattacharya,
2010) that the starting and ending positions of the
global maximum are in A and B respectively. Based
on this conjecture, two heuristics are proposed:
All Pair Refined Local Maxima Search (ARLM)
and Approximate Greedy Maximum Maxima
Search (AGMM).

All-Pair Refined Local
Maxima Search (ARLM)

The All-Pair Refined Local Maxima Search
(ARLM) algorithm examines all combinations of
starting and ending positions, and finds the com-
bination with the largest x2 value. A starting and
ending position is combined to form a substring
extending from the symbol at the starting position
to the symbol at the ending position. It is ensured
that the combination is valid, i.e., the starting posi-
tion is not later than the ending position.

Approximate Greedy Maximum
Maxima Search (AGMM)

The Approximate Greedy Maximum Maxima
Search (AGMM) algorithm uses the same two
lists A and B, but in a different manner. Instead of
considering all possible combinations of starting
and ending positions, the AGMM algorithm first
finds the suffix with the largest x2 value and uses
only that corresponding starting position. The
other starting positions are pruned. This position
is combined with all the ending positions to find
the substring with the largest x2 value. Since the
starting and ending positions are similar, the
same is repeated by finding the ending position

with the largest x2 value and then combining only
that with all the starting positions. The substring
thus found is declared as the most statistically
significant substring.

The above two algorithms has been further
optimized by first “block”-ing the string before
extracting the local maxima (Dutta & Bhattacha-
rya, 2010). Since the blocks can be treated as
indivisible portions of the string for the purposes
of x2 measure, the above optimization works.

Runtime Analysis

In this section, we analyze the runtime perfor-
mance of the two local maxima-based algorithms.
For a string of length n, all the local maxima present
can be extracted in a single pass of the input string
in O(n) time. In the worst case, each symbol may
form a local maxima by itself, and so the number
of local maxima is also n, and in general, is O(n).
However, practically the number of local maxima
has been found to be much less, depending on the
probabilities of occurrence of the symbols. The
number of local maxima d has been shown to be
less than n (Dutta & Bhattacharya, 2010).

The number of suffixes and the sizes of the
lists A and B are, therefore, O(d) as well. Since
ARLM examines all possible combinations, the
runtime of ARLM is O(d2+n). AGMM, however,
only combines the maximum with all the ending
positions (and reverse); so, the running time is
O(d+n). Since d is O(n), ARLM is essentially a
quadratic-time algorithm (although with a lower
practical running time) while AGMM is strictly
a linear-time algorithm.

EXPERIMENTAL RESULTS

In this section we look at the different experimental
results, performed on multiple datasets, real as
well as synthetic, to assess the performance of
the various procedures and heuristics discussed
(Agarwal, 2009, Dutta & Bhattacharya, 2010).

80

Mining Statistically Significant Substrings Based on the Chi-Square Measure

The heap variant of the blocking algorithm has not
been compared with as it is practically infeasible
due to large memory and runtime requirements.
The results shown are based on two parameters,
(1) the number of blocks or local maxima found
(whichever is applicable), and (2) accuracy of the
results. The accuracy of an algorithm is measured
using the approximation ratio, i.e., the ratio of
the x2 value of the answer returned by it to that
of the optimal.

Real Datasets

No results were reported on real datasets on block-
ing algorithm by (Agarwal, 2009). Experiments on
real datasets for local maxima-based algorithms
were, however, carried out by Dutta and Bhat-
tacharya (2010). The authors used the innings-
by-innings runs scored by Sachin Tendulkar in
one-day internationals (ODI) (425 records as
on November 2009, available from http://stats.
cricinfo.Com/ci/engine/player/35320.html?class
=2;template=results;type=batting;view=innings).
The runs were quantized into five symbols, namely,
0-9 (poor), 10-24 (bad), 25-49 (average), 50-99
(good) and 100+ (excellent). The probability of
occurrence of each of the symbols was calculated
empirically as the ratio of the number of innings
with that score to the total number of innings to
obtain the probability distribution. The ARLM and
AGMM algorithms were then run to obtain the
substrings with the highest x2 value. These were
identified as the good and bad patches in his career.

The findings have been summarized in Table
1 which shows that his best career patch was in
the latter half of 1998 with an average of above
84. Referring to cricket databases, it was found
that this period included his run in Sharjah that
many pundits believe to be his best. Moreover, in
this period, he scored 8 centuries within 7 months.
While the best patch of a sportsperson is clearly a
matter of subjective opinion, the analysis shows
that the top performances can be identified by
using the x2 measure. During his bad patch for

nearly the whole of 1992, Sachin struggled with
his form and did not have a single score of even 40.

For the cricket dataset, the local maxima-based
algorithms, AGMM and ARLM, required the least
amount of time to find the substring with the
largest x2 values when compared to the blocking
and naïve algorithms (Dutta & Bhattacharya,
2010). This gain in time comes from the lesser
number of local maxima constructed with respect
to the number of substrings or blocks in the naïve
and the blocking algorithms respectively. For
Sachin’s data, the number of local maxima found
was 281 as compared to 319 blocks. The accu-
racy (or approximation ratio) for ARLM and
AGMM was 1 for the top-1 query, i.e., they found
the substring with the largest x2 value. With in-
creasing values of k for the top- k query, the ap-
proximation ratio initially drops to around 0.98
before increasing again to almost 1.

Experiments on a much larger real dataset were
run by (Dutta & Bhattacharya, 2010) to analyze
the difference in running times of the algorithms.
The data was that of number of user clicks (nearly
a million) encountered on the front page of msnbc.
com (available from http://archive.ics.uci.edu/ml/
datasets/MSNBC.com+Anonymous+Web+Data).
The results shown in Table 2 established the ad-
vantage of ARLM over the blocking algorithm. As
expected, since it is a linear algorithm, AGMM was
about an order of magnitude faster than the others.

Table 1. Results of x2 analysis on Sachin Ten-
dulkar’s batting career

Form Date Average

Best patch

From 22nd
April, 1998 to
13th November,

1998

84.31

Worst patch

From 15th
March, 1992 to
19th December,

1992

21.89

81

Mining Statistically Significant Substrings Based on the Chi-Square Measure

Synthetic Datasets

To study the scalability of the various algorithms
with the different parameters, experiments on
synthetic datasets were conducted by (Dutta
& Bhattacharya, 2010). The synthetic datasets
used were randomly generated using a uniform
distribution. Chunks of data from a different dis-
tribution (in this case, geometric) were inserted
randomly to perturb the original data and simulate
the deviations encountered in real applications.
The parameters tested with were: (1) length of
the input string, (2) size of the alphabet, and (3)
number of top- k values to be reported.

The results indicate that the number of “blocks”
were approximately from 0.70 to 0.85 of the total
length of the string while the number of local
maxima were between 0.65 and 0.75 of the total
length. Consequently, the local maxima-based
algorithms were faster. The scalability of AGMM
was the best as it was a linear algorithm. ARLM,
while theoretically has a running time which is
quadratic with the length of the string, showed
a better scalability. The running time increased
with the size of the alphabet and the number of
top-k values.

The approximation ratio of the local maxima-
based heuristics always remained 1 for top-1 query.
Even for values of k up to 50, the accuracy never
dropped below 0.96. More detailed results and
analysis be found in (Dutta and Bhattacharya,
2010).

CONCLUSION

This chapter aims at tackling the problem of ef-
ficiently mining statistically significant substrings
present in an input string. Such interesting pattern
detection is applicable in many applications rang-
ing from intrusion detection to protein mutation.
We discussed various statistical tools that can
be used to model a substring as “statistically
significant”. Given the setting, we found that the
chi-square measure is best suited for this purpose,
the reason being the fact that it is computationally
simple, and yet, it provides a high approximation
of the p-value as compared to the other measures.

We discussed various existing algorithms
in the literature from naïve to blocking to local
maxima-based ones for finding the substrings
with the largest x2 values. The local maxima-based
algorithms, ARLM and AGMM, reported the best
running time and the best approximation ratio.

Finally, we would like to mention that the
field is ready for richer analyses, including find-
ing heuristics with guaranteed approximation
ratio, and randomized algorithms. Moreover, the
problem can be extended to a two-dimensional
setting for spatial data mining applications, or
more generally, to a graph.

REFERENCES

Agarwal, S. (2009). On finding the most statisti-
cally significant substring using the chi-square
measure. Master’s thesis, Indian Institute of
Technology, Kanpur.

Bejerano, G., Friedman, N., & Tishby, N. (2004).
Efficient exact p-value computation for small
sample, sparse and surprisingly categorical
data. Journal of Computational Biology, 11(5),
867–886.

Table 2. Results for dataset of number of user
clicks (containing 989819 records). The naïve
algorithm consumed too much memory and did
not finish in 75 hours.

Algorithm Running
time

Number of blocks or
local maxima

Naïve 75+ hrs 989819

Blocking 52 hrs 835412

ARLM 40 hrs 759921

AGMM 3 hrs 759921

82

Mining Statistically Significant Substrings Based on the Chi-Square Measure

Denise, A., Regnier, M., & Vandenbogaert, M.
(2001). Accessing the statistical significance of
overrepresented oligonucleotides. In Workshop
on Algorithms in Bioinformatics (WABI), pages
85-97.

Dutta, S., & Bhattacharya, A. (2010). Most sig-
nificant substring mining based on chi-square
measure. In Proc. of 14th Pacific-Asia Conference
on Knowledge Discovery and Data Mining, (pp.
319-327).

Hotelling, H. (1947). Multivariate quality control.
Techniques of Statistical Analysis, 54, 111–184.

Keogh, E., Lonardi, S., & Chiu, B. (2002). Find-
ing surprising patterns in a time series database
in linear time and space. In Proc. of 8th ACM
SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining, (pp. 550-556).

Rahmann, S. (2003). Dynamic programming
algorithms for two statistical problems in com-
putational biology. In D. Tsur (Ed.), Workshop
on Algorithms in Bioinformatics (WABI), LNCS
2812 (pp. 151-164).

Read, T., & Cressie, N. (1988). Goodness-of-fit
statistics for discrete multivariate data. Springer.

Read, T., & Cressie, N. (1989). Pearson’s X2 and
the likelihood ratio statistic G2: A comparative
review. International Statistical Review, 57(1),
19–43. doi:10.2307/1403582

Regnier, M., & Vandenbogaert, M. (2006). Com-
parison of statistical significance criteria. Journal
of Bioinformatics and Computational Biology,
4(2), 537–551. doi:10.1142/S0219720006002028

Ye, N., & Chen, Q. (2001). An anomaly detection
technique based on chi-square statistics for detect-
ing intrusions into information systems. Quality
and Reliability Engineering International, 17(2),
105–112. doi:10.1002/qre.392

83

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5

DOI: 10.4018/978-1-61350-056-9.ch005

T. Maruthi Padmaja
University of Hyderabad (UoH), India

Raju S. Bapi
University of Hyderabad (UoH), India

P. Radha Krishna
Infosys Lab, Infosys Limited, India

Unbalanced Sequential
Data Classification Using

Extreme Outlier Elimination
and Sampling Techniques

ABSTRACT

Predicting minority class sequence patterns from the noisy and unbalanced sequential datasets is a chal-
lenging task. To solve this problem, we proposed a new approach called extreme outlier elimination and
hybrid sampling technique. We use k Reverse Nearest Neighbors (kRNNs) concept as a data cleaning
method for eliminating extreme outliers in minority regions. Hybrid sampling technique, a combination
of SMOTE to oversample the minority class sequences and random undersampling to undersample the
majority class sequences is used for improving minority class prediction. This method was evaluated in
terms of minority class precision, recall and f-measure on syntactically simulated, highly overlapped
sequential dataset named Hill-Valley. We conducted the experiments with k-Nearest Neighbour classi-
fier and compared the performance of our approach against simple hybrid sampling technique. Results
indicate that our approach does not sacrifice one class in favor of the other, but produces high predic-
tions for both fraud and non-fraud classes.

84

Unbalanced Sequential Data Classification Using Extreme Outlier Elimination and Sampling Techniques

INTRODUCTION

Unbalanced data classification is an important
issue in today’s datamining community. There are
several real world domains like intrusion detec-
tion; fraud detection and medical diagnosis (Visa
& Ralescu, 2005) are unbalanced in nature. But
some of these datasets like promoter recognition
(Rani & Bapi, 2008), intrusion detection (Pradeep,
Rao, Krishna, Bapi & Laha, 2005; Sanjay, Gulati
& Pujari, 2004), and protein sequence prediction
(Sikic, Tomic, & Vlahovicek, 2009; Zhao, Li,
Chen, & Aihara, 2008) are sequential in nature,
where each instance is the ordered list of discrete
items. Unbalanced data classification problem is
beatitude in those datasets when one class of data
(majority class) severely outnumbers the other
class (minority class) of data.

We can solve imbalance problem that occur
in sequence classification by using data mining
techniques. If the imbalance problem is ignored
and conventional classification methods are em-
ployed with the usual criterion of minimal overall
error, then the model estimated will often ignore
any contribution from the minority class samples.
As such the model learned will only represent
predominantly the majority class samples. These
classification methods also assume that there is
equal cost derived from all classes, which is not
true in real world scenarios.

Consider intrusion detection system, (Pradeep,
Rao, Krishna, Bapi & Laha 2005; Sanjay, Gulati,
& Pujari, 2004) compared to non-intruder system
call transactions, the occurrence of intruder trans-
actions is infrequent. So it is extremely difficult
to extract the intruder patterns in this scenario. In
this work, we consider sequence classification as
an unbalanced data classification problem where
the majority samples outnumber the minority
samples. Usually, the classification algorithms
exhibit poor performance while dealing with un-
balanced datasets and results are biased towards
the majority class. Hence, an appropriate model
is needed to classify unbalanced sequential data.

For these types of problems, we cannot rely upon
the accuracy of the classifier because the cost as-
sociated with fraud sample being predicted as a
non-fraud sample is very high. The performance
measures that can be used here are cost based met-
rics, ROC analysis and minority class F-measure.

In this work we considered sequence clas-
sification as a binary classification problem and
proposed a hybrid sampling approach called
extreme outlier elimination with SMOTE and
random undersampling. Here k Reverse Nearest
Neighbors (kRNNs) concept is used as a data clean-
ing method for eliminating extreme outliers in
minority regions before generating extra samples
using SMOTE. Synthetic Minority Oversampling
Technique (SMOTE) synthetically incorporates
new samples in the distribution whereas random
undersampling randomly deletes majority class
samples from current distribution. Proposed ap-
proach is evaluated on a discrete sequential data
set named Hill-Valley dataset. We identified op-
timal classifier based on its precision, recall and
F-measure rates. Compared with other models
constructed based on one-class classification tech-
niques and other sampling techniques proposed
approach yielded better performance.

The remainder of this chapter is organized as
follows. In BACKGROUND section, we present
the background of the proposed approach. The
work related to proposed approach is discussed
from two perspectives in Related Work section.
Proposed approach and experimental setup is
discussed in Solutions and recommendations sec-
tion. Finally conclusions from the current work
and future research directions are provided at the
end of the chapter.

BACKGROUND

This section describes the background of the meth-
ods used for proposing extreme outlier elimination
and Hybrid sampling approach.

85

Unbalanced Sequential Data Classification Using Extreme Outlier Elimination and Sampling Techniques

Hybrid of Synthetic Minority
Oversampling Technique and RUS

Hybrid sampling of SMOTE and random under-
sampling is a prominent solution for unbalanced
data classification problem (Sun et al., 2009; Taft
et al., 2009; & Cieslak 2006), here SMOTE+RUS
was employed to alleviate from the bias caused
non-fraudulent samples. Synthetic Minority Over-
sampling technique (SMOTE) was introduced by
Chawla et al, in which the minority class samples
are over-sampled by creating synthetic (or arti-
ficial) samples rather than replicating random
minority class sample. SMOTE algorithm gener-
ates synthetic minority samples between the line
segment joining from each minority class sample
to its k minority class’ nearest neighbors. This
approach effectively forces the decision region
of the minority class to become more general.
The following psudocode describes the SMOTE
algorithm.

Latter combined approach of SMOTE and
random undersampling (RUS) was devised by the

authors of SMOTE to further improve the perfor-
mance of the classifier towards unbalanced dis-
tributions. Science SMOTE projects new samples
between minority class geometrical nearest neigh-
bours, minority class outliers (mislabeled points)
play a major role and sometimes the newly gener-
ated synthetic samples go beyond the actual mi-
nority class boundaries. Thus hampers the clas-
sifiers generalization ability.

Outlier Selection and
Filtering by RNN

Several outlier detection and filtering methods
are devised to filter mislabeled training instances
for classification problem. Generally they are of
distance based (Muhlenbach, Lallich & Zighed,
2004) or classification algorithm based (Brodley
and Friedl 1999). In this chapter k- reverse near-
est neigbbour (kRNN) (Soujanya, Satyanarayana
& Kamalakar, 2006) based outlier detection and
elimination was employed for mining Hill-Valley
sequences. The advantage of (kRNN) over other

Algorithm 1. psudocode for SMOTE Algorithm

Input:

N=Number of minority class samples

T=SMOTE factor.

k=Number of nearest neighbours

Output:

T * N synthetic samples

Begin

for each sample i in N do

compute k nearest neighbours.

while T ≠ 0 do

 choose randomly one neighbour nn from k.

compute the difference dif between i and nn.

Generate a random number gap between 0 and 1.

compute new synthetic point as synth = i + dif * gap.

end while

end for

end

86

Unbalanced Sequential Data Classification Using Extreme Outlier Elimination and Sampling Techniques

distance based outlier methods is the parameter
independency. By using (kRNN) concept, the
neighbourhood density around a point p increases
with the increase of the number of neighbours (k
value). Following are the notations used in this
chapter for describing the reverse nearest neigb-
bour concept.

X: d-dimensional dataset:

kNN(p): Set of k-nearest neighbors of p.

kRNN(p): Set of k-reverse nearest neighbors of
p. A point q belongs to kRNN(p)

iff p Є kNN(q).

k nearestneighborset: kNN(xp) is defined as
{xq|dpq < kth nearest distance of xp}.

For given point xp, the kth smallest distance after
sorting all the distances from xp to the remaining
points is the kth nearest distance of xp.

k reversenearestneighborset: kRNN(xq) is de-
fined as {xq|xp Є kNN(xq)}.

k reverse neighbours (kRNN) defines influence
around a point in terms of neighborhood density.
Note that, in case of kNNs, for a given k value,
each point in the dataset will have at least k near-
est neighbors (> k in case of ties) but the kRNN
set of a point could have zero or more elements.
The kRNN set of point p gives set of points that
consider p as their k-nearest neighbour, for a given
value of k. If a point p has higher number of kRNNs
than another point q, then we can say that p has a
denser neighborhood than q. Lesser the number
of kRNNs, the farther apart are the points in the
dataset to q, i.e. the neighborhood is sparse.

According to kRNN concept (Soujanya, Sa-
tyanarayana & Kamalakar 2006), outlier point
is defined as follows: An outlier point is a point
that has less than k number of kRNNs. That is the

cardinality of kRNN set is less than k, (|kRNNs| <
k). Lesser the numberof kRNNs, the more distant
it is from its neighbors.

Science considered Hill-Valley dataset is
highly overlapped and unbalanced, the minority
points extremely far from minority class sample
subgroups are prone to be mislabeled and degrades
the classifier performance while SMOTEing. So
here we define the concept called extreme outlier
and eliminate them as part of data preprocessing
step.

RELATED WORK

The related work for the proposed approach to
counter unbalanced sequential classification
problem has been approached from two directions.
The techniques that are available to handle the
unbalanced data sets are reviewed first and cor-
responding applications in sequence classification
are reviewed later.

There have been several approaches for cop-
ing with unbalanced datasets. Kubat and Matwin
(Kubat & Matwin, 1997), did selective undersam-
pling of majority class by keeping minority classes
fixed. They categorized the minority samples into
some noise overlapping, the positive class decision
region, borderline samples, redundant samples
and safe samples. By using Tomek links concept,
which is a type of data cleaning procedure used
for undersampling, they deleted the borderline
majority samples. Ling and Li (Ling & Li, 1998)
combined oversampling of the minority class
with undersampling of the majority class. They
used lift analysis instead of accuracy to measure
a classifier’s performance. They proposed that the
test samples be ranked by a confidence measure
and then lift be used as the evaluation criteria. A
lift curve is similar to an ROC curve, but is more
tailored for the marketing analysis problem. In one
experiment, they undersampled the majority class
and noted that the best lift index is obtained when
the classes are equally represented. In another ex-

87

Unbalanced Sequential Data Classification Using Extreme Outlier Elimination and Sampling Techniques

periment, they oversampled the minority samples
with replacement to match the number of majority
samples to the number of minority samples. The
oversampling and undersampling combination
did not provide significant improvement in the
lift index. Study of “whether oversampling is
more effective than undersampling” and “which
oversampling or undersampling rate should be
used” was done by Estabrooks et al (Estabrooks,
Jo & Japkowicz, 2004), which concluded that
combining different expressions of the resam-
pling approach is an effective solution. Batista
et al (Batista, Prati & Monard, 2004) proposed
two hybrid sampling techniques for overlapping
datasets namely SMOTE+TOMEK Links and
SMOTE+ENN for better-defined class clusters
among majority and minority classes. Apart from
sampling solutions, some studies (Raskutti &
Kowalczyk, 2004) are indicating that one-class
classification technique like one-class SVMs
(Tax, 2001), one-class neural networks (Japkow-
icz, Hanson & Gluck, 2000) are also efficient in
solving unbalanced data classification problem on
some specific applications like anomaly detection.

Concern with unbalanced sequential classifica-
tion, (Sikic, Tomic & Vlahovicek, 2009) applied a
combined approach of sliding window and random
forest on the sequence and structure parameters
as well as on sole sequence parameters to identify
protein- protein interaction sites in sequences
and 3D structures. Their study indicated that the
combined approach with sequences alone was
result with high accuracy. A probability based
mechanism was proposed in (Yu, Chou & Darby,
2010) to convert sequences into feature vectors.
Latter these feature used to identify protein-protein
interactions in an unbalanced data using primary
structure. A new algorithm with committee of
classifiers is discussed in (Zhao, Li, Chen &
Aihara, 2008) for unbalanced protein classifica-
tion problem.

For the promoter recognition problems
SMOTE and ADABOOST algorithms were ap-
plied (Rani & Bapi, 2008) on minority majority

concepts and this study indicated that a simple
ADABOOST improved the promoter recognition
rate than SMOTE algorithm. Further a synthetic
protein sequence oversampling method (SPSO)
(Beigi & Zell, 2007) was proposed using Hid-
den Markov Model profile (HMM profile) for
the prediction of protein sequences and remote
homology detection.

Finally to identify intrusions in a database
of UNIX system calls different scheme with the
combination of one-class k-nearest neighbour
classifier and text processing techniques were
proposed by (Pradeep, Rao, Krishna, Bapi & Laha,
2005; Sanjay, Gulati & Pujari, 2004). Along with
this new scheme for identifying intrusions the au-
thors also proposed different sequence similarity
measures using text processing metrics.

This chapter proposes a new hybrid approach
of outlier elimination and hybrid sampling for
handling noisy sequential unbalanced datasets.

MAIN FOCUS OF THE CHAPTER

Here our basic motivation is to balance the training
data distribution so that minority class predicts
well. For this, we are generating the required
number of artificial minority class samples using
SMOTE which generates new samples by inter-
polation. If we use SMOTE on the entire minority
class samples, minority class sub regions may
not be emphasized well if the data is very much
sparsely distributed. So there is a great need of
picking the points that are in denser regions and
use only those points for generating artificial fraud
class samples using SMOTE. For this, we have to
eliminate the points that are far from the minority
samples; we call them as extreme outliers. The
application of existing outlier detection techniques
on highly overlapped and unbalanced datasets, half
of the minority samples are predicted as outliers.
Eliminating half of the minority samples is not
feasible as their presence is very less compared
with the majority class.

88

Unbalanced Sequential Data Classification Using Extreme Outlier Elimination and Sampling Techniques

Solutions and Recommendations

The k Reverse Nearest Neighbors concept is an
efficient solution for this problem. By using the
cardinality of kRNN set, of a point p, we can say
that the point is in denser region or sparser region.
If the point p yields the cardinality of kRNNset
more than k, then p falls in denser region or else
if p’s cardinality on kRNNset yields less than k
or zero then p falls in sparse region. Based on
cardinality of kRNNs the minority points are
ranked and least ranked points are eliminated.
We proposed extreme outlier concept as a data
preprocessing method for minority samples and
hybrid sampling approach for balancing the data
distribution. An extreme outlier point is a point
that has number of kRNNs far less than k, when k
values are increased. For example, we can define
a point as extreme outlier if its kRNNs are less
than k/10 over systematically increased k values.

After elimination of extreme outliers, we ap-
plied hybrid sampling approach on Hill-Valley
data set. This is a combination of random under-
sampling and oversampling. It mainly works
based on determining how much percentage of

minority class samples (original samples + artifi-
cial samples) and majority class samples to add to
the training set such that a classifier can achieve
best recall and precision values for minority class.
Here, recall represents TPrate (the number of
minority class samples that are correctly classi-
fied) of the minority class. The tradeoff between
minority class TPrate and TNrate (the number
of majority class samples correctly classified) is
being represented by precision.. After eliminat-
ing minority class extreme outlier, the majority
class samples are randomly under-sampled and
the minority class samples are over-sampled us-
ing SMOTE to emphasize the minority class data
regions, which uses euclidian distance metric.

Figure 1 shows the process of generating sam-
ples for training the classifier. Initially, minority
class and majority class sequences are separated
from the dataset and latter extreme outliers are
eliminated in the minority class sequences using
the method described above. Then SMOTE was
applied on minority class sequences for the given
level of SMOTE factor. For example, if we specify
SMOTE factor as 5 and input minority samples are
x, then artificial minority samples generated after

Figure 1. Proposed hybrid of kRNN+ hybrid sampling

89

Unbalanced Sequential Data Classification Using Extreme Outlier Elimination and Sampling Techniques

SMOTE are 5x. Generally the choice of optimal
SMOTE factor is data dependent. For the dataset
under consideration, the class distribution of mi-
nority and majority class samples is 10:90 (MI:
MJ). So for experiments we considered SMOTE
factors of 1, 3, 5, 7 and 9.

Experimental Evaluation

This section depicts the datasets, evaluation
metric for estimating classifier performance and
comparative study with other methods for approxi-
mating the performance of the proposed approach,
in terms of experimental results and discussion.

Evaluation Metric

The classifier outcomes, which are required to
evaluate the performance, can be represented in
the form of a confusion matrix (Table 1).

Table 1 derives the following measures (base
lines) to estimate the classifier performance.

True positive Rate (TP rate) is the percentage of
correctly classified positive samples.

True negative rate (TN rate) is the percentage of
correctly classified negative samples.

False negative (FN rate) is the percentage of incor-
rectly classified positive samples.

False positive (FP rate) is the percentage of nega-
tive examples predicted as positives.

The goal of any ideal classifier is to maximize
TP and TN rates. The following are normally
applied measures for evaluating classification
performance:

Accuracy=(TP+TN)/(TP+FP+TN+FN) (1)

TPRate=Recall=TP/(TP+FN) (2)

Precision=TP/(TP+FP) (3)

F measure
call ecision
call ecision

_
* Re * Pr
Re Pr

=
+

2

(4)

For unbalanced data classification point of
view accuracy is not an appropriate measure for
evaluating the classifier performance. Consider-
ing there are only 6% of samples from minority
class and 94% of the samples are from majority
class, If a classifier miss predicts all minority
class samples as majority class samples then the
accuracy becomes 94% with the contribution of
majority class samples only.

Proposed approach is evaluated using minor-
ity class recall (Equation 2), precision (Equation
3) and F-measure (Equation 4). Minority class
F-measure depicts the performance of the target
class in terms of tradeoff between precision and
recall, where as recall is simply the TP rate of
the target class and precision gives the trade-off
between TP and FP rates. If both precision and
recall are high, then F-measure is also high. For
unbalanced datasets the precision and recall goals
are conflicting, increasing recall rates without
disturbing the precision of the minority class
(target class) is a challenging issue.

Dataset

Experiments are conducted on Hill-Valley dataset
(http://archive.ics.uci.edu/ml) which is sequential
in nature. Each record in this dataset represents
100 points in a two dimension graph. These points
in y axis can create either a Hill or Valley. Since
the noisy Hill-Valley dataset accurately repre-
sents the underlined domain, it is considered for
evaluating proposed hybrid approach. Actually
this dataset is balanced in nature with 307 records

Table 1. Confusion matrix

Predicted
Negative

Predicted
Positive

Actual Negative TN FP

Actual Positive FN TP

90

Unbalanced Sequential Data Classification Using Extreme Outlier Elimination and Sampling Techniques

from valley class, 299 records from hill class in
the training set and the test set also contains the
similar distribution as like training set. For the
experimental purpose the Hill-Valley dataset
distribution was synthetically unbalanced by keep-
ing only 10% Valley class distribution as it is and
making rest of the Valley distribution as Hill class
distribution. The training set considered for the
experiments was the combination of both training
and testing set that is provided in UCI repository
(http://archive.ics.uci.edu/ml/).We implemented
the extreme outlier detection using kRNNs and
SMOTE in MATLAB7.0 and used Weka3-4 tool-
kit for experimenting with the classifiers. Weka
(Witten & Frank, 2000) is Java-based knowledge
learning and analysis environment developed at
the University of Waikato in New Zealand.

Initially we eliminated the extreme outliers
found from the minority samples using the method
described in (Main focus of the chapter). We
found that 24 points qualify as extreme outliers
and eliminated them from the dataset. Proposed
approach is validated using k-nearest neighbour
classifier and compared with hybrid sampling
of SMOTE and RUS. Since the dataset consid-
ered for the experiments is sequential in nature,
validating the proposed approach using global
classifiers like decision tree, neural networks
can leads to performance degradation because

of loss of sequential information (Pradeep, Rao,
Krishna, Bapi, & Laha, 2005). For the dataset
under consideration, total number of minority
class sequences is 121 and 1091 majority class
sequences. Since the unbalanced class distribution
ratio for the considered Hill-Valley dataset is 10:90
and we varied the SMOTE factor from 1%, 2%.,
5%, 7%...9% in order to make balanced training
set distributions. For the k-nearest neighbour clas-
sifier the k value is set to 3 for all experiments
with varied SMOTE factor.

Our observations from the experiments con-
ducted using the proposed extreme outlier elimina-
tion with kRNNs combined with hybrid sampling
approach on k-NN classifier is as follows: from
Table 2 as the SMOTE factor increases from 1%
to 5% the minority class recall increases from
0.825 to 0.945, precision is increases from 0.615
to 0.717 and the F-measure increases from 0.705
to 0.815. Our observations from hybrid sampling
are as follows from Table 2 as the SMOTE fac-
tor increases from 1% to 5% the minority class
recall increases from 0.843 to 0.944, precision is
increases from 0.632 to 0.698 and the F-measure
increases from 0.705 to 0.798. The highest per-
formance was highlighted.

Comparing kRNN+Hybrid with normal Hy-
brid sampling approach the k-NN classifier with
kRNN+Hybrid yielded superior performance in

Tabel 2. Comparison across Hybrid kRNN+Hybrid over k-NN classifier

SMOTE factor% Method Precision Recall F-measure

1% Hybrid 0.632 0.843 0.722

kRNN+Hybrid 0.615 0.825 0.705

3% Hybrid 0.688 0.944 0.796

kRNN+Hybrid 0.716 0.945 0.815

5% Hybrid 0.698 0.931 0.798

kRNN+Hybrid 0.717 0.932 0.811

7% Hybrid 0.686 0.931 0.79

kRNN+Hybrid 0.693 0.939 0.797

9% Hybrid 0.694 0.924 0.793

kRNN+Hybrid 0.688 0.926 0.789

91

Unbalanced Sequential Data Classification Using Extreme Outlier Elimination and Sampling Techniques

terms of minority class prediction with 0.716
precision, 0.945 recall and with 0.815 F-measure
at 3% SMOTE factor itself. Whereas Hybrid
sampling technique alone attained the minority
class prediction with 0.698 precision, 0.931 recall
and with 0.798 F-measure at 5% SMOTE factor.
From the both methods kRNN+Hybrid yielded
superior performance of 0.815 in terms minority
class F-measure than the simple hybrid sampling
even in early rounds of SMOTE factor. From
the experiments we also observed that once the
maximum performance is achieved at n% SMOTE
factor the performance of the classifier deteriorates
from (n+1)% SMOTE factor onwards.

Thus intelligent use of kRNNs for extreme
outlier elimination of minority class sequences
and SMOTE for generating artificial minority
sequences resulted in improving the performance
of the unbalanced sequential datasets. Proposed
kRNN+Hybrid improved the minority class se-
quence prediction efficiently at early rounds of
SMOTE factor without sacrificing the majority
class prediction as well than the simple hybrid
sampling which generally applied to improve the
classifier performance in the case of unbalanced
datasets. This method can be further explored to
other unbalanced sequential classification do-
mains like bioinformatics and cheminformatics.

Future Research Directions

The unbalanced data classification problem can be
solved at data level and classification algorithm
level. Concern with unbalanced sequence classi-
fication most of the research is carried out at data
level with the combination sequence data handling
methods. Further the unbalanced sequence clas-
sification should be explored at classification
algorithm level along with cost of each minority
sequence in consideration.

CONCLUSION

This chapter introduced a new approach for
eliminating outliers from the noisy and highly
unbalanced sequential datasets. In this work we
defined the concept called extreme outlier and
used kRNNs to find them. Results show that, the
extreme outlier elimination combined with hybrid
sampling can improve the accuracy of the classi-
fier for minority class. Here we used SMOTE to
artificially create minority class sequences and
emphasize the minority class regions after ex-
treme outliers in the minority class sequences are
eliminated. Experiments are conducted on highly
overlapped sequential dataset named Hill-Valley
for k-nearest neighbour classifier. The results
obtained indicate that, the proposed approach is
efficient for minority sequence detection from
the unbalanced sequential dataset (Table 2).
Though our approach is implemented for discrete
real sequence domain like Hill-Valley, it can be
applied to other unbalanced sequential domains
like bioinformatics and cheminformatics as well.

REFERENCES

Batista, G., Prati, M., & Monard, M. (2004).
A study of the behavior of several methods for
balancing machine learning training data. ACM
SIGKDD Explorations: Special Issue on Imbal-
anced Data Sets, 6(1), 20–29.

Beigi, M., & Zell, A. (2007). Synthetic protein
sequence oversampling method for classification
and remote homology detection in imbalanced
protein data. In Proceedings of 1st International
Conference on Bioinformatics Research and
Development, (pp. 263-277). Berlin, Germany.

Brodley, C. E., & Friedl, M. A. (1999). Identify-
ing mislabeled training data. Journal of Artificial
Intelligence Research, 11, 131–167.

92

Unbalanced Sequential Data Classification Using Extreme Outlier Elimination and Sampling Techniques

Chawla, N. V., Bowyer, K. W., Hall, L. O., &
Kegelmeyer, W. P. (2004). SMOTE: Synthetic
minority over-sampling technique. Journal of
Artificial Intelligence Research, 16, 324–357.

Cieslak, D. A., Chawla, N. V., & Striegel, A.
(2006). Combating imbalance in network intrusion
datasets. In Proceedings of IEEE International
Conference on Granular Computing, (pp. 732-
737). Athens, Georgia.

Estabrooks, A., Jo, T., & Japkowicz, N. (2004).
A multiple resampling method for learning from
imbalanced data sets. Computational Intelligence,
20(1), 18–36. doi:10.1111/j.0824-7935.2004.
t01-1-00228.x

Japkowicz, N., Hanson, S. J., & Gluck, M. A.
(2000). Nonlinear autoassociation is not equivalent
to PCA. Neural Computation, 12(3), 531–545.
doi:10.1162/089976600300015691

Kubat, M., & Matwin, S. (1997). Addressing the
curse of imbalanced training sets: one sided selec-
tion. Proceedings of the Fourteenth International
Conference on Machine Learning, (pp. 179-186),
Nashville, TN: Morgan Kaufmann.

Ling, C., & Li, C. (1998). Data mining for direct
marketing problems and solutions. In Proceed-
ings of the Fourth International Conference on
Knowledge Discovery and Data Mining, (pp.
73-79). New York, NY: AAAI Press.

Muhlenbach, F., Lallich, S., & Zighed, D. A.
(2004). Identifying and handling mislabelled in-
stances. Journal of Intelligent Information Systems,
22(1), 89–109. doi:10.1023/A:1025832930864

Pradeep, K. M., Venkateswara, R., Radha, K. P.,
Bapi, R. S., & Laha, A. (2005). Intrusion detection
system using sequence and set preserving metric.
In Proceedings of Intelligence and Security Infor-
matics, (pp. 498-504). Atlanta, USA.

Rani, T. S., & Bapi, R. S. (2008). Cascaded
multi-level promoter recognition of E. coli using
dinucleotide features. In International Confer-
ence on Information Technology (pp. 83–88).
Bhubaneswar.

Raskutti, B., & Kowalczyk, A. (2004). Ex-
treme re-balancing for SVMs: A case study.
SIGKDD Explorations Newsletter, 6(1), 60–69.
doi:10.1145/1007730.1007739

Sanjay, R., Gulati, V. P., & Pujari, A. K. (2004).
Frequency- and ordering-based similarity mea-
sure for host-based intrusion detection. Informa-
tion Management & Computer Security, 12(5),
411–421. doi:10.1108/09685220410563397

Sikic, M., Tomic, S., & Vlahovicek, K. (2009).
Prediction of protein–protein interaction sites in
sequences and 3D structures by random forests.
PLoS Computational Biology, 5(1), e1000278.
doi:10.1371/journal.pcbi.1000278

Soujanya, V., Satyanarayana, R. V., & Kamalakar,
K. (2006). A simple yet effective data clustering
algorithm. In Sixth International Conference on
Data Mining, (pp. 1108-1112).

Sun, Y., Castellano, C. G., Mark, R., Adams,
R., Alistair, G. R., & Neil, D. (2009). Using pre
and post-processing methods to improve bind-
ing site predictions. Pattern Recognition, 42(9),
1949–1958. doi:10.1016/j.patcog.2009.01.027

Taft, L. M., Evans, R. S., Shyu, C. R., Egger, M.
J., & Chawla, N., V., Joyce, A. M., … Michael,
W. V. (2009). Countering imbalanced datasets to
improve adverse drug event predictive models
in labor and delivery. [JBI]. Journal of Biomedi-
cal Informatics, 42(2), 356–364. doi:10.1016/j.
jbi.2008.09.001

Tax, D. (2001). One-class classification. PhD
thesis, Delft University of Technology.

UCI. (n.d.). Machine learning repository. Re-
trieved from http://archive.ics.uci.edu/ml/

93

Unbalanced Sequential Data Classification Using Extreme Outlier Elimination and Sampling Techniques

Visa, S., & Ralescu, A. (2005). Issues in mining
imbalanced data sets - A review paper. In Proceed-
ings of the Sixteen Midwest Artificial Intelligence
and Cognitive Science Conference, (pp. 67-73).

Witten, I., & Frank, E. (2000). Data mining:
Practical machine learning tools and techniques
with Java implementations. Morgan Kaufmann
Publishers.

Yu, C. Y., Chou, L. C., & Darby, C. (2010). Pre-
dicting protein-protein interactions in unbalanced
data using the primary structure of proteins. BMC
Bioinformatics, 11(1), 167..doi:10.1186/1471-
2105-11-167

Zhao, X. M., Li, X., Chen, L., & Aihara, K. (2008).
Protein classification with imbalanced data. Pro-
teins: Structure, Function, and Bioinformatics,
70(4), 1125–1132. doi:10.1002/prot.21870

94

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

INTRODUCTION

With increasing number of transactions, reducing
cost of storage devices, and the need for generat-
ing abstractions for business intelligence, it has
become important to search for efficient methods
for dealing with large, sequential and time series
data. Data mining (Agrawal, et al, 1993; Fayyad,

et al, 1996; Han & Kamber, 1996) focuses on
development of scalable and efficient generation
of valid, general and novel abstraction from a
large dataset.

A transactional dataset consists of records
that have transaction-id and the items that make
up the transaction. A temporal dataset stores
relational data that included time-related attri-

T. Ravindra Babu
Infosys Limited, India

M. Narasimha Murty
Indian Institute of Science Bangalore, India

S. V. Subrahmanya
Infosys Limited, India

Quantization Based
Sequence Generation and
Subsequence Pruning for
Data Mining Applications

ABSTRACT

Data Mining deals with efficient algorithms for dealing with large data. When such algorithms are com-
bined with data compaction, they would lead to superior performance. Approaches to deal with large data
include working with representatives of data instead of entire data. The representatives should preferably
be generated with minimal data scans. In the current chapter we discuss working with methods of lossy
and non-lossy data compression methods combined with clustering and classification of large datasets.
We demonstrate the working of such schemes on two large data sets.

DOI: 10.4018/978-1-61350-056-9.ch006

95

Quantization Based Sequence Generation and Subsequence Pruning for Data Mining Applications

butes. A sequence dataset contains sequences of
ordered events, with or without time information.
A time-series dataset contains sequences of values
or events obtained over repeat measurements of
time periodically like those of spacecraft health
data, data from stock exchange, etc. Data Mining
is inter-disciplinary subject that encompasses a
number of disciplines like Machine Learning,
large data clustering and classification, statistics,
algorithms, etc.

In the current chapter, we present schemes for
non-lossy and lossy compression of data using
sequence generation, run-length computation,
subsequence pruning leading to efficient cluster-
ing and classification of large data. The schemes
are efficient, scale up well and provide high clas-
sification accuracy.

The proposed scheme integrates the following.

A. Vector Quantization
B. Sequence Generation
C. Item Support and Frequent subsequences

(Agrawal et al., 1993; Han et al., 2000)
D. Subsequence Pruning (Ravindra, Murty, &

Agrawal, 2004)
E. Run length encoding
F. Support Vector Machines
G. Classification

The chapter is organized into sections. We
discuss motivation for the work in the following
section. It is followed by discussion on related
work, background terminology and concepts along
with illustrations. It is followed by a description
of datasets on which we deomstrate working of
the proposed schemes. The description includes
summary of preliminary analysis of the datasets.
Then the following section contains a discussion
on proposed scheme, experimentation and results
followed by a section on discussion on future re-
search directions. Finally the work is summarized
in the last section.

Motivation

When data is large, operating on every pattern
to generate an abstraction is expensive both in
terms of space and time. In addition, as the data
size increases, multiple scans of database would
become prohibitive. Hence, generation of abstrac-
tion should happen in a small number of scans,
ideally a single scan.

Some approaches to deal with large and high
dimensional data make use of optimal represen-
tative patterns or optimal feature set to represent
each pattern. Alternatively, it is interesting to
explore whether it is possible to deal with data by
compressing the data and work in the compressed
domain without having to decompress.

Compression would lead to reduction in
space requirements. Further it is also interesting
to explore, while compressing the data, whether
we can work only on subset of features based on
some criterion. This would lead to working in
lossy compression domain. However care should
be exercised in ensuring that the necessary infor-
mation is not lost in the process.

We propose two such schemes and examine
whether such schemes work efficiently on large
datasets in terms of pattern classification.

BACKGROUND

Related Literature

Large data clustering schemes (Jain, Murty &
Flynn, 1999) provide ways to deal with large data.
Some of the successful methods in this direction
have been optimal prototype selection schemes
(Ravindra & Murty, 2001; Susheela, 2010), multi-
agent systems for large data clustering (Ravindra,
Murty & Subrahmanya, 2010; Ravindra, Murty
& Subrahmanya, 2009), optimal feature selection
(Kim, Street & Mericzer, 2003) and simultaneous
selection of prototype and features (Ravindra,
Murty & Agrawal, 2005).

96

Quantization Based Sequence Generation and Subsequence Pruning for Data Mining Applications

Alternate approaches include compressing
the data in either lossy form (Ravindra, Murty
& Agrawal, 2007) or non-lossy form (Ravindra
et al., 2004) and operate on the compressed data
directly. This significantly improves space and
computation requirements.

Data compression focuses on changing original
data representation to an efficient representation by
reducing redundancy (Salomon, 2000). Compres-
sion is termed lossy when we cannot reproduce the
original form. With the objective of dealing with
large data efficiently, non-lossy compression is
useful as long as classification accuracy of patterns
is unaffected or improved. Reduction in number
of patterns reduces VC Dimension (Vapnik, 1999)
provided Nearest Neighbour Classifier (NNC)
accuracy is not affected (Karacah & Krim, 2002).

In the current chapter we discuss ways to deal
with large data in terms of lossy and non-lossy
compression of data.

Discussion on Related Terms

In the current section, we provide some definitions
on which our application of non-lossy compres-
sion algorithm (Ravindra et al, 2004) and lossy-
compressions schemes are based. We provide a
brief description of handwritten digit dataset and
intrusion detection data which are considered for
demonstrating the proposed schemes.

Consider a data set of ‘p’ patterns. The data
is divided into three parts, pr, pv and pt corre-
sponding to training, validation and test patterns
respectively. Let ‘q’ represent number of binary
valued features per pattern. Equivalently, each
pattern can be seen as a transaction and features
as items. The set of items form itemset. In the
current chapter, we use patterns and transactions
to mean the same. Similarly features and items
are used interchangeably.

• Support (Agrawal et al., 1993; Han &
Kamber, 1996): In the current work, num-

ber of occurrences of an item is referred to
support of an item, ω. It should, however,
be noted that conventionally, probability/
percentage of number of occurrences of
an item to total number of transactions
represents support. For example, 11101,
01101,10010,10100,10000 are examples
of transactions with binary valued features
representing presence (1) or absence (0) of
an item.

• Frequent Itemset: The set of items whose
support is more than minimum chosen sup-
port, ω, are referred to as frequent items. In
the above example, with minimum support
of 3, item-1 is frequent.

• Sequence and subsequence of items
(Goldberg, 1978): Consider two sets of
positive integers, viz., I and J. A sequence
of integer numbers S:{a1, a2,…} is a func-
tion from I to J. If T is subsequence of posi-
tive integers, S o T is called subsequence
of S.

• Length of subsequence: Number of el-
ements of a subsequence is referred to
length of subsequence, ‘s’.

• Minimum Frequency for Subsequence
Pruning: It is defined as number of times a
subsequence should occur for it to be con-
sidered for further processing, η. It helps in
compressing or pruning the subsequences.
It is defined as a separate parameter to dif-
ferentiate from minimum support.

• Block: Finite number of items forms a
block. Number of items in the block is
called block length, l.

• Value of Block: Decimal equivalent value
of a block with binary valued features is
referred to as value of the block.

• Dissimilarity Threshold: The dissimilar-
ity threshold, ε, in identifying nearest sub-
sequence when original subsequences are
pruned using η.

97

Quantization Based Sequence Generation and Subsequence Pruning for Data Mining Applications

The symbols used in the current chapter are
provided in Table 1. Following examples illustrate
above definitions.

Example 4.1. Consider a pattern with binary
features as ‘011000111000’. Sequence is repre-
sented by ‘011000111000’. ‘011000111’ repre-
sents subsequence of length, s= 9. ‘011’, ‘000’,
‘111’ form blocks of length, l= 3 each with cor-
responding quantized block values of 3,0 and 7.

Example 4.2. Consider 7 patterns or equiva-
lently transactions with 6 features or items each
counted from 1 to 6 viz., (110011), (011010),
(100010), (101110), (101010), (010101), and
(001111). Here, 1 represents of presence and 0
represent absence of an item in the transaction.
Support of each of the items is counted by count-
ing number of respective non-zero values. The
item-wise supports are (4, 3, 4,3,6,3). Frequent
itemsets corresponding to different minimum
support or support thresholds of 2,3,4 5,6, and7
respectively are (1,2,3,4,5,6), (1,2,3,4,5,6), (1,3,5),
(5), (5) and Null.

Example 4.3. Consider same data as in
Example 4.2. We identify blocks of length 2,
sequentially from each of the considered trans-
actions, viz., {(1,1), (0,0), (1,1)}, {(0,1), (1,0),
(1,0)}, {(1,0),(0,0),(1,0)}, {(1,0),(1,1,),(1,0)},
{(1,0), (1,0), (1,0)}, {(0,1),(0,1),(0,1)}, and
{(0,0), (1,1), (1,1)}. Compute block-values and

form subsequences of length-3, each as, (3,0,3),
(1,2,2), (2,0,2), (2,3,2), (2,2,2), (1,1,1), and (0,3,3).
It should be noted that all the above subsequences
have items that have minimum support of ω ≥3.
Here all the subsequences are non-repeating and
hence distinct. By considering only frequent items
with, say, ω ≥4, the transactions with frequent
features (items) are (100010), (001010), (100010),
(101010), (101010),(000000), (001010). Here
again, by considering blocks of length 2, the
set of subsequences are (2,0,2), (0,2,2), (2,0,2),
(2,2,2), (2,2,2), (0,0,0), and (0,2,2). The set of
distinct subsequences is (2,0,2), (0,2,2), (2,2,2),
and (0,0,0). Observe the reduction in number of
distinct subsequences with increasing support, ω.

Run, Run length: In an ordered sequence of
elements of two types, maximal subsequence of
same type is called a run. Number of elements in a
subsequence of same type of elements is referred
to as run length.

Example 4.4. For example, a sequence 00011
has subsequences of 000 and 11 of types 0 and 1
respectively. The corresponding run lengths are
3 and 2.

Run-sequence: Sequence of runs of sequence
of elements is referred to run-sequence. It forms
compressed representation of given sequence of
elements.

Example 4.5. Run-sequence of 0001100001
is 3241.

Table 2 contains illustration of concept of non-
lossy compression through run-length encoded
data along few additional terms. The terms are used
further while explaining the proposed schemes.

• Support Vector Machine (Burges, 1998;
Duda, Hart & Stork, 2002): The focus of
the method is to classify given set of pat-
terns by non-linearly mapping them into a
sufficiently high dimension such that the
two categories are separated by hyperplane
(Duda et al., 2002). Training a SVM aims
at finding a hyperplane with largest margin
which is the distance from the decision hy-

Table 1. Parameters used in lossy data compres-
sion scheme

Parameter Description

p No. of patterns or transaction

q No. of features

l Block length, no. of binary features per block

n No. of blocks per pattern

ω Support

s Length of subsequence

η Minimum frequency for pruning a subsequence

ε Dissimilarity threshold for identifying nearest
neighbor of subsequence

98

Quantization Based Sequence Generation and Subsequence Pruning for Data Mining Applications

perplane. With the help of support vectors
which are part of training patterns and are
close to decision hyperplane, we classify
the unseen patterns.

• Knowledge-Based Decision Tree
(Ravindra et al., 2009): Knowledge-
Based Decision Tree or KBTree exploits
domain knowledge on handwritten dig-
it data. Based preliminary analysis, it
is observed that classes (0,3,5,6,8) and
(1,2,4,7,9) share similar sample statistics.
Further statistical analysis showed earlier
that the classes (0,6), (3,5,8), (3,5), (4,9),
(1,2,7) and (1,7) can be grouped together.
Based on this analysis a tree is devised
(Ravindra, et al; 2009) that classifies
10-class HW digit data with a decision tree
of depth just 4. We make use of the concept
in the current work.

• Leader clustering algorithm (Spath,
1980): Given a set of patterns, leader algo-
rithm consists of considering any arbitrary
pattern as first leader. Every other pattern
is sequentially compared with the leader
to examine whether it lies within a pre-
chosen threshold. When it falls within the
threshold, the pattern under consideration
belongs to the pattern represented by the
leader. When it deviates from the leader
with reference to the threshold, the pattern
forms new leader. All subsequent patterns
are compared with existing set of leaders
to decide whether they belong to existing
leaders representing corresponding clus-
ters or a new leaders need to be identified.

The leaders form prototypes of the given
dataset. Advantage of leader algorithm is
that it generates an abstraction of the data
with singe database scan. Also, it should be
noted that as the threshold value increases
number of prototypes would reduce. The
value of threshold is trade-off between rep-
resentability and computation cost.

Handwritten Digit Dataset

Handwritten digit dataset under consideration
consists of 10003 labeled patterns. Each pattern is
represented as 16X12 matrix. Thus each pattern is
characterized by 192 binary valued features. Value
of ‘1’ represents the presence and ‘0’, the absence
of feature. The dataset is divided into 6670 training,
3333 test patterns. A subset of training data is set
out as validation dataset. Equivalently, the dataset
can be seen as 10003 transactions with 192 items
each with feature value representing presence or
absence of the item. Figure 1 represents a set of
sample digits.

Table 2. Illustration of parameters used in non-lossy compression scheme

Sl. No. Sequence or Pattern Run Sequence Length of Original
Sequence

No. of runs Maximum
run-length

1 0101010101 1111111111 10 10 1

2 0000111000 432 10 3 4

3 1000000001 181 10 3 8

4 0001111111 37 10 2 7

Figure 1. Sample handwritten digits

99

Quantization Based Sequence Generation and Subsequence Pruning for Data Mining Applications

Intrusion Detection Dataset

Intrusion Detection dataset (10% data) that was
used during KDDCup99 contest is considered for
the study. The data relates to access of computer
network by authorized as well as unauthorized
users. The access by unauthorized users is termed
as intrusion. Different costs of misclassification
are attached in assigning a pattern belonging to
a class to any other class. The challenge lies in
detecting intrusion belonging to different classes
accurately minimizing the cost of misclassifica-
tion. The current data set assumes floating point
values.

The training data consists of 41 features. Three
of the features are attributes and remaining are
floating point numerical values. For effective
use of these attributes along with other numeri-
cal features, the attributes need to be assigned
proper weights based on the domain knowledge.
Arbitrary weightages could adversely affect clas-
sification results. In view of this, only 38 features
are considered for the study. On further analysis it
is observed that values of two of the 38 features
in the considered 10%-dataset are always zero,
effectively suggesting exclusion of these two
features (features numbered 16 and 17, by count-
ing first feature as 0). The training data consists
of 311029 patterns and the test data consists of
494020 patterns. A closer observation reveals that
not all features are frequent. We make use of this
fact during the experiments.

The training data consists of 23 attack types
that form 4-broad classes, viz., ‘dos’, ‘normal’,
‘u2r’, ‘r2l’, and ‘probe’. As noted earlier test data
contains 19 more classes than those in the training
data. Since the classification of test data depends
on learning from training data, the unknown at-
tack types(or classes) in the test data have to be
assigned one of a priori known classes of train-
ing data. This is carried out in two ways, viz., (a)
assigning unknown attack types with one of the
known types by nearest neighbour assignment
within Test Data, or (b) assigning with the help

of domain knowledge. Independent exercises are
carried out to assign unknown classes by both
the methods. The results obtained by both these
methods differ significantly. In view of this, assign-
ments based on domain knowledge are considered
and test data is formed accordingly.

In classifying the data, each wrong pattern
assignment is assigned a cost. The cost matrix
is provided in Table 3. Observe from the table
that cost of assigning a pattern to a wrong class
is not uniform. For example, cost of assigning a
pattern belonging to class ‘u2r’ to ‘normal’ is 3.
Its cost is more than that of assigning a pattern
from ‘u2r’ to ‘dos’, say.

Further, dissimilarity measure plays an impor-
tant role. The range of values for any feature
within a class or across the classes is large. Also
the values assumed by different features within a
pattern are also largely variable. This scenario
suggests use of Euclidean as well as Mahalanobis
distance measures. Both the methods are used in
carrying out exercises on random samples drawn
from the original data. Based on the study on the
random samples, it is observed that Euclidean
distance measure provided better classification
of unseen patterns. Thus, Euclidean measure alone
is used further.

With the full data of the given dataset, NNC
provides a classification accuracy of 92.11 with
a cost of 0.254086}. This result can be made use
while analyzing the results reported in the rest
of the chapter.

Table 3. Cost matrix

Class
Type

‘normal’ ‘u2r’ ‘dos’ ‘r2l’ ‘probe’

‘nor-
mal’

0 2 2 2 1

‘u2r’ 3 0 2 2 2

‘dos’ 2 2 0 2 1

‘r2l’ 4 2 2 0 2

‘probe’ 1 2 2 2 0

100

Quantization Based Sequence Generation and Subsequence Pruning for Data Mining Applications

Results reported during KDDCUP’99 are
provided in Table 4.

Proposed System

In the current section, we present proposed
schemes that efficiently handle large data. Initially
we discuss need aspect of such schemes, and fol-
low it with an overview of proposed schemes.
Subsequently we describe each of the proposed
schemes along with previous work carried out
in the direction and the present extensions. Re-
sults of preliminary data analysis leads to final
implementation of the scheme is discussed in the
same sub-section. The experimental results are
presented in the section titled, “Experimentation
and Results”.

NEED ASPECT

When we deal with large datasets, one important
aspect is to study whether entire data is necessary
to generate an abstraction. And whether it is pos-
sible to extract a representative subset based on
which we generate an abstraction which is as valid
as it is generated from entire dataset.

In addition to above, it is interesting to explore
whether we can generate a non-lossy compaction
or compression of the dataset and operate in the
compressed domain without having to decompress

to generate an abstraction (Ravindra et al., 2007).
Another view is resort to lossy compression of
data (Ravindra et al., 2004) and still be able to
generate an abstraction which is at least as good as
the one generated by full data. In either case, the
schemes would lead to space and time advantage
due to compression and less number of operations
respectively.

Such schemes are found to be quite useful for
data mining applications. We provide outline of
methods with the help of discussion on background
provided in background section.

OVERVIEW OF COMPRESSION
SCHEMES

In the current subsection we discuss previous
work done in this direction. This forms the basis
for the proposed scheme.

Lossless Compression

The scheme consists of following steps.

A. Consider transaction-type dataset which
contains patterns with binary valued features.
Some examples of such datasets are sales
transaction data, and handwritten digit data
with binary valued features.

B. Encode the data as run lengths
C. Use dissimilarity computation scheme

(Ravindra et al., 2007) to compute dissimilar-
ity in the compressed domain without having
to decompress

D. In order to validate non-lossy nature of
compression, decompress the run length
encoded data to original form and compare.
However the same was theoretically proven
earlier (Ravindra et al., 2007)

E. Encode training, validation and test datasets
F. Using kNNC, classification of test data can

be done in compressed domain with the
help of dissimilarity computation scheme

Table 4. Accuracy of winner and runner up of
KDDCUP’99

Description Winner Runner-up

Class name:‘dos’ 99.5% 99.4%

Class name: ‘nor-
mal’

97.1% 97.5%

Class name: ‘r2l’ 8.4% 7.3%

Class name: ‘u2r’ 13.2% 11.8%

C l a s s n a m e :
‘probe’

83.3% 84.5%

Cost 0.233 0.2356

101

Quantization Based Sequence Generation and Subsequence Pruning for Data Mining Applications

as mentioned in (d) above, which leads to
savings in terms of time and space.

Following are some of the important observa-
tions in the implementation of above scheme.

Unequal number of runs: The features of the
patterns are binary valued. Since each transaction/
pattern is different, the run length and number of
runs per pattern are different for different pat-
terns. Thus they lead to unequal number of runs
for different patterns, because of intra-class and
inter-class variations.

Application of dissimilarity measures: Because
of unequal number of runs, it is difficult to apply
conventional dissimilarity measures to the data.

Some further exploration possibilities of the
above scheme is to examine whether we can
generate similarities among the compressed data
directly, or is it possible to further compress the
data by extraction of some additional features so
that we can obtain similarities among the data.

We present an extension of the above scheme
as part of discussion on proposed scheme.

Lossy Compression

In brief, the scheme consists of observing that
not all items/features contribute to discrimina-
tion. Because of this, if by some means, if some
of the non-zero features could be eliminated, it
would lead to further compaction. Equivalently
in terms of runs it would lead to less number of
runs per pattern. However, it needs to be validated
that such elimination does not affect the overall
accuracy of abstraction.

The scheme consists of the following steps.
We describe each of the steps.

• Compression by Minimum support
• Data Encoding
• Compression by Subsequence Generation

and Pruning
• Encoding Training Dataset

• Dissimilarity Computation of Encoded
data

• Encoding Test Dataset
• Classification of Test Patterns

Compression by Minimum Support

The input data often contains noise and contain
features that not frequent. The set of active features
differs from one pattern to another even within
class. In order to obtain proper abstraction, it is
necessary remove the noise. Consider the training
data. Each pattern is characterized by ‘q’ items.
Compute support for each of the items. Consider
a minimum support, ‘ω’, which is data domain
dependent. In order to compute ‘ω’, we carry out
preliminary analysis of data under study. After
computing minimum support, we consider only
those items of each of the transactions which
exceed ‘ω’. Thus number of effective items
reduces. However, it should be noted here that
notwithstanding the reduction in the number of
effective items, total number of items ‘q’ per pat-
tern is left unchanged.

Data Encoding

Subsequent to reduction in number of effective
features, subsequence generation is carried out
for encoded data. For encoding, consider ‘l’
number of items as a block and compute decimal
equivalent of each block. Value of ‘l’ is chosen
based on preliminary data analysis such that ‘q’ is
integral multiple of ‘l’. Thus it provides sequence
of decimal values for each pattern.

Subsequence Generation

Sequence of decimals values is further compacted
by considering subsequences of decimal values.
The length of subsequence ‘s’ is data dependent.
Large data representing a scenario is likely to have
similarity among different patterns. The value of
‘s’ is essentially a trade-off between achievable

102

Quantization Based Sequence Generation and Subsequence Pruning for Data Mining Applications

compactness and pattern representativeness. At
the extremes, s takes the value of 1 as minimum
and q/l as maximum value. At minimum, number
of subsequences equals to q/l subsequences. At
maximum entire pattern gets represented as single
subsequence.

After the subsequences are computed, we look
for distinct subsequences. Least number of distinct
subsequences indicates maximum compactness.
The number of distinct subsequences is a func-
tion of ‘ω’.

Subsequence Pruning

Second level of compaction is achieved by prun-
ing distinct subsequences. Distinct subsequences
which occur once or less number of times, do
not add to discrimination. After generating the
distinct subsequences, frequency of each distinct
subsequence across entire training data is counted.
Consider a data dependent minimum frequency
threshold for a distinct subsequence, ‘η’. Replace
all those distinct subsequences that occur less than
‘η’ by their nearest neighbours (NN). In order
to obtain Generalization, ‘η’ is chosen to be last
possible value above 1.

Encoding Training Dataset

Each of ‘p’ training patterns is considered. Based
on ‘ω’, the number of items across all the ‘p’ pat-
terns is minimized. Subsequently, with a block
length of ‘l’ the data is encoded to block values.
The subsequences of length ‘s’ are considered.
Distinct subsequences across entire training data
are identified as k, say. With minimum frequency
value of ‘η’, least frequent distinct subsequences
are replaced by their nearest neighbours. At this
stage entire training dataset is represented by k1
distinct subsequence, where k1<k.

Dissimilarity Computation Between
Distinct Subsequences

The number of distinct subsequences k1 is num-
bered from 1 to k1. The combination of distinct
subsequences for each pattern is are likely to
be different. When patterns contain binary val-
ued features, Hamming distance and Euclidean
distance provide equivalent information for dis-
crimination. We consider Hamming distance for
computing distance between two encoded values.
Dissimilarity between two patterns is computed
as sum of dissimilarities between corresponding
decimal codes. For example for 4-bit blocks, the
range of decimal codes is 0 to 15. To compute
distance between blocks, it is sufficient to store
16*17/2=136 values. In summary distance compu-
tation between two training patterns is simplified
as given below.

A. With ‘l’ bit encoding, pattern of ‘q’ features
is reduced to q/l blocks.

B. By considering frequent subsequences,
number of distinct subsequences further
reduces.

C. Dissimilarity between two patterns is carried
out by table look-up.

Encoding Test Dataset

Encoding Test data involves approximation.
As discussed earlier, distinct subsequences are
computed based on the training data. The distinct
subsequences are pruned further. Test dataset
is independent of Training data. The pruning
parameters are not applicable to test data. Thus
test data can always contain subsequences that
would have got pruned in the training data. Thus
for finding distance between training and test
patterns, when a matching subsequence in test
pattern is not available in the training data, it is
assigned a nearest distance subsequence identi-
fied earlier during training in the process of lossy
compression. Once assigned, the dissimilarity

103

Quantization Based Sequence Generation and Subsequence Pruning for Data Mining Applications

computation would be same as explained in the
previous Subsection.

The scheme is directly applicable to binary
valued features. We explore here to see how the
scheme can be extended to patterns with real valued
feature values. We present a proposed scheme and
implementation of the same on network intrusion
data of KDDCup 99.

PROPOSED METHODS

The current sub-section contains discussion on
proposed methods. We provide two extensions
of the work described in Sub-section of proposed
system.

Scheme 1

Consider the case of lossless compression of binary
feature valued patterns. Runs are computed of the
given training and test data. The test data is clas-
sified in the compressed domain directly without
having to uncompress using a novel scheme. It
was shown earlier (Ravindra et al., 2007) that
such a scheme is non-lossy and provided a space
advantage of 3 times and CPU time advantage
of about 5 times with handwritten digit data. The
same data set is used for exercises in the current
Chapter too. The scheme is an extension of the
previously reported scheme (Ravindra, et al, 2007).

The scheme consists of additional steps in
leading to further compaction and summariza-
tion. The steps can be enlisted as below. Figure
2 contains corresponding Schematic.

A. Given patterns with binary valued features,
encode the data as run lengths. We illustrate
the concepts considering handwritten digit
data. The data covers both training and test
patterns.

B. Compute runs in both horizontal and vertical
directions.

C. Compute maximum number of runs and run
of maximum length in both horizontal and
vertical directions. It forms 4-dimensional
vector.

D. Use Leader clustering algorithm to cluster
patterns class-wise

E. Consider cluster representatives or leaders
and classify the test data both in run-length
encode form using Support Vector Machines

It should be noted here that the scheme leader
enormous compression of given data. We demon-
strate the same through some illustrations.

Scheme 2

Consider lossy compression of data. Earlier work
in this direction (Ravindra et al., 2004) consisted
of two levels of lossy compression. Initially out
of original elements only those elements that are
frequent with a chosen support are considered for
further treatment. This forms first level of lossy

Figure 2. Proposed scheme 1

104

Quantization Based Sequence Generation and Subsequence Pruning for Data Mining Applications

compression. Subsequently based on preliminary
analysis length of fixed block is derived. Consider
fixed blocks of binary valued features and com-
pute decimal equivalents through quantization
step. We consider subsequences of fixed length
and compute frequency of such subsequences.
Subsequences of frequency less than a chosen
threshold are eliminated. This forms second
level of compression. However, test data could
still contain some of the eliminated features and
subsequences. Hence nearest derived subsequence
from the training data is assigned to an hitherto
unseen subsequence found in a test pattern. Based
on the classification method, a label is assigned
to the test pattern. It was shown earlier (Ravindra
et al., 2004), that it provided accuracy better than
original uncompressed data set.

The scheme proposed earlier worked ef-
ficiently with binary valued features, since the
application of the scheme is direct in both the
levels of lossy compression. However, it needs
to be explored whether it could work with float-
ing valued features. We examine the same in our
proposed scheme.

The scheme can be summarized through fol-
lowing steps. Figure 3 contains the proposed
scheme.

A. Given floating point values of features of a
pattern, carry out preliminary statistical
analysis on the sample data to find out range
of each of feature values.

B. Quantize the range through number of bits
and the resolution. This forms equivalent bi-
nary representation of floating point values.
Together with all the features of the pattern,
it forms a pattern with binary valued features.

C. Compute frequent features and eliminate the
features that lie below pre-chosen support
threshold. It forms first level compression.

D. Form blocks of constant length and subse-
quences of quantized features. Eliminate
subsequences of frequency lower that given
threshold. It forms second level compression.

E. Classify test patterns as discussed above.

EXPERIMENTATION AND RESULTS

We carry out brief experimentation in order to dem-
onstrate the working of the schemes. Scheme-1
is demonstrated using handwritten digit dataset
and Scheme-2 is demonstrated using KDDCUP99
dataset (KDDCup99 data, 2009). The datasets are
described in Subsections of background section.

Scheme-1

We consider handwritten digit data containing
10 classes with labels 0 to 9. Each class has 667
training patterns. The data is considered at the
first stage as two sets containing (0,3,5,6,8) and
(1,2,4,7,9) based on their shape and similarity
based on sample statistics. Total number of train-
ing patterns is 6670. They are equally divided into
above two sets. The classification scheme is based
on Knowledge Based Decision Tree (Ravindra et
al., 2009). We demonstrate working of the scheme
based on these two datasets.

Figure 3. Proposed scheme 2

105

Quantization Based Sequence Generation and Subsequence Pruning for Data Mining Applications

We compute runs corresponding to each pat-
tern both in horizontal and vertical directions.
Each pattern consists of 192 binary features and
each pattern is recognizable digit when arranged
in 16X12 matrix. Horizontal runs correspond to
computation of runs in row-direction and verti-
cal runs correspond to column-direction. Figure
4 contains plot of these runs with reference to
patterns. First set of two figures in horizontal di-
rection correspond to pattern wise horizontal and
vertical runs respectively of the first set consisting
of classes (0,3,5,6,8). Second set of two figures in
horizontal direction are horizontal and vertical runs
of second set containing training patterns belong
to classes (1,2,4,7,9). Following observations can
be made from the figures.

• No. of runs in horizontal direction are
higher than those in vertical direction. This
is due to existence of longer sequence of
zero features in vertical directions by the
nature of pattern.

• The plots provide range for value of runs
for different patterns. For example, in case
of class-0 the runs approximately range
from about 42 to 58 in horizontal direction
and 10 to 32 in vertical direction

• Class-wise runs could possibly be charac-
terized as number of runs and maximum
run length. It is further explored to whether
the information is good enough for group-
ing similar patterns.

The patterns are clustered using 4-dimensional
vector consisting of the following

1. Number of runs in horizontal direction of
the pattern,

2. Maximum run length of the runs within
pattern,

3. Number of runs in vertical direction of the
pattern

4. Maximum run length of the runs within
pattern

We cluster patterns within each class based
on these features. Interestingly they successfully
group the patterns. The leaders thus computed
are considered as prototypes. The corresponding
compressed run-length encoded data is extracted.
Using these prototypes classification of unseen
patterns numbering 3333 is carried out using
support vector machines using the package,
svmlight (Chang & Lin, 2001). The classification
accuracy obtained using linear kernel is 93.91%.
Further class-wise labeling as we pass through
Knowledge Based Decision tree is carried out in
similar manner.

Scheme-2

In this case, we consider intrusion detection data of
KDDCup 99. Description of the data is provided
in background section. Table 5 provides quantiza-
tion effort corresponding to some features among
the 38 features of the data. Feature wise statistics
of training data are computed. The table contains
a number of interesting statistics. They can be
summarized below.

• Ranges of mean values of different fea-
tures are different.

• Standard deviation which is a measure of
dispersion is different for different feature
values

• Minimum value of each feature is 0.0
• Maximum values of different features are

different ranging from 1.0 to 693375616
• Feature-wise support is different for dif-

ferent features. The support is defined here
as number of times a feature assumed non-
zero value in the training data.

• If the real values are to be mapped to in-
tegers, number of bits required along with
corresponding resolution is different for
different features.

With support value of 5%, the number of fea-
tures reduces to 22 and with support value of 10%

106

Quantization Based Sequence Generation and Subsequence Pruning for Data Mining Applications

the number of features reduces to 17. Experiments
are conducted varying threshold for subsequence
elimination.

We consider support value of 10%. Further in
order to further reduce the dataset size, we subject
to clustering as well. We classify the test data us-
ing NNC. Table 6 contains the results. The results
are presented for subsequence threshold of value
‘0’. It can be observed from the table that with
increasing distance threshold of leader clustering
algorithm, number of prototypes reduces. Best
classification accuracy obtained and best cost
obtained is highlighted. It should be noted that
the cost obtained is better that reported values
of winner and runner up in KDDCup 99 contest.

FUTURE RESEARCH DIRECTIONS

With reducing costs of storage devices and in-
creasing need for business intelligence, demand
for efficient algorithms is continuously on the
increase. The work opens up a number of directions
for compressed data handling with and without
the use of prototype selection as well as feature
selection. Some of the future research directions
are the following.

• Compress the data in lossy manner and
use extracted information of the com-
pressed data for generating prototypes
alone. For example, we demonstrated the
use of number of runs and maximum run

Figure 4. Run lengths for set-1 and set-2

107

Quantization Based Sequence Generation and Subsequence Pruning for Data Mining Applications

length in horizontal and vertical directions
to successfully clustering compressed pat-
terns. We can use additional statistics for
more effective clustering of the patterns.
Clustering can however be validated using
classification of unseen patterns.

• Starting with patterns with equal number
of features, run length encoding leads to
uneven number of extracted features per
pattern. Research work towards making
the number of extracted features equal
would enable application of conventional
dissimilarity measures

• Classification of compressed data using
SVMs is successful. Multi-kernal SVMs
is one important direction of further
exploration.

• The direction of lossy compression com-
bined with prototype selection is signifi-
cantly promising area. Choice of block
length is domain dependent. Theoretical
extensions can be taken up in this direction.

• Extension of the work in both lossy and
non-lossy data compaction for text pro-
cessing is a promising research direction.

CONCLUSION

Data Mining conventionally focuses efficient and
effective algorithms that deal with large data. In

the current Chapter we discuss possibility of gen-
erating a compaction of data and working in such
compressed domain without having to decompress
to generate abstraction. We discussed previous
work done in these directions. And proposed exten-
sions in terms of using information extracted out
of run-length compressed data leading to further
compaction. Also, we extended previous work on
lossy compression on binary valued feature data
to real valued data.

We provided discussion on background ter-
minology, previous work in this direction and
proposed two schemes. We described each of the
schemes. We carried out experiments demonstrat-
ing their working on large data sets of handwrit-
ten digit data and intrusion detection data. We
briefly discussed possible future directions of
the current work.

Table 5. Quantization statistics for few features of intrusion detection data (KDDCup 99,1999)

Feature No. Mean Value Std. Deviation Min. Max Bits
(VQ)

Resolution Support

1 47.979302 707.745756 0 58329 16 1.4e-5 12350

2 3025.609608 988217.066787 0 693375616 30 6.0e-10 378679

3 868.529016 33039.967815 0 5155468 23 7.32e-8 85762

4 0.000045 0.006673 0 1 4 0.06 22

5 0.006433 0.134805 0 3.0 4 0.06 22

6 0.000014 0.05510 0 3.0 4 0.06 1238

30 188.666186 106.040032 0 255.0 8 3.9e-3 494019

38 0.0547512 0.230140 0 1.0 4 0.06 341260

Table 6. Results on original data having support
of 10%

Distance
Threshold

No. of
Leaders

CA Cost

5.0 17508 91.83% 0.1588

10.0 15749 91.85% 0.1586

20.0 15023 91.83% 0.1585

50.0 9669 84.60% 0.2990

100.0 3479 82.97% 0.3300

108

Quantization Based Sequence Generation and Subsequence Pruning for Data Mining Applications

REFERENCES

Agarwal, R., Imielenski, T., & Swami, A. (1993).
Mining association rules between sets of items in
large databases. In Proc. 1993 ACM-SIGMOD
Int. Conf. Management of Data (SIGMOD’93),
(pp. 266-271).

Burges, C. J. C. (1998). A tutorial on support
vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2(2), 1–47.
doi:10.1023/A:1009715923555

Chang, C. C., & Lin, C. J. (2001). LIBSVM – A
library for support vector machines. Retrieved
from http://www.cse.ntu.edu.tw/~cjlin/libsvm/

Duda, R. O., Hart, P. E., & Stork, D. G. (2002).
Pattern classification. New York, NY: John Wiley
and Sons.

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P.,
& Uthurusamy, R. (Eds.). (1996). Advances in
knowledge discovery and data mining. AAAI/
MIT Press.

Goldberg, R. R. (1978). Methods of real analysis
(1st ed.). New Delhi, India: Oxford & IBH Pub-
lishing Company.

Han, J., & Kamber, M. (1996). Data mining –
Concepts and techniques. Elesevier Inc.

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent
patterns without candidate generations. In Proc.
Of ACM SIGMOD Intl. Conf. of Management of
Data (SIGMOD 00), (pp. 1-12).

Jain, A. K., Murty, M. N., & Flynn, P. P. (1999).
Data clustering: A review. ACM Computing
Review.

Karacah, B., & Krim, H. (2002). Fast minimiza-
tion of structural risk by nearest neighbor rule.
IEEE Transactions on Neural Networks, 14(1),
127–137. doi:10.1109/TNN.2002.804315

KDDCup99. (1999). Data. Retrieved from http://
kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html

Kim, Y. S., Stree, W. N., & Menczer, F. (2003).
Feature selection in data mining. In Wang, J.
(Ed.), Data mining: Opportunities and chal-
lenges (pp. 80–105). Hershey, PA: IGI Global.
doi:10.4018/9781591400516.ch004

Piatetsky-Shapiro, G., & Frawley, W. J. (1991).
Knowledge discovery in databases. AAAI/MIT,
1991.

Ravindra Babu, T., Murty, M. N., & Agrawal, V.
K. (2007). Classification of run-length encoded
binary data. Pattern Recognition, 40, 321–323.
doi:10.1016/j.patcog.2006.05.002

Ravindra Babu, T., Murty, M. N., & Subrahmanya,
S. V. (2009). Multiagent systems for large data
clustering. In Cao, L. (Ed.), Data mining and
multi-agent interaction, part 3 (pp. 219–238).
doi:10.1007/978-1-4419-0522-2_15

Ravindra Babu, T., Murty, M. N., & Subrahmanya,
S. V. (2010). Multiagent based large data clus-
tering scheme for data mining applications. Intl.
Conf. on Active Media Technology, (pp. 116-127).

Ravindra Babu, T., & Narasimha Murty, M. (2001).
Comparison of genetic algorithm based prototype
selection schemes. Pattern Recognition, 34(2),
523–525. doi:10.1016/S0031-3203(00)00094-7

Ravindra Babu, T., Narasimha Murty, M., &
Agrawal, V. K. (2004). Hybrid learning scheme
for data mining applications. In the Proc. Fourth
International Conference on Hybrid Intelligent
Systems, (pp. 266-271). Los Alamitos, CA: IEEE
Computer Society.

Ravindra Babu, T., Narasimha Murty, M., &
Agrawal, V. K. (2005). On simultaneous selection
of prototypes and features on large data. In the
Proceedings of PReMI, (pp. 595-600).

109

Quantization Based Sequence Generation and Subsequence Pruning for Data Mining Applications

Salomon, D. (2000). Data compression – The
complete reference. CA: Springer-Verlag.

Spath, H. (1980). Cluster analysis – Algorithms
for data reduction and classification of objects.
West Sussex, UK: Ellis Horwood Limited.

Susheela Devi, V. (2010). Optimal prototype se-
lection for efficient pattern classification. VDM
Verlag.

Vapnik, V. (1999). Statistical learning theory (2nd
ed.). New York, NY: John Wiley & Sons.

ADDITIONAL READING

Buccafurri, F., Rosaci, D., Sarne, G. M. L., &
Ursino, D. (2002). An agent-based hierarchical
clustering approach for e-commerce environ-
ments. In Proceedings of E-Commerce and Web
Technologies, 3rd International Conference (EC-
Web 2002), France. Lecture Notes in Computer
Science, Vol.2455. Springer, 109–118.

Bulbidge, R., & Buxton, B. (2001). An introduc-
tion to support vector machines for data mining.
In Proc. 12th Conf. Young Operational Research
(YOR12), 3-15.

Cao, L., Yu, P. S., Zhang, C., Zhao, Y., & Wil-
liams, G. (2007). Domain Driven Data Min-
ing. SIGKDD Explorations, 9(Issue 2), 84–86.
doi:10.1145/1345448.1345467

Cao, L., & Zhang, C. (2007). F-Trade: An agent-
mining symbiont for financial services. [Hawaii,
USA.]. AAMAS, 07(May), 14–18.

Covert, T., & Hart, P. (1967). Nearest Neighbour
pattern Classification. IEEE Transactions on
Information Theory, 13, 21–27. doi:10.1109/
TIT.1967.1053964

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent
patterns without candidate generation, Proc.
of ACM SIGMOD International Conference of
Management of Data(SIGMOD 00), 1–12.

Hand, D. J., Mannila, H., & Smyth, P. (2001).
Principles of Data Mining. MIT Press.

Kaufmann, L., & Rousseeuw, P. J. (1990). Finding
groups in data: An introduction to cluster analysis.
John Wiley & Sons.

Lelewer, D. A., & Hirshberg, D. S. (1987). Data
Compression. In ACM Computing Suveys, Vol.
9, 261-296.

Liu, H., & Motoda, H. (Eds.). (2008). Computa-
tional Methods in Feature Selection, Chapman
& Hall. FL: CRC.

Makinen, V., Navarro, G., & Ukkinen, E. (2003).
Approximate matching of run-length com-
pressed strings. Algorithmica, 35(4), 347–369.
doi:10.1007/s00453-002-1005-2

Mitra, P., Murthy, C. A., & Pal, S. K. (2000). Data
condensation in large databases by incremental
learning with support vector machines. In Proc.
15th International Conf. on Pattern Recognition,
(ICPR’00), Vol. 2, 2708.

Mitra, P., & Pal, S. K. (2002). Density based mul-
tiscale data condensation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24(6),
734–747. doi:10.1109/TPAMI.2002.1008381

Ogston, E., Overreinder, R., van Steen, M., &
Brazier, F. (2003). Group formation among peer-
to-peer agents: Learning group characteristics. In
2nd International Workshop, on Agents and Peer-
to-peer computing. Lecture Notes in Computer
Science, Vol.2872, Springer, 59–70.

Pal, S. K., & Ghosh, A. (2004). Soft computing
data mining. Information Sciences, 163(1–3), 1–3.
doi:10.1016/j.ins.2003.03.012

110

Quantization Based Sequence Generation and Subsequence Pruning for Data Mining Applications

Pal, S. K., & Mitra, P. (2004). Pattern Recogni-
tion Algorithms for Data Mining. Chapman &
Hall/CRC.

Park, J., & Oh, K. (2006). Multi-Agent Systems
for Intelligent Clustering (2006). Proc. of World
Academy of Science. Engineering and Technology,
11(February), 97–102.

Piraveenan, M., Prokopenko, M., Wang, P., &
Zeman, A. (2008). Decentralized multi-agent
clustering in scale-free sensor networks. Studies
in Computational Intelligence, 115, 485–515.
doi:10.1007/978-3-540-78293-3_12

Sayood, K. (2000). Introduction to Data Com-
pression (1st ed.). Morgan Kaufmann Publishers.

Scholkopf, B., & Smola, A. J. (2002). Learning
with Kernels, MIT Press. Cambridge: Mas-
saschussets.

Valiant, L. G. (1984). A theory of the learnable.
Communications of the ACM, 27(11), 1134–1142.
doi:10.1145/1968.1972

Weiss, G. (Ed.). (2000). Multiagent Systems - A
modern approach to Distributed Artificial Intel-
ligence. The MIT Press.

Wooldridge, M., & Jennings, N. R. Towards a
theory of cooperative problem solving. In proc.
of the Workshop of Distributed Software Agents
and Applications, Denmark, 40–53.

111

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

DOI: 10.4018/978-1-61350-056-9.ch007

INTRODUCTION

With the development of biology, biotechnology,
bioinformatics and biomedical research, more
and more biological data is getting collected and
is available for analysis (Wang et al., 2005). Data
mining methods have been applied successfully

for analyzing this data and many sophisticated
mining tools such as GeneSpring, Spot Fire and
VectorNTI have also been developed (Wang et
al., 2005). The trend of developing data mining
based solutions for biological data analysis is
rapidly evolving. Details can be found in (Wang
et al., 2005, chapter 2).

Pratibha Rani
International Institute of Information Technology Hyderabad, India

Vikram Pudi
International Institute of Information Technology Hyderabad, India

Classification of
Biological Sequences

ABSTRACT

The rapid progress of computational biology, biotechnology, and bioinformatics in the last two decades
has led to the accumulation of tremendous amounts of biological data that demands in-depth analysis.
Data mining methods have been applied successfully for analyzing this data. An important problem
in biological data analysis is to classify a newly discovered sequence like a protein or DNA sequence
based on their important features and functions, using the collection of available sequences. In this
chapter, we study this problem and present two Bayesian classifiers RBNBC (Rani & Pudi, 2008a) and
REBMEC (Rani & Pudi, 2008c). The algorithms used in these classifiers incorporate repeated occur-
rences of subsequences within each sequence (Rani, 2008). Specifically, Repeat Based Naive Bayes
Classifier (RBNBC) uses a novel formulation of Naive Bayes, and the second classifier, Repeat Based
Maximum Entropy Classifier (REBMEC) uses a novel framework based on the classical Generalized
Iterative Scaling (GIS) algorithm.

112

Classification of Biological Sequences

A critical problem in biological data analysis
is to classify biological sequences based on their
important features and functions. This problem is
important due to the exponential growth of newly
generated sequence data during recent years, which
demands for automatic methods for sequence clas-
sification. The advantage of automatic sequence
classifier is that, prediction of class of an unclas-
sified sequence reduces the time and cost required
for performing experiments on the new sequence
in laboratory to find its functions and properties.
Since the sequences belonging to the same class
have similar characteristics, the predicted class
will give idea about the function and properties
of the new sequence. For example, (1) a protein’s
structure and functions depend on its amino acid
sequence, so if we can predict the class of a new
protein sequence on the basis of its amino acid
sequence, then we can predict its structure and
functions; (2) frequently, it is unknown for which
proteins a new DNA sequence codes or if it codes
for any protein at all. If we can predict the class
of a new coding sequence on the basis of known
coding sequences then there is a high probability
to predict the proteins it will code for; and (3)
prediction of the type of disease can be done by
predicting the class of a sample sequence using
a set of known sample sequences divided in dif-
ferent classes according to the type of diseases.

The known state-of-the-art solutions for clas-
sification problem are mainly based on Sequence
Alignment (Altschul et al., 1990, 1997; Pearson &
Lipman, 1988), Hidden Markov Model (HMM)
(Krogh et al., 1994; Durbin et al., 1998; Eddy,
1998), Probabilistic Suffix Trees (PST) (Bejerano
& Yona, 1999; Eskin et al., 2003) and Support Vec-
tor Machines (SVM) (Leslie et al., 2002; Ben-Hur
& Brutlag, 2003a, 2003b; Weston et al., 2005).
Recent approaches (Melvin et al., 2007; Marsolo
& Parthasarathy, 2006a, 2006b) have been trying
to improve SVM by incorporating domain knowl-
edge, using complex features based on structures
and combining it with other classifiers.

In this chapter we discuss two totally data
mining based, simple but effective Bayesian
classifiers for the biological sequences. These
classifiers are called Repeat Based Naive Bayes
Classifier (RBNBC) and Repeat Based Maximum
Entropy Classifier (REBMEC). These classifiers
use generic domain independent feature extrac-
tion method which requires comparatively less
memory and time with the advantage of no need
of domain expertise. Also these classifiers in-
corporate repeated occurrences of subsequences
within each sequence known as repeats of the
subsequences. Note that the existing domain based
feature extraction methods are highly memory
intensive and time consuming and they need ex-
tensive domain knowledge (Ferreira & Azevedo,
2005b, 2006; Lesh et al., 1999, 2000; Huang &
Brutlag, 2001).

Naive Bayes is well known as a surprisingly
successful classification method that has outper-
formed much more complicated methods in many
application domains (Domingos & Pazzani, 1996;
Kotsiantis & Pintelas, 2004; Zhang, 2004). How-
ever a direct implementation of Naïve Bayes does
not work well for biological sequences. In RBNBC
it is adapted to work for biological sequences.

On the other hand REBMEC uses a novel
framework based on the classical Generalized
Iterative Scaling (GIS) (Darroch & Ratcliff, 1972)
algorithm to find the maximum entropy model
for the given collection of biological sequences.
The maximum entropy principle has been widely
used for various tasks including discretization of
numeric values of features (Kotsiantis & Pintelas,
2004), feature selection (Li et al., 2003; Tatti, 2007;
Ratnaparkhi, 1998), and various text related tasks
like translation (Berger et al., 1996), document
classification (Nigam et al., 1999), and part-of-
speech tagging (Ratnaparkhi, 1998). REBMEC’s
approach is inspired by these works because
comparison between biological sequence data and
natural languages are commonplace (Buehler &
Ungar, 2001). Unlike other Bayesian classifiers
like Naive Bayes, maximum entropy based classi-

113

Classification of Biological Sequences

fiers do not assume independence among features.
These classifiers build the model of the dataset
using an iterative approach to find the parameter
values that satisfy the constraints generated by the
features and the training data (Thonangi & Pudi,
2005; Ratnaparkhi, 1997; Buehler & Ungar, 2001).
Maximum entropy based classifiers are known to
be slow, have high accuracy and serve as a useful
benchmark to compare other classifiers.

INTRODUCTION TO BIOLOGICAL
SEQUENCES AND DATABASES

In this section, we discuss the various types of
biological sequences and the databases which
store them. There are three types of biological
sequences available for analysis. Following para-
graphs briefly explains them.

1. Deoxyribonucleic acid (DNA) acts like a
biological computer program that spells
out the instructions for making proteins.
DNA is a double-stranded nucleic acid
molecule twisted into a helix (think of a
spiral staircase). Each spiraling strand,
comprised of a sugar-phosphate backbone
and attached nucleotide bases, is connected
to a complementary strand by non-covalent
hydrogen bonding between paired nucleotide
bases. The nucleotide bases are adenine (A),
thymine (T), cytosine (C) and guanine (G).
A and T form a base pair connected by two
hydrogen bonds while G and C are connected
by three hydrogen bonds. Usually one of the
two strands is sequenced. Each character in
the sequence is a base pair, the other char-
acter being present in the sequence of the
complementary strand. So a base pair is the
unit in which the length of a DNA sequence
is measured.

2. Like DNA, Ribonucleic acid (RNA) is a type
of nucleic acid but is usually single stranded,
except when it folds back on itself. It differs

chemically from DNA because it contains
Ribose sugar instead of Deoxyribose and a
uracil (U) base instead of thymine (T) base.
Thus, the four nucleotide bases in RNA are
A, C, G and U.

3. A protein is a linear polymer composed of
chains of amino acids in a specific order
determined by the base sequences of nucleo-
tides in the DNA coding for the protein. A
sequence of amino acids is coded for by the
sequences of nucleotide bases in a DNA
molecule—three bases form a triplet code.
Each triplet code codes for one amino acid.
A protein is a sequence of amino acids, and
can be as long as several thousands of amino
acids. There are twenty distinct amino acids,
each represented by a letter: alanine (A),
cysteine (C), aspartic acid (D), glutamic acid
(E), phenylalanine (F), glycine (G), histidine
(H), iosleucine (I), lysine (K), leucine (L),
methionine (M), asparagines (N), proline
(P), glutamine (Q), arginine (R), seine (S),
threonine (T), valine (V), tryptophan (W),
and tyrosine (Y). The length of a protein
sequence is measured in terms of the number
of amino acids present in the sequence. The
length of a protein sequence can go up to
several thousands of amino acids.

Figure 1 shows the amino acid sequence of a
protein with primary accession number P91638
taken from SWISS-PROT (Bairoch & Boeck-
mann, 2003) database. The name of the protein
is Smallminded protein and is obtained from fruit
fly. Its length is 943. The format of the presented
information is called FASTA format in which the
first line starting with symbol “>” is the header line
showing protein ID, name and other information
and from next line onwards the amino acid sym-
bols are shown in groups of up to 80 characters.

There are a lot of different databases where
biological information such as DNA and protein
sequence data are stored, including, general bio-
logical data banks such as GenBank (Benson et

114

Classification of Biological Sequences

al., 2008), SWISS-PROT (Bairoch & Boeckmann,
2003), and Protein Data Bank (PDB) (Westbrook
& M. Berman, 2000). Specifically, GenBank is
an annotated collection of all publicly available
DNA sequences. The GenBank database com-
prises the DNA DataBank (DDBJ) (Sugawara et
al., 2008) of Japan, the nucleotide sequence da-
tabase EMBL (Akhtar & Cochrane, 2008) of
European Bioinformatics Institute and GenBank
at National Center for Biotechnology Information
(NCBI). SWISS-PROT is an annotated protein
sequence database maintained by the Swiss In-
stitute of Bioinformatics and European Bioinfor-
matics Institute. PDB contains all publicly avail-
able solved protein structures. These databases
contain large amounts of raw sequence data.

There are a number of derived or structured
databases which integrate information from mul-
tiple primary sources, and may include relational
/ cross-referenced data with respect to sequence,
structure, function, and evolution. A derived da-
tabase generally contains added descriptive ma-
terials on top of the primary data or provides
novel structuring of the data based on certain

defined relationships. Derived / structured data-
bases typically structure the protein sequence data
into usable sets of data (tables), grouping the
protein sequences by family or by homology
domains. A protein family is a group of sequenc-
es that are functionally or structurally similar.
Examples of the derived databases are:

1. PIRSF (Nikolskaya & H. Wu, 2004), Pfam
(Finn & Bateman, 2008), PROSITE (Sigrist
& Hulo, 2004) and ProDom (Bru & Servant,
2002) are databases of protein families and
domains classified automatically on the
basis of sequence similarity using sequence
alignment based methods.

2. GPCRDB (Horn et al., 2003) and KinBase
(Manning et al., 2002) are databases of
protein families classified manually on the
basis of function of proteins.

Problem Definition

Let ∑= {s1, s2,..., sm} be the set of all possible
symbols. A sequence is an ordered list of symbols

Figure 1. Protein sequence from SWISS-PROT database in FASTA format. The header line shows Protein
ID and name. From next line onwards amino acid symbols are shown in groups of 60 characters per line.

115

Classification of Biological Sequences

in ∑. The number of symbols in a sequence is
referred to as length of the sequence. Note that
each symbol of a sequence is at a specific posi-
tion and symbols at different positions can not
be interchanged. The given training dataset D =
{F1, F2,..., Fn} is a set of n families, where each
family (the terms “family” and “class” are used
interchangeably in this chapter) is a collection of
sequences. The sequences of a family are of dif-
ferent lengths and total number of sequences in
each family is different. The goal of the sequence
classifier is to label a query sequence S with fam-
ily Fi for which the posterior probability P(Fi|S)
is maximum. Bayesformula allows us to compute
this probability from the prior probability P(Fi),
evidence P(S) and the class-conditional prob-
ability P(S|Fi) as follows:

P(Fi|S)=P(S|Fi)P(Fi)/P(S) (1)

where P(S)=
i=
∑

1

n
P(S|Fi)P(Fi)

Since the evidence P(S) is same for all families,
it is ignored. So Equation 1 reduces to

P(Fi|S) ∝ P(S|Fi) P(Fi) (2)

The prior probability P(Fi) is computed as the
relative frequency of family Fi in D, i.e., P(Fi)
= Ni/N, where Ni is the number of sequences in
family Fi and N is the total number of sequences
in the dataset.

Hence the classification problem reduces to
the correct estimation of P(S|Fi), given the train-
ing dataset D.

Biological Sequence Classifiers

This section gives overview of various biological
sequence classifiers categorizing them according
to the classification method.

Examples of Naive Bayesian Sequence Clas-
sifiers can be found in (Andorf et al., 2004; Fer-
reira & Azevedo, 2005a; Kang et al., 2005, 2006).
Andorf et al. (2004) proposes that the Naive Bayes
(NB) classifier can be used for protein classifica-
tion by representing protein sequences as class
conditional probability distribution of k-grams
(short subsequences of amino acids of length k).
They present two NB classifier models: (1) NB
k-grams, that ignores the statistical dependencies
between overlapping k-grams and (2) NB(k), that
uses an undirected probabilistic graphical model
to capture the relevant dependencies. The relevant
probabilities required for specifying these models

Table 1. General and derived biological databases

Database Name Database Type Website

GenBank General http://www.ncbi.nlm.nih.gov/Genbank

SWISS-PROT General http://ca.expasy.org/sprot

PDB General http://www.rcsb.org/pdb/home/home.do

DDBJ General http://www.ddbj.nig.ac.jp

EMBL General http://www.ebi.ac.uk/embl

PIRSF Derived http://pir.georgetown.edu/pirsf

Pfam Derived http://pfam.sanger.ac.uk

PROSITE Derived http://ca.expasy.org/prosite

ProDom Derived http://prodom.prabi.fr

GPCRDB Derived http://www.gpcr.org/7tm

KinBase Derived http://kinase.com/kinbase

116

Classification of Biological Sequences

are estimated using standard techniques for esti-
mation of probabilities using Laplace estimators.
The length of k-grams used in the classifiers is
a user supplied parameter and the performance
of the classifiers is very sensitive towards this
parameter. The approach used in (Ferreira &
Azevedo, 2005a) is to use the unlabeled sequence
to find rigid gap frequent subsequences of a cer-
tain minimum length and use them to obtain two
features: (1) number of relevant patterns and (2)
average length of patterns. Then these features are
combined in an NB classifier. This classification
approach uses a computationally expensive query
driven subsequence extraction method (Ferreira
& Azevedo, 2006) which is guided by many user
supplied parameters. This method defers the fea-
ture extraction process until classification time
and for extracting the subsequences it compares
the query sequence with all the sequences of
the database. Due to this the computational cost
and time complexity of the classification phase
increases rapidly with only a small increase in
the dataset size, which makes it unsuitable for
large datasets.

Kang et al. (2006) introduces a novel word
taxonomy based NB learner (WTNBL-ML) for
the text and biological sequences. WTNBL-ML
is a generalization of NB learner for multinomial
event model. For building a word taxonomy Word
Taxonomy Learner (WTL) is used which uses a
hierarchical agglomerative clustering to cluster
words based on the distribution of class labels that
co-occur with the words. This classifier requires
a similarity measure for words to build the word
taxonomy which limits its use for biological
sequences. Kang et al. (2005) tries to improve
the NB classifier for sequences by relaxing the
assumption that the instances in each class can
be described by a single generative model. They
present a recursive NB classifier RNBL–MN,
which constructs a tree of Naive Bayes classifiers
for sequence classification, where each individual
NB classifier in the tree is based on a multinomial
event model (one for each class at each node in

the tree). The classifiers presented in (Kang et al.,
2005, 2006) build a binary classifier for each class
of the dataset which becomes computationally very
expensive when the number of classes increases.

Maximum Entropy based Sequence Classifiers
are presented in (Pavlov, 2003; Buehler & Ungar,
2001). For modeling a sequence, both (Pavlov,
2003) and (Buehler & Ungar, 2001) use the his-
tory of symbols to predict the next symbol of a
sequence. Buehler and Ungar (2001) use maximum
entropy for modeling protein sequences using
unigram, bigram, unigram cache and class based
self triggers as features. After making simplifying
assumptions about the probability distributions,
such as assuming length of each sequence to be
same and using a user supplied value for this
length, they use GIS to find the parameters of
the sequence model. Pavlov (2003) presents a
sequence modeling method for text and biological
sequences using mixtures of conditional maximum
entropy distributions. This method generalizes
the mixture of first order Markov models by
including the long term dependencies, known as
triggers, in the model components. The presented
method uses generalized EM algorithm to learn
the mixture of conditional maxent models from
the available data.

HMM based Sequence Classifiers (Durbin
et al., 1998; Eddy, 1998; Krogh et al., 1994) use
Hidden Markov Model (HMM) to build a model
for each protein family based on multiple align-
ments of sequences. A model for a family is one
that assigns high probability to the sequences of
that family and this model is used to classify an
unlabeled sequence. HMM models suffer from
known learnability hardness results (Abe &
Warmuth, 1992), exponential growth in number
of states and in practice, require a high quality
multiple alignment of the input sequences to
obtain a reliable model. These HMM based clas-
sifiers use algorithms which are very complex to
implement and the models they generate tend to
be space inefficient and require large memory.

117

Classification of Biological Sequences

Similarity based Sequence Classifiers
(Altschul et al., 1990, 1997; Pearson & Lipman,
1988) compare an unlabeled sequence with all the
sequences of the database and assess sequence
similarity using sequence alignment methods
like FASTA (Pearson & Lipman, 1988), BLAST
(Altschul et al., 1990) or PSI-BLAST (Altschul
et al., 1997) and then use the K-Nearest Neighbor
approach to classify the new sequence based on
the class label of the k most similar sequences.
But as the number of sequences in biological da-
tabases is increasing exponentially, this method
is infeasible due to the increased time required to
align the new sequence with the whole database.

Probabilistic Suffix Tree (PST) based Sequence
Classifiers (Bejerano & Yona, 1999; Eskin et
al., 2003) predict the next symbol in a sequence
based on the previous symbols. Basically a PST
(Bejerano &Yona, 1999) is a variable length
Markov Model, where the probability of a symbol
in a sequence depends on the previous symbols.
The number of previous symbols considered is
variable and context dependent. The prediction of
an input sequence is done symbol by symbol. The
probability of a symbol is obtained by finding the
longest subsequence that appears in the tree and
ends just before the symbol. These probabilities
are then combined to determine the overall prob-
ability of the sequence with respect to sequences
of a database. The conditional probabilities of the
symbols used in PSTs rely on exact subsequence
matches, which becomes a limitation, since
substitutions of symbols by equivalent ones is
often very frequent in biological sequences. The
proposed classifier of (Eskin et al., 2003) tries to
overcome this limitation by generalizing PSTs to
SMTs with wild-card support, which is a symbol
that denotes a gap of size one and matches any
symbol on the alphabet. An experimental evalua-
tion in (Bejerano & Yona, 1999) shows that PSTs
perform much better than a typical PSI-BLAST
search and as well as HMM. Eskin et al. (2003)
shows that SMTs outperform PSTs. This analysis
is very interesting since PSTs and SMTs are totally

automated methods without prior knowledge of
multiple alignments and score matrices or any
human intervention while other methods use ex-
tensive prior knowledge. As biological sequence
databases are becoming larger and larger, data
driven learning algorithms for PSTs or SMTs will
require vast amounts of memory.

SVM based Sequence Classifiers (Ben-Hur &
Brutlag, 2003a, 2003b; Leslie et al., 2002; Mar-
solo & Parthasarathy, 2006a, 2006b; Weston et
al., 2005; Melvin et al., 2007) either use a set of
features of sequence families to train an SVM or
use string kernel based SVMs, alone or with some
standard similarity measure like BLAST or PSI-
BLAST or with some structural information. The
classifiers of (Ben-Hur & Brutlag, 2003a, 2003b)
use a set of Motifs—short conserved regions of
proteins as features of protein families and train the
SVM on this feature set. For extracting Motifs, they
use a multiple sequence alignment based method
called eMOTIF (Huang & Brutlag, 2001). The
classifier of (Leslie et al., 2002) represents protein
sequences as vectors in high-dimensional feature
space via a string-based feature map and trains an
SVM on the feature vectors without calculating
the feature vectors explicitly, instead computing
their pairwise inner products using a mismatch
string kernel. Weston et al. (2005) use standard
similarity measures like BLAST or PSI-BLAST
along with mismatch string kernel to improve
the performance of the SVM classifier. The clas-
sifier of (Marsolo & Parthasarathy, 2006b) uses
the frequency scores returned by PSI-BLAST to
create a wavelet based summary which is used as
the feature vector for the SVM. The classifier of
(Marsolo & Parthasarathy, 2006a) uses structure
related information along with wavelet based
summary as features for the SVM. Melvin et al.
(2007) uses profile-based string kernel SVMs
(Kuang et al., 2004) as base binary classifiers.
They use PSI-BLAST to generate the sequence
profiles and to define an additional set of base
classifiers for extended components of the output
vector. This output vector is fed into the ranking

118

Classification of Biological Sequences

perceptron to get the final output. The SVM based
classifiers require a lot of data transformation but
report the best accuracies among existing biologi-
cal sequence classifiers. Since SVM is basically
a binary classifier, to handle a large number of
classes, it uses the one against the rest method,
which becomes computationally very expensive
as the number of classes increases.

ESTIMATING FEATURE
PROBABILITIES FROM FAMILY
OF BIO-SEQUENCES

This section presents the important definitions and
terminologies used in this chapter. It also describes
one simple domain independent method for find-
ing feature probabilities in a biological sequence
dataset when subsequences are used as features.

Preliminaries and Definitions

This section presents the necessary details of
terminology and important definitions used in
this chapter.

• Sequence: Let ∑ = {A1,A2,...,Am} be the
set of all possible symbols. For example,
in the case of protein sequences, ∑ consists
of the 20 amino acid alphabets and for the
DNA sequences it consists of the 4 nucleo-
tide alphabets. A sequence is a linear or-
dered list of symbols in ∑. Examples of
this type of sequences are protein or DNA
sequences or website navigation paths. The
term linear is used to make the distinction
from the transactional sequences that con-
sist of sequences of itemsets. The number
of symbols in a sequence is referred to as
length of the sequence. Note that each sym-
bol of a sequence is at a specific position
and symbols at different positions can not
be interchanged. A sequence S of length
L can be represented as concatenation of

L symbols as: S = <s1s2... sL>, where si ∈
∑and i = 1 to L. A sample protein sequence
is shown in Figure 1.

• Subsequence: A continuous segment
of a sequence is called a subsequence.
Formally, sequence SA =<a1a2... au> is a
subsequence of sequence SB =<b1b2... bv>,
if there exists u contiguous integers 1 ≤ i <
i + 1 <... < i + u − 1 ≤ v such that a1 = bi,
a2 = bi+1,..., au = bi+u−1. In other words, sub-
sequence SA is fully contained in sequence
SB. Sequence SB is called supersequence
of SA. Obviously, we have length of SA ≤
length of SB. For example,

S1 = KNLSEDAVPRSKDHR and S2 = LY-
QQLHQ are subsequences of S3=QKLHQVV
GNRAKNLSEDAVPRSKDHRNVPGLYQQ
LHQNQSRDRLRKFKRDL.

• Repeat: The multiple occurrence of a
subsequenceS′in sequenceS is called re-
peat of S′ in S. For example, subsequence
LHQ is repeated 2 times in the sequence
S3.

• Family: A familyF = {S1, S2,..., SN} is a col-
lection ofNsequences of variable lengths.

• Training Data: The training data D = {F1,
F2,..., Fn} is a collection of n families. The
number of sequences in each family Fi ∈ D
is different.

• Largest Family: The family Fi ∈ D with
maximum number of sequences.

• Smallest Family: The family Fi ∈ D with
least number of sequences.

Definition 1. The SequenceCount of a subse-
quenceXjin familyFiis the number of sequences
of familyFiin which subsequenceXjis present at
least once.

Definition 2. The RepeatCount of a subse-
quenceXjin familyFiis the sum of the number of
occurrences of that subsequence in each sequence
of the family.

119

Classification of Biological Sequences

So, RepeatCount of a subsequence sums up
all the occurrences of that subsequence from all
the sequences of a family.

Definition 3. A subsequenceXjis fre-
quent in familyFiiffSequenceCountofXjinFi ≥
σwhereσis the MinsupCount for familyFi,and
is calculated using the user given support
thresholdminsupandNi(total number of sequences
in familyFi) asσ = Ni ×minsup.

Definition 4. LetZ = {X1,X2,...,X|z|}be the
set of all frequent subsequences extracted from
familyFi. SubsequenceXj ∈ Z is maximal frequent
in familyFiiff not existsXk ∈ Zsuch thatXkis su-
persequenceofXj.

Hence for a maximal frequent subsequence
Xj, there are no other frequent subsequences in
the family which contain Xj.

Feature Probability Estimation

This section describes how feature probabilities
can be estimated from the training data when
subsequences are used as features. The discussed
classifiers RBNBC and REBMEC use maximal
frequent subsequences as features.

Either SequenceCount or RepeatCount may
be used to estimate the probability P(Xj |Fi) of a
feature Xj in a family Fi. Note that since Repeat-
Count is obtained by summing all the occurrences
of a feature in all the sequences of a family, it
gives more information about the presence of
that feature in the family than SequenceCount
which only gives information about fraction of
sequences in the family containing that feature.

Using SequenceCount is simple: [(Sequence-
Count of Xj) ∕ Ni] is a good estimate of P(Xj |Fi),
where Ni is the number of sequences in Fi. Though
this is simple and efficient, it does not account
for multiple occurrences of Xj in a sequence. The
alternative is to use RepeatCount. In our study
we found that RepeatCount results in better ac-
curacy as it uses all the occurrences of a feature
in the family.

Use of multiple occurrences of a feature is
similar to the multinomial event models (McCal-
lum & Nigam, 1998) used in text classification
but RBNBC and REBMEC follow a very dif-
ferent approach to find the feature probabilities
which are used to build the model. McCallum
and Nigam (1998) study multinomial models
for document classification, which capture the
word frequency information in each document,
and show that these models perform better than
the multi-variate Bernoulli model. Basically,
the multinomial models represent each training
sample as a bag of words and use the multinomial
distribution method to find the class conditional
probability. In contrast, REBMEC and RBNBC
model the samples as sequences and find feature
probabilities using RepeatCounts.

Following method finds P(Xj |Fi) using Re-
peatCount:

1. Find the number of slots available for Xj in
family Fi.

If we consider that the features may overlap:

slotsij =
k=
∑

1

Ni

[length of Sk − length of Xj + 1]

(3)

If we consider non overlapping features:

slotsij =
k

Ni

=
∑
1

floor (length of Sk ∕ length of Xj)

(4)

Where Ni is the total number of sequences in
family Fi and floor function returns the largest
integer value.

Find the probability of feature Xj in family Fi as :

P(Xj |Fi) = (RepeatCount of Xj in Fi) ∕ slotsij
(5)

120

Classification of Biological Sequences

Equations 3 and 4 find the number of slots
available for feature Xj in family Fi, i.e., the total
number of times Xj can, in principle, occur in Fi.
This is done by summing the available slots in
each sequence Sk of the family Fi. Next, Equation
5 estimates the feature probability as the fraction of
times Xj actually occurs over the slots. Equation 3
finds the number of slots for overlapping features,
i.e., when boundaries of slots for a feature can
overlap. Equation 4 finds the number of slots for
non overlapping features, i.e., when boundaries
of slots for a feature do not overlap.

Handling Problems of
Bayesian Classifiers

This section discusses the existing problems of
the Bayesian classifiers and presents the proposed
solutions. It is known that Bayesian classifiers like
Naive Bayes (NB) represent the query sequence
as a feature vector and use the feature probabili-
ties to estimate the class-conditional probability.
The class-conditional probability is then used to
compute the posterior probability of each family.
This approach can give rise to following problems:

Problem 1: Features Not Represented in the
Training Data: Since calculation of P(Xj |Fi) is
based on the presence of Xj in the training data
of class Fi, a problem can arise if Xj is completely
absent in the training data of class Fi. This problem
is called “the problem of zero probabilities”. The
absence of Xj is quite common because training
data is typically too small to be comprehensive,
and not because P(Xj |Fi) is really zero. This
problem is compounded by the resulting zero prob-
ability for any query sequence S that contains Xj.
Evidence based on other subsequences of S may
point to a significant presence of S in Fi. Due to
this problem, the existing Bayesian formulation
cannot be applied directly on biological sequences
when frequent subsequences are used as features.
Known solutions to this problem are:

1. Use a nonuniform feature set, i.e., use differ-
ent feature set of query sequence S for each
class which includes only those features of
S which are present in that class. Then set
P(S| Fi) = 0 only if none of the features of S
is present in class Fi.
a. This solution has a drawback: classes

with more matching features of S could
be computed as having less posterior
probability due to the multiplication
of more feature probabilities whose
values are always less than one. This
results in wrong classification and is
illustrated in Example 1.

2. Incorporate a small sample-correction into
all probabilities, such as Laplace correction
(Domingos & Pazzani, 1997; Kotsiantis &
Pintelas, 2004), which is frequently used in
text classifiers (Bakus & Kamel, 2002). The
Laplace correction factor requires chang-
ing all the probability values, so it is not
feasible for datasets with a large feature set
like biological datasets.

3. If a feature value does not occur in a given
class, then set its probability to (1 / N), where
N is the number of examples in the training
set (Kotsiantis & Pintelas, 2004).

Example 1. Suppose C1 and C2 are two classes
with 10 samples each, so that the prior probabilities
of the classes are P(C1) = P(C2) = 1/2.

A query sample S with features {X1,X2,X3,X4}
has two matching features in class C1 with prob-
abilities

P(X1| C1) = 1/10 and P(X3| C1) = 3/10

and four matching features in class C2 with prob-
abilities

P(X1| C2) = 1/10, P(X2| C2) = 2/10, P(X3| C2) =
3/ 10 and P(X4| C2) = 2/ 10.

121

Classification of Biological Sequences

Using Equation 1, the posterior probabilities
of the classes are obtained as

P(C1|S) = 3/200 and P(C2|S) = 6/10000.

Since P(C1|S) > P(C2|S), the query sample
gets classified into class C1, although intuitively
we know that class C2 is more suitable because
it contains more matching features than class C1.

The standard Simple Naive Bayes (Simple NB)
classifier uses SequenceCount with solution (I)
to obtain the model of the dataset. RBNBC and
REBMEC uses another solution described below.

Proposed Solution: To handle the problem of
zero probabilities the classifiers use a very simple
assumption. They assume that the probability of
any feature to be present in any family is never
zero. So for the features of other families which
are not present in a given family, they use a correc-
tion probability ∈, which is the minimum possible
feature probability computed using RepeatCount.
It is obtained as:

∈ = 1 / Sum of the lengths of sequences of the
largest family (6)

For handling the problem arising from the
use of a nonuniform feature set, RBNBC and
REBMEC use a query-sequence-based uniform
feature set, which is the set of features present in
the query sequence S, collected from all families.
The classifiers then use ϵ as the probability value
of features not present in a family. We have ex-
perimented with two models of the NB classifier
for biological sequences–model A, which is the
Simple NB classifier, using solution (I) and model
B using our solution with SequenceCount–and
found that model B performed better than model A.
For classifiers like model B, which use Sequence-
Count, the correction probability ϵ is obtained as:

∈ = 1 / Number of sequences of the largest
family (7)

Problem 2: Out of Range Probability Values:
Probability values obtained using equations
such as Equations 5 and 6 are very small. When
these very small values are multiplied to obtain
the class-conditional probability to be used in
Bayesian equation 1, the product can go below the
available minimum number range of the computer
processor. This is a problem with all Bayesian
classifiers which work with large feature sets and
assume independence among the features and
hence directly multiply the feature probabilities
to get the class-conditional probabilities.

An appropriate scaling factor, which depends
on the dataset, or log scaled formulation is used
to avoid this problem. When scaling factor is
used then all the feature probability values are
multiplied with this scaling factor before they are
used to find the class conditional probabilities. We
experimented with different scaling factors and
found a generic scaling factor (1 / Avgminprob),
which can be used for any dataset.

Avgminprob is defined as the average of mini-
mum possible probability values for features in
the dataset:

Avgminprob = α + β / 2

where

α = Minimum value of possible Minimum prob-
ability in the dataset

β = Maximum value of possible Minimum prob-
ability in the dataset

For RBNBC, it is obtained using α = ϵ defined
in Equation 6 and

β = 1 / Sum of the length of sequences of the
smallest family (8)

For other NB classifiers like models A and B
working with SequenceCount, it can be obtained
using following values

122

Classification of Biological Sequences

α = 1 / Number of sequences of the largest
family

β = 1 / Number of sequences of the smallest family

We also experimented with the following log
scaled formulation of Bayes equation and found
that both scaling factor and Equation 9 give the
same results:

LP(Fi|S) = LP(S| Fi) + LP(Fi) (9)

where

LP(Fi |S) = log[P(Fi |S)]
LP(S| Fi) = log[P(S| Fi)]
LP(Fi) = log[P(Fi)]

Since using log scaled formulation is simple,
Equation 9 is readily used to find posterior
probabilities for all the classifiers. Note that the
discussed REBMEC classifier implicitly uses a
log scaled approach for finding class-conditional
probabilities. In contrast, RBNBC and other Naive
Bayes classifiers like Simple NB models A and
B have to explicitly use log scaled formulation
to find class conditional probabilities.

RBNBC AND REBMEC CLASSIFIERS

This section describes the design of two Bayesian
sequence classifiers called Repeat Based Naive
Bayes Classifier (RBNBC) and Repeat Based
Maximum Entropy Classifier (REBMEC). This
section discusses the feature extraction process,
feature selection phase and classification methods
used by the two classifiers.

The RBNBC and REBMEC classifiers run in
three phases:

1. Feature Extraction: This is the training
phase in which first maximal frequent subse-
quences are extracted as features from each
family and stored with their RepeatCount

and SequenceCount. Then for each family,
the counts for maximal features from other
families, which are not maximal in this fam-
ily, are also stored. This is to ensure that all
families share the same feature set.

2. Feature Selection: The extracted feature set
is pruned in this phase using an entropy based
selection criterion. The result is a smaller
set of features remaining after pruning and
their counts within each family. This phase,
which performs feature selection, is an op-
tional phase and the classifier can execute
the final phase without going through this
phase. The feature extraction and selection
phases are executed only once to train the
classifier. After this the original dataset is no
longer required and the classifier works with
the reduced feature set left after pruning.

3. Classification: This phase is executed for
labeling a query sequence with the family
having the maximum posterior probability.
The classifier first separates all the features
belonging to the query sequence from the
available feature set from the previous phase.
It then uses these features to find the poste-
rior probability of each family and outputs
the one with the maximum probability.
The methods used in the first two phases
are same for both the classifiers, but they
use different classification methods for the
third phase. While RBNBC uses a Naïve
Bayes approach, REBMEC uses a maximum
entropy based approach. In the following
sections, we discuss the three phases of the
classifiers in detail.

Feature Extraction

The first phase for any classifier is the training
phase in which it is trained using features extracted
from a training dataset. Since classifiers require
discriminative features (Han & Kamber, 2001;
Lesh et al., 1999) to distinguish between different
classes, the first challenge in “classification of

123

Classification of Biological Sequences

biological sequences” is to extract good features
from the available sequences. The task of “feature
extraction from biological sequences” itself is an
open research problem. Some sophisticated feature
mining algorithms (Ferreira & Azevedo, 2005b,
2006; Lesh et al., 1999, 2000; Huang & Brutlag,
2001) have been developed for this purpose which
uses complex data transformations and domain
knowledge. Ben-Hur and Brutlag (2003a, 2003b)
propose that Motifs–short conserved regions of
sequences–are highly predictive features for the
biological sequences.

In this chapter, we focus on the classification
part of the problem instead of the domain specific
feature extraction part. The discussed classifiers
use maximal frequent subsequences as features.
Use of these very simple features avoids the need
for complex data transformations and domain
knowledge in the feature extraction process.
Based on the observations made by Ben-Hur and
Brutlag (2003a, 2003b), we believe that frequent
subsequences capture everything that is significant
in a collection of sequences. This assumption has
borne out well in the experimental results. Since
the number of extracted frequent features increases
exponentially as minsup decreases, to reduce the
feature set we opt to use maximal frequent sub-
sequences as features. The careful examinations
of extracted features of all families reveal that
extracted maximal frequent subsequences of a
family are similar to Motifs of that family. So,
maximal frequent subsequences are able to extract
predictive features for the biological sequences.
There may be some loss in information by us-
ing maximal frequent subsequences as features,
however, they have the advantage that they satisfy
the following criteria set by Lesh et al. (1999),
which are necessary for features of any classifier:

1. Significant Features: this is ensured by
considering only frequent features, i.e.,
SequenceCount ≥ MinsupCount.

2. Non-redundant Features: this is ensured
by using maximal frequent subsequences.

3. Discriminative Features: For ensuring this,
entropy based selection criteria described
later in this chapter is used, after extraction
of features.

Various methods are available for mining
maximal frequent patterns. Examples of such
methods can be found in (Roberto J. Bayardo,
1998; Zaki et al., 1997, Gouda & Zaki, 2005;
Guan et al., 2004). Most of these methods focus on
mining maximal frequent itemsets. Since we need
to obtain the RepeatCount of the subsequences
along with the SequenceCount, we use our own
Apriori (Agrawal & Srikant, 1994) like method
called ExtractMaxSubseq shown in Figure 2 for
extracting maximal frequent subsequences and
optimize it using a novel bit-vector based frequent
subsequence extraction method shown in Figure
3. Also, to extract all possible features, we set
maxlen–maximum length of the features to be
extracted–as the length of the largest sequence of
the training set. Note that using ExtractMaxSubseq
we extract overlapping features, where boundaries
of features can overlap.

As discussed in Preliminary section, all the
subsequences X satisfying the following criteria

SequenceCount of X ≥ MinsupCount

are frequent in family Fi (containing Ni sequences)
where MinsupCount = Ni× minsup and among
these frequent subsequences, Xj is maximal fre-
quent if there are no other frequent subsequences
in the family which contain Xj.

In ExtractMaxSubseq algorithm, we use the
same user given minimum support threshold
minsup for all the families for extracting features
from each family. In each iteration, the algorithm
first initializes FreqList (the list containing fre-
quent subsequences of length l) to empty set and
then populates this list with extracted frequent
subsequences of length l while storing the Se-
quenceCount and RepeatCount. Then it removes
those subsequences from MaxList (the list of

124

Classification of Biological Sequences

maximal frequent subsequences) which have a
supersequence in FreqList. Finally it adds all the
frequent subsequences of FreqList to MaxList,
which is to be checked in the next iteration. After
the last iteration, MaxList contains all the maximal

frequent subsequences which are features of the
family Fi.

After extracting features from all the families
using ExtractMaxSubseq algorithm, one more pass
is made over the sequences of each family to find
the SequenceCount and RepeatCount of features

Figure 2. The ExtractMaxSubseq algorithm for extracting maximal frequent subsequences as features
for each family of the dataset

Figure 3. Bit-Vector based optimization of frequent subsequence extraction

125

Classification of Biological Sequences

of other families which are not maximal frequent
in that family. This extra step is performed to
make the feature set uniform for all the families,
i.e., all families share the same feature set and to
ensure that correct probabilities of all the features
are available for use in the classification phase.
If a feature is not at all present in a family then a
small correction probability is used as the prob-
ability of that feature.

Optimization of Frequent
Subsequence Extraction
Using Bit Vectors

The biological sequence datasets contain large
number of very long sequences. Due to this, fre-
quent subsequence extraction from a biological
sequence dataset is a time consuming and memory
intensive process. This process can be optimized
by avoiding extraction of infrequent subsequences
by storing information of their location in a bit-
vector. This optimization has proved to be very
effective and reduced the feature extraction time
from days to hours. The optimization method is
shown in Figure 3 and explained below.

The procedure initializes a bit-vector of ‘1’s
for each sequence in a family. The bit-vector of a
sequence is of the same length as the sequence. The
procedure starts extracting frequent subsequences
of length one and iteratively proceeds to longer
subsequences. The presence of a ‘1’ in a bit-vector
indicates that a frequent subsequence of length l
can be extracted from the corresponding position
in the sequence. The presence of a ‘0’ indicates that
the subsequence of length l at the corresponding
position in the sequence is infrequent. It follows
that subsequences longer than l from this position
will also be infrequent. Hence the bit will remain
‘0’. In the first phase of each iteration, candidate
subsequences of length l are counted.

In the second phase, the bit positions corre-
sponding to frequent subsequences of length l are
set to ‘1’, to be considered in the next iteration.

Entropy Based Selection of
Discriminating Features

As is typical of frequent pattern mining, the feature
extraction phase produces too many Features and
creates the problem of curse of dimensionality.
This problem increases as the minsup decreases,
since the number of extracted features increases
exponentially as minsup decreases. To alleviate
this problem we can apply a feature selection
phase that selects only discriminating features
(Lesh et al., 1999) for each class.

Our feature selection criterion is based on
entropy. Entropy based criteria like information
gain and gain ratio have been widely used to se-
lect features for classifiers (Kotsiantis & Pintelas,
2004). Since our aim is to find discriminating
features for each family, we use low values of
H(D|Xj = present), i.e., entropy of the dataset in
the presence of a feature as the selection criterion :

H(D|Xj = present) =
i

N

=
∑
1

[P(Fi|Xj = present)

log[P(Fi|Xj = present)]]

Where P(Fi|Xj = present) = (SequenceCount

of Xj in Fi) ∕
k
∑ (SequenceCount of Xj in Fk)

Analysis of this criterion gives us the follow-
ing observations:

1. H(D|Xj = present) = 0 when a feature Xj is
present in one and only one family.

2. H(D|Xj = present) is higher when a feature
Xj is present in all families.

This criteria is opposite of the information gain
criteria as it selects features with low entropy val-
ues thereby selecting discriminating features. For
selecting features we use a user-given threshold
Hth to compare with the calculated value of H(D|Xj
= present), and select all the features satisfying
the criteria given below while pruning the others:

126

Classification of Biological Sequences

H(D|Xj = present) ≤ Hth

Experimentally we found that for very low
minsup values, using threshold Hth = 0 gives good
results in the classification phase. But for other
minsup values good results are obtained by setting
Hth as 1/2H(D) or 1/3H(D), where H(D) is the
total entropy of the dataset which is defined as:

H(D) = −
i
∑ P(Fi) log[P(Fi)]

This happens because with Hth = 0, many im-
portant features get pruned. In our experiments,
the above entropy based selection not only found
discriminating features for all families, but also
reduced the number of features by 36% for low
minsup values (for details refer to Rani & Pudi
(2008c)).

Classification Phase

As discussed earlier, RBNBC and REBMEC use
a very simple assumption to handle the problem
of zero probabilities and the problem arising from
the use of a nonuniform feature set. The classi-
fiers assume that the probability of any feature
to be present in any family is never zero and use
a query-sequence-based uniform feature set for
finding class conditional probabilities. This uni-
form feature set is the set of features present in
the query sequence, collected from all families.
So for the features of other families which are not
present in a given family, they use a correction
probability ϵ, which is the minimum possible
feature probability computed using RepeatCount.
It is obtained as (Equation 6 reproduced here):

∈ = 1/Sum of the lengths of sequences of the
largest family

The classifiers use RepeatCount of the features
in a family to find the probabilities of features
present in that family using the method discussed

earlier in this chapter. This method first finds the
total number of slots available for feature Xj in
family Fi using either Equation 3 or 4 and then
finds the feature probability as the fraction of times
Xj actually occurs over the slots using Equation
5. Since we are using overlapping features, the
classifiers use Equation 3, which finds slots for
overlapping features, to find the slots.

Also to tackle the problem of out of range
probability values RBNBC explicitly uses a
log scaled formulation to find class conditional
probabilities and then uses Equation 9 to find the
posterior probabilities. REBMEC implicitly uses
a log scaled approach for finding class-conditional
probabilities that can handle small values and
hence easily deals with this problem.

Classification Phase of RBNBC

For classifying a query sequence S, RBNBC finds
the query-sequence-based uniform feature set Z =
{X1,X2,..., Xm}, which is the set of features present
in S, collected from all families. For computing the
posterior probabilities, it uses the same feature set
Z for all families. After finding Z, it uses Equation
5 for finding probabilities of features present in a
family and uses ϵ as the probability for features not
present in that family. It uses these probabilities
to compute class conditional probabilities using
following equation:

LP(S|Fi) =
j

m

=
∑
1

log[P(Xj |Fi)] (10)

It then uses these class conditional probabilities
to compute the posterior probability of all families
using Equation 9 and classifies the query sequence
into the family with the largest posterior prob-
ability. The pseudo-code for the method discussed
above is shown in Figure 4. Steps 2(a), 2(b) and
2(c) of the classification algorithm of RBNBC can
be merged together to be executed in O(1) time.

127

Classification of Biological Sequences

The time complexity of the algorithm is O(n),
where n is the number of families.

Classification Phase of REBMEC

For classifying a query sequence S, REBMEC, like
RBNBC, finds the query-sequence-based uniform
feature set Z, which is the set of features present in
S, collected from all families. For computing the
posterior probabilities, it uses the same feature set
Z for all families. It uses Equation 5 for finding
probabilities of features present in a family and
uses ϵ as the probability for features not present
in that family.

Using the features in set Z, it makes the
constraint set CSi for each family. Each feature
Xj ∈ Z with its probability P(Xj |Fi) in family Fi
forms a constraint that needs to be satisfied by
the statistical model for that particular family.
To satisfy the conditions required by GIS based
methods, a “correction” feature fl is added to the
constraint set. For a sample x, a normal feature fl
gives value of constraint function fl(x) as “0” or
“1”, which denotes presence or absence of that
feature in the sample x. But for the correction

feature, the value of constraint function fl(x) is
obtained using following equation:

fl(x) = C −
j

Z

=
∑

1

| |

fj(x) (11)

So, unlike the existing features, fl(x) ranges
from 0 to C. This correction feature is assumed
to be present in all the samples. The value of C
is taken as the total number of features extracted
from the training set. Thus, for each family Fi,
there is a constraint set CSi = {{(Xj, P(Xj |Fi) |
Xj∈ Z}∪ {fl, E(fl)}}, where E(fl) is the expecta-
tion of fl in family Fi. Since there could be mul-
tiple models satisfying these constraints, the
proposed algorithm ComputeProb, like GIS, se-
lects the one with maximum entropy and finds
the parameters of that model. In doing so, it finds
the class-conditional probability LP(S|Fi) of that
family.

REBMEC then finds the posterior probability
of all families using Equation 9. Finally, it classi-
fies the query sequence into the family with the

Figure 4. Classification by RBNBC

128

Classification of Biological Sequences

largest posterior probability. The pseudo-code for
the method discussed above is shown in Figure 5.

Dividing the Feature set into Small Sets: To
make the large feature set manageable, REBMEC
divides the feature set Z into small sets of similar
features using Hamming Distance based similar-
ity measure Hamdis. This similarity measure is a
simple modification of the Hamming Distance to
take into account features of different length and
is defined as:

Hamdis (X1,X2) = No. of positions differing in
symbols + |length(X1)−length(X2)|

For dividing the feature set into small sets of
highly dependent features, the ComputeProb al-
gorithm selects one feature from Z and calculates
Hamdis for all other features with respect to the
selected feature. Then it groups k features with
least Hamdis, together with the selected feature
to make the small feature set Zf. This process is
repeated till there are less than k features left in

Z, which are grouped together along with the
correction feature.

ComputeProbAlgorithm: This is a GIS based
method which, unlike GIS, computes the class-
conditional probabilities instead of storing the
parameter values of each constraint. It builds an
approximate maximum entropy model of each
family by dividing the feature set into small sets
and combining the results assuming independence
among the sets. Figure 6 shows pseudo-code of
the algorithm and is described below.

It uses bit-vectors Tk to represent the presence/
absence of | Zf | features of the set Zf. So for a set
of n features, T0 to T(2

n
)−1 represents all the pos-

sible samples of the event space. ComputeProb
iterates over this event space to obtain a probabil-
ity model which is as close to the real distribution
as possible. The iteration stops when the expecta-
tion of each feature calculated from the model is
almost equal to the expectation obtained from the
training data. At this point all the parameter val-
ues converge and further iterations do not make
any change. Note that during implementation Tks

Figure 5. Classification by REBMEC

129

Classification of Biological Sequences

need not be stored but can be computed on the
fly.

In the first step, it uses Hamdis to group the
highly dependent features in small sets. And then
for computing the class-conditional probability of
a family, it computes LP(S|Fi) for each small set
of features and later combines them by assuming
independence among the sets. For each small
feature set Zf ∈ Z′, in steps 6 to 9, it initializes the
parameters μj and probabilities LP(Tk). In steps 12
to 22, it updates the μj and LP(Tk) values using the
probabilities of features obtained from the training

data. In steps 23 to 28, it finds the normalization
constant μ0 and applies it to the LP(Tk) values.
Finally, in step 30, it updates the LP(S|Fi) value
using the obtained value of LP(Tlast) for that feature
set, where the bit-vector Tlast represents that all
the features of the set Zf are present in the query
sequence. Note that the LP(S|Fi) values returned
by this algorithm are in log scale.

Discussion of Additional Issues: Like other
Bayesian methods, GIS based methods also use
very small parameter and probability values, so
they also need to tackle “out of range” parameter

Figure 6. The ComputeProb algorithm

130

Classification of Biological Sequences

values discussed in earlier section. In case of GIS
based methods, this problem becomes even more
serious due to the iterative nature of these meth-
ods. To deal with it, ComputeProb is designed
using log scale.

In our experiments we observed that when
the constant C, having a large value, is used for
finding the increment values of the parameters,
the iteration process overshoots the convergence
point. So to make the increment value smaller,
unlike GIS, we have not used the constant C in
the calculation of increment value (in step 18).
As discussed in (Ratnaparkhi, 1997, 1998), the
number of iterations required for the model to
converge can be hard-coded and the algorithm
can be made to stop once it reaches those many
iterations, so the while loop of ComputeProb can
be iterated for a fixed number of times. In our
experiments we observed that all the parameter
values converge within 50 iterations only. The
calculation of expectation of a feature fj from the
samples of training data D is done using following
equation (Ratnaparkhi, 1997, 1998):

E p/ (fj) =
x D∈
∑ p/(x)fj(x)

Since the constraint function fj(x) of a normal
feature is a binary function denoting the presence/
absence of that feature in a sample sequence x,
the expectation of a normal feature in a family Fi
is just the probability of that feature in family Fi.
For the correction feature fl, using Equation 11,
the above equation transforms to

Ep/(fj) =
x D∈
∑ p/(x) [C -

j

Z

=
∑

1

| |

fl(x)]

where Z is the uniform features set of the query
sequence. According to this equation, calculation
of the expectation of fl in a family Fi requires
scanning all the sample sequences of that family.

The probability of a sample sequence x in a
family Fi (containing Ni sample sequences) can
be obtained as 1/Ni, hence we can make following
observations after analyzing the above equation:

1. The minimum value of expectation of fl
calculated using above equation will be (C
− |Z|), when all the features of the feature
set Z are present in all the sequences of that
family.

2. The maximum value of expectation of fl
calculated using above equation will be C,
when none of the features of the feature set
Z are present in any sequence of that family.

Based on these observations we use the mini-
mum expectation value (C − |Z|) as the approxi-
mate expectation value of correction feature fl in
each family. This approximation removes the need
for scanning all the sequences of a family in the
classification phase for calculating the expecta-
tion of fl. In practice we found this approxima-
tion to be good. In our experiments we observed
that if the correction feature fl is not added to the
constraint set with proper expectation value, then
the algorithm is not able to compute correct class
conditional probabilities; so using the correction
feature properly is a very important part of the
algorithm.

We also observed that either the correction
feature can be added to each small group of
features Zf with approximate expectation value
(|Z| − | Zf |) or only to the last group with value
(C − |Z|). Both the methods give exactly the same
result which means that both methods produce
the same effect on the parameter values. Since
adding the correction feature to each group of
features increases the overall running time, it is
better to add it to only one group with appropriate
expectation value.

Time Complexity: The running time of Com-
puteProb is dominated by the steps which iterate
over all possible samples of the event space (steps
14-16 and steps 19-22). For each small feature

131

Classification of Biological Sequences

set Zf, if the algorithm requires maxiter number
of iterations to converge and there are M such
small feature sets then the time complexity of the
algorithm is O(maxiter * 2 | |Zf * | Zf | * M). If each
small feature set Zf contains equal number of
features then |Zf |* M gives the total number of
features in the uniform feature set Z, i.e., |Zf | =
| Zf | * M. So the time complexity of ComputeP-
rob can be given as

O(maxiter * 2 | |Zf * | Z|)

Since | Zf | << |Z|, ComputeProb improves the
time complexity of GIS which has the running
time complexity O(maxiter * 2|Z|* |Z|) (Thonan-
gi and Pudi, 2005). Under practical circumstanc-
es, the number of iterations maxiter is hard coded
and the algorithm is made to stop after those many
iterations. Also, to keep the number of possible
event space 2 | |Zf tractable, at the time of dividing
the feature set Z, the number of features in the
feature set Zf is kept less than or equal to 10.

Experimental Results and
Performance Study

For evaluating the performance of the discussed
classifiers two collections of protein families (1)
March-2005 Release 9.0 of GPCRDB (Horn et
al., 2003) (http://www.gpcr.org/7tm) and (2) Feb-
2008 Release 55.0 of SWISSPROT (Bairoch &
Boeckmann, 2003) using the list of SWISSPROT
protein IDs obtained from Pfam (Finn & Bateman,
2008) version 22.0 were used. It was found that
RBNBC algorithm drastically improves the ac-
curacy from 32% (for the direct Naive Bayes) to
98% on GPCRDB dataset. Both of the classifiers
gave around 90% average accuracy on both the
datasets and outperformed the Simple NB classi-
fiers with a margin of more than 30%. For details
of results and comparisons with other Bayesian
sequence classifiers refer to (Rani & Pudi, 2008a,
2008b, 2008c) and (Rani, 2008).

CONCLUSION

An important problem in biological data analysis
is to predict the family of a newly discovered se-
quence like a protein or DNA sequence, using the
collection of available sequences. This problem
comes under the classification paradigm. In this
chapter, we studied the problem of classification
of biological sequences which requires dealing
with two separate problems (1) feature extraction:
extracting differentiating information as features
from the available sequences and (2) classification:
using this feature information to classify a new
sequence, i.e., to build a classification model. We
focused on the classification part of the problem
which involves building a classification model of
the collection of biological sequences arranged in
different families. A domain independent method
for estimating feature probabilities in a sequence
dataset when subsequences are used as features
was also discussed. We discussed the existing
problems of Bayesian classifiers and proposed
some simple solutions. We also described two
Bayesian classifiers for the biological sequences
which do not use any domain knowledge, REB-
MEC classifier uses maximum entropy method
while RBNBC uses Naive Bayes method. The
classification methods proposed in this chapter
are generic in nature and can be applied to any
domain where the data is represented as collec-
tion of sequences.

REFERENCES

Abe, N., & Warmuth, M. K. (1992). On the compu-
tational complexity of approximating distributions
by probabilistic automata. Machine Learning, 9,
205–260. doi:10.1007/BF00992677

Agrawal, R., & Srikant, R. (1994). Fast algorithms
for mining association rules in large databases. In
VLDB’94: Proceedings of 20th International Con-
ference on Very Large Data Bases, (pp. 487–499).

132

Classification of Biological Sequences

Akhtar, R., & Cochrane, G. (2008). Priorities for
nucleotide trace, sequence and annotation data
capture at the Ensembl Trace Archive and the
EMBL Nucleotide sequence database. Nucleic
Acids Research, 36, 5–12.

Altschul, S. F., Gish, W., Miller, W., Myers, E.
W., & Lipman, D. J. (1990). Basic local align-
ment search tool. Journal of Molecular Biology,
215(3), 403–410.

Altschul, S. F., Madden, T. L., Schaffer, A. A.,
Zhang, J., Zhang, Z., Miller, W., & Lipman, D.
J. (1997). Gapped BLAST and PSI-BLAST: A
new generation of protein database search pro-
grams. Nucleic Acids Research, 25, 3389–3402.
doi:10.1093/nar/25.17.3389

Andorf, C., Silvescu, A., Dobbs, D., & Honavar, V.
(2004). Learning classifiers for assigning protein
sequences to gene ontology functional families.
In Proceedings of the Fifth International Confer-
ence on Knowledge Based Computer Systems,
(pp. 256–265).

Bairoch, A., & Boeckmann, B. (2003). The
SWISS-PROT protein knowledgebase and its
supplement TrEMBL in 2003. Nucleic Acids Re-
search, 31(1), 365–370. doi:10.1093/nar/gkg095

Bakus, J., & Kamel, M. S. (2002). Document
classification using phrases. In Proceedings of the
Joint IAPR International Workshop on Structural,
Syntactic, and Statistical Pattern Recognition,
(pp. 557–565). SpringerVerlag.

Bejerano, G., & Yona, G. (1999). Modeling pro-
tein families using probabilistic suffix trees. In
Proceedings of RECOMB, (pp. 15–24).

Ben-Hur, A., & Brutlag, D. (2003a). Remote
homology detection: A motif based approach.
Bioinformatics (Oxford, England), 19(1), 26–33.
doi:10.1093/bioinformatics/btg1002

Ben-Hur, A., & Brutlag, D. (2003b). Sequence
motifs: Highly predictive features of protein
function. In Proceedings of Workshop on Feature
Selection, Neural Information Processing Systems.

Benson, D. A., Karsch-Mizrachi, I., Lipman, D.
J., Ostell, J., & Wheeler, D. L. (2008). GenBank.
Nucleic Acids Research, 36, 25–30. doi:10.1093/
nar/gkm929

Berger, A. L., Pietra, S. D., & Pietra, V. J. D.
(1996). A maximum entropy approach to natural
language processing. Computational Linguistics,
22(1), 39–71.

Bru, C., & Servant, F. (2002). ProDom: Automated
clustering of homologous domains. Briefings
in Bioinformatics, 3(3), 246–251. doi:10.1093/
bib/3.3.246

Buehler, E. C., & Ungar, L. H. (2001). Maximum
entropy methods for biological sequence model-
ing. In Proceedings of BIOKDD, (pp. 60–64).

Darroch, J. N., & Ratcliff, D. (1972). General-
ized iterative scaling for log-linear models. An-
nals of Mathematical Statistics, 43, 1470–1480.
doi:10.1214/aoms/1177692379

Domingos, P., & Pazzani, M. J. (1996). Beyond
independence: Conditions for the optimality of
the simple Bayesian classifier. In Proceedings of
ICML, (pp. 105–112).

Domingos, P., & Pazzani, M. J. (1997). On the
optimality of the simple Bayesian classifier un-
der zero-one loss. Machine Learning, 29(2-3),
103–130. doi:10.1023/A:1007413511361

Durbin, R., Eddy, S., Krogh, A., & Mitchi-
son, G. (1998). Biological sequence analysis:
Probabilistic models of proteins and nucleic
acids. Cambridge University Press. doi:10.1017/
CBO9780511790492

133

Classification of Biological Sequences

Eddy, S. R. (1998). HMMER: Profile hidden
Markov modelling. Bioinformatics (Oxford,
England), 14(9), 755–763. doi:10.1093/bioin-
formatics/14.9.755

Eskin, E., Noble, W. S., & Singer, Y. (2003). Protein
family classification using sparse Markov trans-
ducers. Journal of Computational Biology, 10(2),
187–214. doi:10.1089/106652703321825964

Ferreira, P. G., & Azevedo, P. J. (2005a). Protein
sequence classification through relevant sequence
mining and Bayes classifiers. In Proceedings of
EPIA, (pp. 236–247).

Ferreira, P. G., & Azevedo, P. J. (2005b). Protein
sequence pattern mining with constraints. In
Proceedings of PKDD, (pp. 96–107).

Ferreira, P. G., & Azevedo, P. J. (2006). Query
driven sequence pattern mining. In Proceedings
of SBBD, (pp. 1–15).

Finn, R. D., & Bateman, A. (2008). The Pfam
protein families database. Nucleic Acids Research,
281–288.

Gouda, K., & Zaki, M. J. (2005). Genmax: An
efficient algorithm for mining maximal frequent
itemsets. Data Mining and Knowledge Discovery,
11(3), 223–242. doi:10.1007/s10618-005-0002-x

Guan, J. W., Bell, D. A., & Liu, D. (2004). Dis-
covering maximal frequent patterns in sequence
groups. In Proceedings of Rough Sets and Current
Trends in Computing, (pp. 602–609).

Han, J., & Kamber, M. (2001). Data mining:
Concepts and techniques. Morgan Kaufmann.

Horn, F., Bettler, E., Oliveira, L., Campagne, F.,
Cohen, F. E., & Vriend, G. (2003). GPCRDB
information system for G protein-coupled recep-
tors. Nucleic Acids Research, 31(1), 294–297.
doi:10.1093/nar/gkg103

Huang, J. Y., & Brutlag, D. L. (2001). The EMOTIF
database. Nucleic Acids Research, 29(1), 202–204.
doi:10.1093/nar/29.1.202

Kang, D., Silvescu, A., & Honavar, V. (2006).
RNBL-MN: A recursive naive Bayes learner
for sequence classification. In Proceedings of
PAKDD, (pp. 45–54).

Kang, D., Zhang, J., Silvescu, A., & Honavar,
V. (2005). Multinomial event model based ab-
straction for sequence and text classification. In
Proceedings of SARA, (pp. 134–148).

Kotsiantis, S. B., & Pintelas, P. E. (2004). In-
creasing the classification accuracy of simple
Bayesian classifier. In Proceedings of AIMSA,
(pp. 198–207).

Krogh, A., Brown, M., Mian, I. S., Sojlander, K.,
& Haussler, D. (1994). Hidden Markov models
in computational biology: Applications to protein
modeling. Journal of Molecular Biology, 235,
1501–1531. doi:10.1006/jmbi.1994.1104

Kuang, R., Ie, E., Wang, K., Wang, K., Siddiqi,
M., Freund, Y., & Leslie, C. (2004). Profile-based
string kernels for remote homology detection and
motif extraction. Journal of Bioinformatics and
Computational Systems, 3(3), 152–160.

Lesh, N., Zaki, M. J., & Ogihara, M. (1999).
Mining features for sequence classification. In
KDD’99: Proceedings of the Fifth ACM SIGKDD
International Conference on Knowledge Discov-
ery and Data Mining, (pp. 342–346).

Lesh, N., Zaki, M. J., & Ogihara, M. (2000).
Scalable feature mining for sequential data.
IEEE Intelligent Systems, 15(2), 48–56.
doi:10.1109/5254.850827

Leslie, C., Eskin, E., & Noble, W. (2002).
Mismatch string kernels for SVM protein clas-
sification. In Proceedings of Neural Information
Processing Systems, (pp. 1417–1424).

134

Classification of Biological Sequences

Li, J., Liu, H., & Wong, L. (2003). Mean-entropy
discretized features are effective for classifying
high-dimensional bio-medical data. In Proceed-
ings of BIOKDD, (pp. 17–24).

Manning, G., Whyte, D. B., Martinez, R.,
Hunter, T., & Sudarsanam, S. (2002). The pro-
tein kinase complement of the human genome.
Science, 298(5600), 1912–1934. doi:10.1126/
science.1075762

Marsolo, K., & Parthasarathy, S. (2006a). On the
use of structure and sequence-based features for
protein classification and retrieval. In Proceedings
of ICDM, (pp. 394-403).

Marsolo, K., & Parthasarathy, S. (2006b). Pro-
tein classification using summaries of profile-
based frequency matrices. In Proceedings of
BIOKDD06: 6th Workshop on Data Mining in
Bioinformatics (with SIGKDD Conference), (pp.
51–58).

McCallum, A., & Nigam, K. (1998). A comparison
of event models for naive Bayes text classification.
In Proceedings of AAAI-98 Workshop on Learning
for Text Categorization, (pp. 41–48).

Melvin, I., Ie, E., Weston, J., Noble, W. S., &
Leslie, C. (2007). Multi-class protein classifica-
tion using adaptive codes. Journal of Machine
Learning Research, 8, 1557–1581.

Nigam, K., Lafferty, J., & McCallum, A. (1999).
Using maximum entropy for text classification. In
Proceedings of IJCAI-99 Workshop on Machine
Learning for Information Filtering, (pp. 61–67).

Nikolskaya, A. N., & Wu, C. H. (2004). PIRSF:
Family classification system at the protein in-
formation resource. Nucleic Acids Research, 32,
112–114. doi:10.1093/nar/gkh097

Pavlov, D. (2003). Sequence modeling with mix-
tures of conditional maximum entropy distribu-
tions. In Proceedings of ICDM, (pp. 251–258).

Pearson, W. R., & Lipman, D. J. (1988). Improved
tools for biological sequence comparison. Pro-
ceedings of the National Academy of Sciences of
the United States of America, 85(8), 2444–2448.
doi:10.1073/pnas.85.8.2444

Rani, P. (2008). Novel Bayesian sequence clas-
sifiers applied on biological sequences. Masters
thesis. IIIT Hyderabad, India.

Rani, P., & Pudi, V. (2008a). Repeat based naïve
Bayes classifier for biological sequences. In ICDM
(pp. 989–994). RBNBC.

Rani, P., & Pudi, V. (2008b). RBNBC: Repeat based
naïve Bayes classifier for biological sequences.
(Technical report, IIIT/TR/2008/126). India: IIIT
Hyderabad.

Rani, P., & Pudi, V. (2008c). Repeat based maxi-
mum entropy classifier for biological sequences.
In COMAD (pp. 71–82). REBMEC.

Ratnaparkhi, A. (1997). A simple introduction to
maximum entropy models for natural language
processing. (Technical report, IRCS Report 97-
98), Institute for Research in Cognitive Science,
University of Pennsylvania.

Ratnaparkhi, A. (1998). Maximum entropy models
for natural language ambiguity resolution. PhD
thesis, University of Pennsylvania.

Roberto, J., & Bayardo, J. (1998). Efficiently
mining long patterns from databases. In SIGMOD
’98: Proceedings of the 1998 ACM SIGMOD In-
ternational Conference on Management of Data,
(pp. 85–93).

Sigrist, C. J. A., & Hulo, N. (2004). Recent im-
provements to the PROSITE database. Nucleic
Acids Research, 32, 134–137. doi:10.1093/nar/
gkh044

Sugawara, H., Ogasawara, O., Okubo, K., Go-
jobori, T., & Tateno, Y. (2008). DDBJ with new
system and face. Nucleic Acids Research, 36,
22–24. doi:10.1093/nar/gkm889

135

Classification of Biological Sequences

Tatti, N. (2007). Maximum entropy based sig-
nificance of itemsets. In Proceedings of ICDM,
(pp. 312–321).

Thonangi, R., & Pudi, V. (2005). ACME: An as-
sociative classifier based on maximum entropy
principle. In Proceedings of ALT, (pp. 122–134).

Wang, J. T. L., Zaki, M. J., Toivonen, H., & Shasha,
D. (Eds.). (2005). Data mining in bioinformatics.
Springer.

Westbrook, J. D., & Berman, H. M. (2000). The
protein data bank. Nucleic Acids Research, 28(1),
235–242. doi:10.1093/nar/28.1.235

Weston, J., Leslie, C., Ie, E., Zhou, D., Elisseeff,
A., & Noble, W. S. (2005). Semisupervised protein
classification using cluster kernels. Bioinfor-
matics (Oxford, England), 21(15), 3241–3247.
doi:10.1093/bioinformatics/bti497

Zaki, M. J., Parthasarathy, S., Ogihara, M., & Li,
W. (1997). New algorithms for fast discovery of
association rules. In Proceedings of KDD, (pp.
283–286).

Zhang, H. (2004). The optimality of naive Bayes.
In Proceedings of FLAIRS Conference.

Section 3
Applications

137

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

DOI: 10.4018/978-1-61350-056-9.ch008

INTRODUCTION

What is Sequence Data?

Sequence data is omnipresent. Customer shop-
ping sequences, medical treatment data, and data

related to natural disasters, science and engineering
processes data, stocks and markets data, telephone
calling patterns, weblog click streams, program
execution sequences, DNA sequences and gene
expression and structures data are some examples
of sequence data.

Manish Gupta
University of Illinois at Urbana-Champaign, USA

Jiawei Han
University of Illinois at Urbana-Champaign, USA

Approaches for Pattern
Discovery Using Sequential

Data Mining

ABSTRACT

In this chapter we first introduce sequence data. We then discuss different approaches for mining of pat-
terns from sequence data, studied in literature. Apriori based methods and the pattern growth methods
are the earliest and the most influential methods for sequential pattern mining. There is also a vertical
format based method which works on a dual representation of the sequence database. Work has also
been done for mining patterns with constraints, mining closed patterns, mining patterns from multi-
dimensional databases, mining closed repetitive gapped subsequences, and other forms of sequential
pattern mining. Some works also focus on mining incremental patterns and mining from stream data.
We present at least one method of each of these types and discuss their advantages and disadvantages.
We conclude with a summary of the work.

138

Approaches for Pattern Discovery Using Sequential Data Mining

Notations and Terminology

Let I = {i1, i2, i3 … in} be a set of items. An item-set
X is a subset of items i.e. X ⊆ I. A sequence is an
ordered list of item-sets (also called elements or
events). Items within an element are unordered
and we would list them alphabetically. An item can
occur at most once in an element of a sequence,
but can occur multiple times in different elements
of a sequence. The number of instances of items
in a sequence is called the length of the sequence.
A sequence with length l is called an l-sequence.
E.g., s=<a(ce)(bd)(bcde)f(dg)> is a sequence
which consists of 7 distinct items and 6 elements.
Length of the sequence is 12.

A group of sequences stored with their identi-
fiers is called a sequence database. We say that a
sequence s is a subsequence of t, if s is a “projec-
tion” of t, derived by deleting elements and/or
items from t. E.g. <a(c)(bd)f> is a subsequence of
s. Further, sequence s is a δ-distance subsequence
of t if there exist integers j1 < j2 < … < jn such
that s1 ⊆ tj1, s2 ⊆ tj2 … sn ⊆ tjn and jk-jk-1 ≤ δ for
each k = 2, 3... n. That is, occurrences of adjacent
elements of s within t are not separated by more
than δ elements.

What is Sequential Pattern Mining?

Given a pattern p, support of the sequence pat-
tern p is the number of sequences in the database
containing the pattern p. A pattern with support
greater than the support threshold min_sup is
called a frequent pattern or a frequent sequential
pattern. A sequential pattern of length l is called an
l-pattern. Sequential pattern mining is the task of
finding the complete set of frequent subsequences
given a set of sequences. A huge number of pos-
sible sequential patterns are hidden in databases.

A sequential pattern mining algorithm should:

A. find the complete set of patterns, when
possible, satisfying the minimum support
(frequency) threshold,

B. be highly efficient, scalable, involving only
a small number of database scans

C. be able to incorporate various kinds of user-
specific constraints.

APPROACHES FOR SEQUENTIAL
PATTERN MINING

Apriori-Based Method
(GSP: Generalized Sequential
Patterns) (Srikant & Agrawal, 1996)

The Apriori property of sequences states that,
if a sequence S is not frequent, then none of the
super-sequences of S can be frequent. E.g, <hb>
is infrequent implies that its super-sequences like
<hab> and <(ah)b> would be infrequent too.

The GSP algorithm finds all the length-1
candidates (using one database scan) and orders
them with respect to their support ignoring ones
for which support < min_sup. Then for each level
(i.e., sequences of length-k), the algorithm scans
database to collect support count for each candidate
sequence and generates candidate length-(k+1)
sequences from length-k frequent sequences
using Apriori. This is repeated until no frequent
sequence or no candidate can be found.

Consider the database as shown in Figure 1.
Our problem is to find all frequent sequences,
given min_sup=2.

Figure 1. Database

139

Approaches for Pattern Discovery Using Sequential Data Mining

As shown in Figure 2, using Apriori one needs
to generate just 51 length-2 candidates, while
without Apriori property, 8*8+8*7/2=92 candi-
dates would need to be generated. For this ex-
ample, Apriori would perform 5 database scans,
pruning away candidates with support less than
min_sup. Candidates that cannot pass support
threshold are pruned.

1st scan: 8 candidates. 6 length-1 sequence pat-
terns.

2nd scan: 51 candidates. 19 length-2 sequence pat-
terns. 10 candidates not in DB at all

3rd scan: 46 candidates. 19 length-3 sequence pat-
terns. 20 candidates not in DB at all

4th scan: 8 candidates. 6 length-4 sequence patterns.
5th scan: 1 candidate. 1 length-5 sequence patterns.

Some drawbacks of GSP are: a huge set of
candidate sequences are generated, multiple
scans of database are needed and it is inefficient
for mining long sequential patterns (as it needs
to generate a large number of small candidates).

Apart from finding simple frequent patterns,
GSP generalizes the problem by

A. Allowing a user to specify time constraints
(minimum and/or maximum time period
between adjacent elements in a pattern)

B. Relaxing the restriction that the items in an
element of a sequential pattern must come
from the same transaction, instead allowing

the items to be present in a set of transac-
tions whose transaction-times are within a
user-specified time window.

C. Given a user-defined taxonomy (is-a hierar-
chy) on items, allowing sequential patterns
to include items across all levels of the
taxonomy.

Vertical Format-Based Method
(SPADE: Sequential Pattern
Discovery using Equivalent
Class) (Zaki, 2001)

This is a vertical format sequential pattern mining
method. SPADE first maps the sequence database
to a vertical id-list database format which is a large
set of items <SID (Sequence ID), EID (Event
ID)>. Sequential pattern mining is performed by
growing the subsequences (patterns) one item at
a time by Apriori candidate generation.

As shown in Figure 3, all frequent sequences
can be enumerated via simple temporal joins (or in-
tersections) on id-lists. They use a lattice-theoretic
approach to decompose the original search space
(lattice) into smaller pieces (sub-lattices) which
can be processed independently in main-memory.

Their approach usually requires three database
scans, or only a single scan with some pre-pro-
cessed information, thus minimizing the I/O costs.
SPADE decouples the problem decomposition
from the pattern search. Pattern search could be
done in a BFS (breadth first search) or a DFS

Figure 2. Length-2 candidates

140

Approaches for Pattern Discovery Using Sequential Data Mining

(depth first search) manner. The vertical id-list
based approach is also insensitive to data-skew.
It also has linear scalability with respect to the
number of input-sequences, and a number of
other database parameters.

Pattern Growth Based Methods

These methods help in avoiding the drawbacks
of the Apriori based methods.

FreeSpan (Frequent pattern projected Se-
quential pattern mining)(Han, Pei, Asl, Chen,
Dayal, & Hsu, 2000) & PrefixSpan (Pei, et al.,
2001) uses frequent items to recursively project
sequence databases into a set of smaller projected
databases and grows subsequence fragments in
each projected database. This process partitions
both the data and the set of frequent patterns to
be tested, and confines each test being conducted
to the corresponding smaller projected database.

FreeSpan first scans the database, collects the
support for each item, and finds the set of fre-
quent items. Frequent items are listed in support
descending order (in the form of item:support)
E.g., flist=a:4, b:4, c:4, d:3, e:3, f:3.

According to flist, the complete set of sequen-
tial patterns in S can be divided into 6 disjoint
subsets: (1) the ones containing only item ‘a’,
(2) the ones containing item ‘b’, but containing
no items after ‘b’ in flist, (3) the ones containing
item ‘c’, but no items after ‘c’, in flist, and so on,
and finally, (6) ones containing item ‘f’.

The subsets of sequential patterns can be mined
by constructing projected databases. Infrequent
items, such as ‘g’ in this example, are removed
from construction of projected databases.

Note that {b}, {c}, {d}, {e}, {f}-projected
databases are constructed simultaneously during
one scan of the original sequence database. All
sequential patterns containing only item ‘a’ are also
found in this pass. This process is performed re-
cursively on projected databases. Since FreeSpan
projects a large sequence database recursively
into a set of small projected sequence databases
based on the currently mined frequent sets, the
subsequent mining is confined to each projected
database relevant to a smaller set of candidates.

The major cost of FreeSpan is to deal with
projected databases. If a pattern appears in each
sequence of a database, its projected database

Figure 3. Frequent sequences

141

Approaches for Pattern Discovery Using Sequential Data Mining

does not shrink (except for the removal of some
infrequent items). Moreover, since a length-k
subsequence may grow at any position, the search
for length-(k+1) candidate sequence will need to
check every possible combination, which is costly.

PrefixSpan (Prefix-projected Sequential
pattern mining) works similar to FreeSpan ex-
cept that the partitioning is done using prefixes of
sequences. E.g., for a sequence <(abc)(ac)d(cf)>,
<ab> is a prefix which has <(_c)(ac)d(cf)> as
the corresponding suffix (projection) as shown
in Figure 4.

Its general idea is to examine only the frequent
prefix subsequences and project only their cor-
responding postfix subsequences into projected
databases because any frequent subsequence can
always be found by growing a frequent prefix.
Thus the search space for our example will be
partitioned into the following six subsets accord-
ing to the six prefixes: (1) the ones having prefix
<a>... and (6) the ones having prefix <f>. In each
projected database, sequential patterns are grown
by exploring only local frequent patterns. The
subsets of sequential patterns can be mined by

constructing corresponding projected databases
and mining each recursively.

PrefixSpan first finds sequential patterns
having prefix <a>. Recursively, all sequential
having patterns prefix <a> can be partitioned
into 6 subsets: (1) those having prefix <aa> (2)
those having prefix <ab>… and finally, (6) those
having prefix <af>. These subsets can be mined
by constructing respective projected databases
(only if the prefix is frequent) and mining each
recursively. Similarly, we can find sequential pat-
terns having prefix , <c>, <d>, <e> and <f>
respectively, by constructing -, <c>-, <d>-,
<e>- and <f>-projected databases and mining
them respectively.

No candidate sequence needs to be generated by
PrefixSpan. Projected databases keep shrinking.
The major cost of PrefixSpan is the construction
of projected databases. To further improve mining
efficiency, two kinds of database projections are
explored: level-by-level projection and bi-level
projection. Moreover, a main-memory-based
pseudo-projection (using pointers rather than
physically copying postfix sequences) technique

Figure 4. PrefixSpan

142

Approaches for Pattern Discovery Using Sequential Data Mining

is developed for saving the cost of projection and
speeding up processing when the projected (sub)-
database and its associated pseudo-projection
processing structure can fit in main memory.
PrefixSpan mines complete set of patterns much
faster than both GSP and FreeSpan.

Constraint Based Methods

Conventionally, users can specify only min_sup
as a parameter to a sequential pattern mining
algorithm. There are two major difficulties in
sequential pattern mining: (1) effectiveness: the
mining may return a huge number of patterns,
many of which could be uninteresting to users,
and (2) efficiency: it often takes substantial com-
putational time and space for mining the complete
set of sequential patterns in a large sequence
database. To prevent these problems, users can
use constraint based sequential pattern mining for
focused mining of desired patterns. Constraints
could be anti-monotone, monotone, succinct,
convertible or inconvertible. Anti-monotonicity
means “if an item-set does not satisfy the rule
constraint, then none of its supersets satisfy”.
Monotonicity means “if an item-set satisfies the
rule constraint, then all of its supersets satisfy”.
Succinctness means “All and only those patterns
guaranteed to satisfy the rule can be enumerated”.
Convertible constraints are those which are not
any of anti-monotonic, monotonic, succinct but
can be made anti-monotonic or monotonic con-
straints by changing order of elements in the set.
Inconvertible constraints are the ones which are
not convertible.

In the context of constraint-based sequential
pattern mining, (Srikant & Agrawal, 1996) gen-
eralized the scope of the Apriori-based sequential
pattern mining to include time constraints, sliding
time windows, and user-defined taxonomy. Mining
frequent episodes in a sequence of events studied
by (Mannila, Toivonen, & Verkamo, 1997) can
also be viewed as a constrained mining problem,
since episodes are essentially constraints on events

in the form of acyclic graphs. The classical frame-
work on frequent and sequential pattern mining is
based on the anti-monotonic Apriori property of
frequent patterns. A breadth-first, level-by-level
search can be conducted to find the complete set
of patterns.

Performance of conventional constraint-based
sequential pattern mining algorithms dramatically
degrades in the case of mining long sequential
patterns in dense databases or when using low
minimum supports. In addition, the algorithms
may reduce the number of patterns but unimport-
ant patterns are still found in the result patterns.
(Yun, 2008) uses weight constraints to reduce the
number of unimportant patterns. During the min-
ing process, they consider not only supports but
also weights of patterns. Based on the framework,
they present a weighted sequential pattern mining
algorithm (WSpan).

(Chen, Cao, Li, & Qian, 2008) incorporate
user-defined tough aggregate constraints so that
the discovered knowledge better meets user needs.
They propose a novel algorithm called PTAC
(sequential frequent Patterns mining with Tough
Aggregate Constraints) to reduce the cost of us-
ing tough aggregate constraints by incorporating
two effective strategies. One avoids checking
data items one by one by utilizing the features
of “promising-ness” exhibited by some other
items and validity of the corresponding prefix.
The other avoids constructing an unnecessary
projected database by effectively pruning those
unpromising new patterns that may, otherwise,
serve as new prefixes.

(Masseglia, Poncelet, & Teisseire, 2003) pro-
pose an approach called GTC (Graph for Time
Constraints) for mining time constraint based pat-
terns (as defined in GSP algorithm) in very large
databases. It is based on the idea that handling time
constraints in the earlier stage of the data mining
process can be highly beneficial. One of the most
significant new features of their approach is that
handling of time constraints can be easily taken
into account in traditional level-wise approaches

143

Approaches for Pattern Discovery Using Sequential Data Mining

since it is carried out prior to and separately from
the counting step of a data sequence.

(Wang, Chirn, Marr, Shapiro, Shasha, &
Zhang, 1994) looked at the problem of discover-
ing approximate structural patterns from a genetic
sequences database. Besides the minimum support
threshold, their solution allows the users to specify:
(1) the desired form of patterns as sequences of
consecutive symbols separated by variable length
don’t cares; (2) a lower bound on the length of
the discovered patterns; and (3) an upper bound
on the edit distance allowed between a mined
pattern and the data sequence that contains it.
Their algorithm uses a random sample of the input
sequences to build a main memory data structure,
termed generalized suffix tree, that is used to ob-
tain an initial set of candidate pattern segments
and screen out candidates that are unlikely to be
frequent based on their occurrence counts in the
sample. The entire database is then scanned and
filtered to verify that the remaining candidates are
indeed frequent answers to the user query.

(Garofalakis, Rastogi, & Shim, 2002) propose
regular expressions as constraints for sequential
pattern mining and developed a family of SPIRIT
(Sequential pattern mining with regular expression
constraints) algorithms. Members in the family
achieve various degrees of constraint enforcement.
The algorithms use relaxed constraints with nice
properties (like anti-monotonicity) to filter out
some unpromising patterns/candidates in their
early stage. A SPIRIT algorithm first identifies
C’ as a constraint weaker than C. Then it obtains
F1=frequent items in D that satisfy C’. Further, it
iteratively generates candidates Ck using F and C’,
prunes candidates in Ck that contain subsequences
that satisfy C’ but are not in F, identifies Fk as the
frequent sequences in Ck by scanning the database
to count support and updates F to F∪Fk. Finally,
sequences in F that satisfy the original condition
C are output.

General SPIRIT constrained mining frame-
work can be specified as:

PROCEDURE SPIRIT(D,C)

Begin

 1. Let C’=a constraint weaker

(i.e., less restrictive) than C.

 2. F=F
1
=frequent items in D

that satisfy C’

 3. K=2

 4. Repeat {

 a. //candidate generation

 b. Using C’ and F generate

C
k
={potentially frequent k-sequences

that satify C’}

 c. //candidate pruning

 d. Let P={s∊C
k
: s has a sub-

sequence t that satisfies C’ and t∉F}
 e. C

k
=C

k
-P

 f. //candidate counting

 g. Scan D counting the sup-

port for candidate k-sequences in C
k

 h. F
k
-frequent sequences in

C
k

 i. F=F∪F
k

 j. K=K+1

 5. }until

TerminatingCondition(F < C’) holds

 6. //enforce the original

(stronger) constraint C

 7. Output sequences in F that

satisfy C

 8. End

Given a user specified RE constraint C, the first
SPIRIT algorithm SPIRIT(N) (“N” for “Naive”)
only prunes candidate sequences containing ele-
ments that do not appear in C. The second one,
SPIRIT(L) (“L” for “Legal”), requires every can-
didate sequence to be legal with respect to some
state of automata A(C). The third, SPIRIT(V) (“V”
for “Valid”), filters out candidate sequences that
are not valid with respect to any state of A(C). The
fourth, SPIRIT(R) (“R” for “Regular”), pushes C
all the way inside the mining process by counting
support only for valid candidate sequences.

144

Approaches for Pattern Discovery Using Sequential Data Mining

The above interesting studies handle a few
scattered classes of constraints. However, two
problems remain. First, many practical constraints
have not been covered. Also there is a need for
a systematic method to push various constraints
into the mining process. Unfortunately, some com-
monly encountered sequence-based constraints,
such as regular expression constraints, are neither
monotonic, nor anti-monotonic, nor succinct. (Pei,
Han, & Wang, 2007) mention seven categories
of constraints:

1. Item constraint: An item constraint speci-
fies subset of items that should or should
not be present in the patterns.

2. Length constraint: A length constraint
specifies the requirement on the length of
the patterns, where the length can be either
the number of occurrences of items or the
number of transactions.

3. Super-pattern constraint: Super-patterns
are ones that contain at least one of a par-
ticular set of patterns as sub-patterns.

4. Aggregate constraint: An aggregate con-
straint is the constraint on an aggregate of
items in a pattern, where the aggregate func-
tion can be sum, avg, max, min, standard
deviation, etc.

5. Regular expression constraint: A regular
expression constraint CRE is a constraint
specified as a regular expression over the set
of items using the established set of regular
expression operators, such as disjunction and
Kleene closure.

6. Duration constraint: A duration constraint
is defined only in sequence databases where
each transaction in every sequence has a
time-stamp. It requires that the sequential
patterns in the sequence database must
have the property such that the time-stamp
difference between the first and the last
transactions in a sequential pattern must be
longer or shorter than a given period.

7. Gap constraint: A gap constraint set is
defined only in sequence databases where
each transaction in every sequence has a
timestamp. It requires that the sequential pat-
terns in the sequence database must have the
property such that the timestamp difference
between every two adjacent transactions
must be longer or shorter than a given gap.

A constraint Cpa is called prefix anti-monotonic
if for each sequence ‘a’ satisfying the constraint,
so does every prefix of ‘a’. A constraint Cpm is
called prefix monotonic if for each sequence ‘a’
satisfying the constraint, so does every sequence
having ‘a’ as a prefix. A constraint is called prefix-
monotone if it is prefix anti-monotonic or prefix
monotonic.

The authors describe a pattern-growth (PG)
method for Constraint-based sequential pattern
mining which is based on a prefix-monotone
property. They show that all the monotonic and
anti-monotonic constraints, as well as regular
expression constraints, are prefix-monotone,
and can be pushed deep into a PG-based mining.
Moreover, some tough aggregate constraints, such
as those involving average or general sum, can also
be pushed deep into a slightly revised PG mining
process. In the recursive FP growth framework,
the authors first compute all the length-1 frequent
prefixes. Then they compute the corresponding
projected databases. Each of the frequent prefixes
of length (l+1) are further processed recursively
only if they satisfy the constraint C.

Closed Sequential Pattern Mining

CloSpan (Yan, Han, & Afshar, 2003) is an algo-
rithm for the mining of closed repetitive gapped
subsequences (Figure 5). A closed sequential
pattern s is a sequence such that there exists no
super-pattern s’, s’ ⊃ s, and s’ and s have the
same support. E.g., given <abc>: 20, <abcd>:20,
<abcde>: 15, we know that <abcd> is closed. If
the database contains 1 long sequence with 100

145

Approaches for Pattern Discovery Using Sequential Data Mining

elements and min support is 1, this sequence will
generate 2^100 frequent subsequences, though
there is only one of these which is closed. Min-
ing of closed sequences reduces the number of
(redundant) patterns but attains the same expres-
sive power. Note that if s’ ⊃ s, s is closed iff two
projected DBs have the same size. CloSpan uses
backward sub-pattern and backward super-pattern
pruning to prune redundant search space thereby
preventing unnecessary computations.

CloSpan is basically similar to PrefixSpan
with sub-pattern and super-pattern checks which
involve checking and matching of the size of the
databases. The authors show that CloSpan per-
forms better than PrefixSpan in terms of execution
time.

Sequential Pattern Mining in
Data Streams: SS-BE and SS-MB
(Mendes, Ding, & Han, 2008)

Data stream is an unbounded sequence in which
new elements are generated continuously. Memory
usage is limited and an algorithm is allowed to
perform only a single scan over the database. Two
effective methods for stream-based sequential
pattern mining are SS-BE (Stream Sequence
miner using Bounded Error) and SS-MB (Stream
Sequence miner using Memory Bounds).

SS-BE Method can be outlined as follows:

A. Break the stream into fixed-sized batches.
B. For each arriving batch, apply PrefixSpan.

Insert each frequent sequence found into a
tree.

C. Periodically prune the tree (the number of
batches seen is a multiple of the pruning
period).

D. Output all sequences corresponding to nodes
having count >= (σ-∊)N.

This method outputs no false negatives and
true support of false positives is at least (σ-∊).

E.g., suppose σ = 0.75, ∊ = 0.5 and data stream
D: <a,b,c>, <a,c>, <a,b>, <b,c>, <a,b,c,d>,
<c,a,b>, <d,a,b>, <a,e,b>. Let the first batch B1
contain the first four sequences and the second
batch B2 contain the next four. The algorithm first
applies PrefixSpan to B1 with min_sup as 0.5.
The frequent sequences found are: <a>:3, :3,
<c>:3, <a,b>:2, <a,c>:2, and <b,c>:2. A frequent
pattern tree is created. Let the pruning period be
two batches. So algorithm proceeds to batch B2.
The frequent sequences found are: <a>:4, :4,
<c>:2, <d>:2, and <a,b>:4. The frequent pattern
tree would look as shown in the figure below.
Now SS-BE would prune the tree by identifying
and removing all nodes guaranteed to have true
support below ∊ = 0.5 during the time they were
kept in the tree. Thus <d>:2, <ac>:2 and <bc>:2
are pruned away.

Figure 5. CloSpan

146

Approaches for Pattern Discovery Using Sequential Data Mining

Finally SS-BE outputs all sequences having
count at least (σ-∊)N = (0.75 – 0.5)*8 = 2.

Thus output is <a>: 7, : 7, <c>: 5, <a, b>:6.
Note that there are no false negatives and only
one false positive: <c>.

SS-MB method is similar to SS-BE except
that in step 3, rather than pruning the tree after a
time period, the tree size is limited to ‘m’ nodes.
Due to this, SS-MB can only guarantee no false
negatives after execution. E.g. in the above ex-
ample, assume that ‘m’ is 7. Then after batch B2
is processed, the tree contains 8 nodes and hence
the node with minimum support <b,c> is removed
(Figure 3). Because of the specific ‘m’, SS-MB
can control amount of memory used explicitly.

The authors show that the two methods are
effective solutions to the stream sequential pattern
mining problem: running time scales linearly,
maximum memory usage is limited and a very
small number of false positives are generated.

Mining Incremental Patterns:
IncSpan (Incremental Mining
of Sequential Patterns)
(Cheng, Yan, & Han, 2004)

Many real life sequence databases, such as cus-
tomer shopping sequences, medical treatment

sequences, etc., grow incrementally. It is undesir-
able to mine sequential patterns from scratch each
time when a small set of sequences grow, or when
some new sequences are added into the database.
Incremental algorithm should be developed for
sequential pattern mining so that mining can be
adapted to frequent and incremental database
updates, including both insertions and deletions.
However, it is nontrivial to mine sequential pat-
terns incrementally, especially when the exist-
ing sequences grow incrementally because such
growth may lead to the generation of many new
patterns due to the interactions of the growing
subsequences with the original ones. There are
two kinds of database updates in applications:
(1) inserting new sequences (INSERT) and (2)
appending new item-sets/items to the existing
sequences (APPEND). Let DB be the old database,
Δdb be the change and DB’ be the new database.
Thus, DB’ = DB ∪Δdb.

It is easier to handle the first case: INSERT. An
important property of INSERT is that a frequent
sequence in DB’ = DB ∪Δdb must be frequent
in either DB or Δdb (or both). If a sequence is
infrequent in both DB and Δdb, it cannot be fre-
quent in DB’. Thus, only those patterns that are
frequent in Δdb but infrequent in DB need to be
searched in DB to find their occurrence count.

Figure 6. SS-BE pruning tree

147

Approaches for Pattern Discovery Using Sequential Data Mining

(Zhang, Kao, Cheung, & Yip, 2002) propose an-
other algorithm of incremental mining to handle
the case of INSERT in sequential pattern mining.

For the second case, consider that new items
only get appended. Suppose |DB|=1000 and
|Δdb|=20, min_sup=10%. Suppose a sequence
‘s’ is infrequent in DB with 99 occurrences (sup
= 9:9%). In addition, it is also infrequent in Δdb
with only 1 occurrence (sup = 5%). Although ‘s’
is infrequent in both DB and Δdb, it becomes
frequent in DB’ with 100 occurrences.

This problem complicates the incremental
mining since one cannot ignore the infrequent
sequences in Δdb, but there are an exponential
number of infrequent sequences even in a small
Δdb and checking them against the set of infrequent
sequences in DB will be very costly. (Parthasara-
thy, Zaki, Ogihara, & Dwarkadas, 1999) proposed
an incremental mining algorithm, called ISM,
based on SPADE by exploiting a concept called
negative border. However, maintaining negative
border is memory consuming and not well adapted
for large databases. (Masseglia, Poncelet, & Teis-
seire, Efficient mining of sequential patterns with
time constraints: Reducing the combinations,
2009) developed another incremental mining
algorithm using candidate generate-and-test
approach, which is costly, especially when the
sequences are long because it requires multiple
scans of the whole database.

For the third case, where the database is
updated with both INSERT and APPEND, the
problem becomes even more complicated. There
are two approaches: (1) handling them separately
by first performing APPEND then INSERT; (2)
treat the inserted sequences as appending to empty
sequences in DB: a special case of APPEND. Then
this problem is reduced to APPEND.

Given a minimum support threshold, min_sup,
a sequence is frequent if its support >=min_sup;
given a factor μ<=1, a sequence is semi-frequent if
its support<min_sup but >μ*min_sup; a sequence
is infrequent if its support<μ*min_sup. Let FS be

the set of all frequent sequential patterns and SFS
be the set of semi-frequent sequential patterns.

Given a sequence database DB, min_sup, the
set of frequent subsequences FS in DB, and an ap-
pended sequence database DB’ of D, the problem
of incremental sequential pattern mining is to mine
the set of frequent subsequences FS’ in DB’ based
on FS instead of mining on DB’ from scratch. A
simple algorithm, SimpleSpan, exploits the FS
in the original database and incrementally mines
new patterns. SimpleSpan updates the support of
every frequent sequence in FS, adds it to FS’ and
uses it as a prefix to project database. In addition,
SimpleSpan scans the new database DB’ to dis-
cover new frequent single items and uses them
as prefix to project database using PrefixSpan.
One problem of SimpleSpan is that it makes a
large number of database projections, which is
costly. The drawback of SimpleSpan is that it has
no information about infrequent sequences in the
original database DB. But such information can
enable us to reduce search space and find new
frequent sequences efficiently.

IncSpan uses the technique of buffering semi-
frequent patterns by maintaining a set SFS in the
original database DB. Since the sequences in
SFS are “almost frequent”, most of the frequent
subsequences in the appended database will either
come from SFS or they are already frequent in
the original database. With a minor update to the
original database, it is expected that only a small
fraction of subsequences which were infrequent
previously would become frequent. This is based
on the assumption that updates to the original
database have a uniform probability distribution
on items. It is expected that most of the frequent
subsequences introduced by the updated part of
the database would come from the SFS. The SFS
forms a kind of boundary (or “buffer zone”) be-
tween the frequent subsequences and infrequent
subsequences.

IncSpan algorithm can be outlined as follows.

148

Approaches for Pattern Discovery Using Sequential Data Mining

A. Scan Δdb for single items. If a new item
or an infrequent item becomes frequent or
semi-frequent, add it to FS’ or SFS’. For
every item in FS’, use it as prefix to construct
projected database and discover frequent
sequences recursively.

B. Check every pattern in FS and SFS in Δdb
to adjust the support of those patterns.
1. If a pattern becomes frequent, add it

to FS’. Then check whether it meets
the projection condition. If so, use it
as prefix to project database. Discover
frequent or semi-frequent patterns in
the projected database. To improve the
performance, shared projection can be
used in this step.

2. If a pattern is semi-frequent, add it to
SFS’.

The authors also mention two optimization
techniques, reverse pattern matching and shared
projection to improve the performance.

Multidimensional Sequential Pattern
Mining: UNISEQ (Pinto, Han, Pei,
Wang, Chen, & Dayal, 2001)

Consider pattern P1= {try a 100 hour free in-
ternet access package⇒subscribe to 15 hours/
month package⇒upgrade to 30 hours per month
package⇒upgrade to unlimited package}. This
pattern may hold for all customers below age of
35 (75% customers). But for other customers,
pattern P2= {try a 100 hour free internet access
package⇒ upgrade to 30 hours per month pack-
age} may hold. Clearly, if sequential pattern
mining can be associated with customer category
or other multi-dimensional information, it will
be more effective since the classified patterns
are often more useful. (Pinto, Han, Pei, Wang,
Chen, & Dayal, 2001) propose two categories
of methods: a. integration of efficient sequential
pattern mining and multi-dimensional analysis
methods (Seq-Dim and Dim-Seq). b. embedding

multi-dimensional information into sequences
and mine the whole set using a uniform sequential
pattern mining method (Uni-Seq).

A multi-dimensional sequence database has the
schema (RID, A1, A2 … Am, S) where RID is the
record identifier, A1 … Am are the attributes and
S is the sequence. A multi-dimensional pattern ‘p’
would match a tuple ‘t’ in the database, if the attri-
bute values match (or the attribute value is *) and
‘s’ is a subsequence of the sequence stored in ‘t’.
e.g. t=(10, business, Boston, middle, <(bd)cba>)

UniSeq (Uniform Sequential): Multi-
dimensional information in a tuple ‘t’ in multi-
dimensional DB can be embedded in the sequence
by introducing a special element. E.g. ‘t’ can be
rewritten as (10, <(business Boston middle)(bd)
cba>). Let the database containing such modified
tuples be called MD-extension DB and denoted as
SDB-MD. Now the problem is: Given, SDB-MD
and min_sup, output the complete set of multi-
dimensional sequential patterns. UniSeq mines
sequential patterns in SDB-MD using PrefixSpan.
For each sequential pattern ‘p’ in SDB-MD, it
outputs the corresponding multi-dimensional se-
quential pattern in SDB. As an alternative, instead
of embedding the multi-dimensional information
into the first element of each sequence, it can be
attached as the last element. Both the alterna-
tives have almost identical performance results.
Thus, UniSeq reduces the problem to mining
one extended sequence database and is therefore
easy to implement. But, all dimension values
are treated as sequential items. Hence, it cannot
take advantage of efficient mining algorithms for
multi-dimensional non-sequential computational
methods. Hence, cost of computing becomes high
when data has large number of dimensions.

A SDB-MD can be partitioned into two parts:
dimensional information and sequence. So, we
can first mine patterns about dimensional in-
formation (called multi-dimensional patterns or
MD-patterns) and then find sequential patterns
from projected sub-database (tuples containing
the MD-pattern) or vice versa. Dim-Seq first finds

149

Approaches for Pattern Discovery Using Sequential Data Mining

MD-patterns and then for each MD-pattern, it
forms MD-projected database and mines sequen-
tial patterns in projected databases. Seq-Dim first
mines the sequential patterns. For each sequential
pattern, it forms projected MD-database and then
finds MD-patterns within projected databases.
Seq-Dim is more efficient and scalable in general
compared to Dim-Seq.

Mining Closed Repetitive
Gapped Subsequences (Ding,
Lo, Han, & Khoo, 2009)

Patterns often repeat multiple times in a sequence
e.g., in program execution traces, sequences of
words (text data), credit card usage histories.
Given two sequences like S1 = AABCDABB, S2 =
ABCD, is pattern AB more frequent then CD? To
answer this question, one needs to define a notion
of repetitive support, sup(P) as max{|INS|: INS is
a set of non-overlapping instances of P}. The aim
is to maximize the size of the non-overlapping
instance set. Note that if P’ is a super-pattern of
P, then sup(P’) ≤ sup(P).

To solve this problem, the authors propose a
greedy instance-growth algorithm. The intuition
is to extend each instance to the nearest possible
event. Consider a database of two sequences as
shown in Figure 7.

The algorithm uses a procedure INSgrow(P,
INS, e) which does the following. Given a leftmost
support set INS of P, with |INS| = sup(P), and
event e, it extends each instance in INS to the

nearest possible event e and returns a support set
INS+ of pattern P○e (P concatenated with e). Thus,
using this method, one can find all the frequent
patterns by doing DFS in the pattern space.

Further, they define pattern extension as set
of patterns with one more event. E.g., if P =e1e2
…em, PExtension(P, e) = {ee1e2…em, e1ee2…em,
…, e1e2…eme}. Pattern P is not closed iff sup(P)
= sup(Q) for some Q ∈ Extension(P, e). Also
note that it is possible that AB is not closed but
ABAC is closed. To prune the search space, they
propose the following instance-border checking
principle. Pattern P is prunable if there exists Q
∈ Extension(P, e) for some e such that sup(P) =
sup(Q) (P is not closed) and for each (i, <k1, k2,
…, k|P|>) ∈ INSP and (i, <k1’, k2’, …, k|Q|’>) ∈
INSQ: k|Q|’ ≤ k|P| where INSP and INSQ are (leftmost)
support sets of P and Q respectively.

OTHER SEQUENTIAL PATTERN
MINING METHODS

(Kum, Chang, & Wang, Sequential Pattern Min-
ing in Multi-Databases via Multiple Alignment,
2006) proposed a new sequential pattern mining
method based on multiple alignment (rather than
the usual support-based approach) for mining
multiple databases. Multiple databases are mined
and summarized at the local level, and only the
summarized patterns are used in the global min-
ing process. For summarization, they propose
the theme of approximate sequential pattern

Figure 7. Database of two sequences

150

Approaches for Pattern Discovery Using Sequential Data Mining

mining roughly defined as identifying patterns
approximately shared by many sequences. They
propose an algorithm, ApproxMAP, to mine ap-
proximate sequential patterns, called consensus
patterns, from large sequence databases in two
steps. First, sequences are clustered by similarity.
Then, consensus patterns are mined directly from
each cluster through multiple alignment.

Further, (Kum, Chang, & Wang, Benchmark-
ing the effectiveness of sequential pattern mining
methods, 2007) benchmarked the effectiveness of
sequential pattern mining methods by comparing
a support-based sequential pattern model with an
approximate pattern model based on sequence
alignment using a metric that evaluates how well
a mining method finds known common patterns
in synthetic data. Their comparison study sug-
gests that the alignment model will give a good
summary of the sequential data in the form of a
set of common patterns in the data. In contrast,
the support model generates massive amounts of
frequent patterns with much redundancy. This
suggests that the results of the support model
require more post processing before it can be of
actual use in real applications.

(Laur, Symphor, Nock, & Poncelet, 2007)
introduced statistical supports to maximize min-
ing precision and improve the computational
efficiency of the incremental mining process. As
only a part of the stream can be stored, mining
data streams for sequential patterns and updating
previously found frequent patterns need to cope
with uncertainty. They introduce a new statisti-
cal approach which biases the initial support for
sequential patterns. This approach holds the advan-
tage to maximize either the precision or the recall,
as chosen by the user, and limit the degradation
of the other criterion. Moreover, these statistical
supports help building statistical borders which
are the relevant sets of frequent patterns to use
into an incremental mining process.

(Lin, Chen, Hao, Chueh, & Chang, 2008)
introduced the notion of positive and negative
sequential patterns, where positive patterns in-

clude the presence of an item-set of a pattern, and
negative patterns are the ones with the absence
of an item-set.

Items sold in a store can usually be organized
into a concept hierarchy according to some tax-
onomy. Based on the hierarchy, sequential patterns
can be found not only at the leaf nodes (individual
items) of the hierarchy, but also at higher levels
of the hierarchy; this is called multiple-level
sequential pattern mining. In previous research,
taxonomies had crisp relationships between the
categories in one level and the categories in another
level. In real life, however, crisp taxonomies can-
not handle the uncertainties and fuzziness inherent
in the relationships among items and categories.
For example, the book Alice’s Adventures in
Wonderland can be classified into the Children’s
Literature category, but can also be related to the
Action & Adventure category. To deal with the
fuzzy nature of taxonomy, (Chen & Huang, A
novel knowledge discovering model for mining
fuzzy multi-level sequential patterns in sequence
databases, 2008) apply fuzzy set techniques to
concept taxonomies so that the relationships from
one level to another can be represented by a value
between 0 and 1. They propose a fuzzy multiple-
level mining algorithm (FMSM) to extract fuzzy
multiple-level sequential patterns from databases.
In addition, another algorithm, named the CROSS-
FMSM algorithm, is developed to discover fuzzy
cross-level sequential patterns.

(Kuo, Chao, & Liu, 2009) use K-means algo-
rithm to achieve better computational efficiency
for fuzzy sequential pattern mining.

Many methods only focus on the concept of fre-
quency because of the assumption that sequences’
behaviors do not change over time. The environ-
ment from which the data is generated is often
dynamic; the sequences’ behaviors may change
over time. To adapt the discovered patterns to these
changes, (Chen & Hu, Constraint-based sequential
pattern mining: the consideration of recency and
compactness, 2006) introduce two new concepts,
recency and compactness and incorporate them

151

Approaches for Pattern Discovery Using Sequential Data Mining

into traditional sequential pattern mining. The
concept of recency causes patterns to quickly
adapt to the latest behaviors in sequence databases,
while the concept of compactness ensures reason-
able time spans for the discovered patterns. An
efficient method is presented to find CFR-patterns
(compactness, frequency, and recency).

CONCLUSION

We discussed basics of sequential pattern mining.
We presented an exhaustive survey of different
sequential pattern mining methods proposed in
the literature. Sequential pattern mining methods
have been used to analyze this data and identify
patterns. Such patterns have been used to imple-
ment efficient systems that can recommend based
on previously observed patterns, help in making
predictions, improve usability of systems, detect
events and in general help in making strategic
product decisions. We envision that the power of
sequential mining methods has not yet been fully
exploited. We hope to see many more strong appli-
cations of these methods in a variety of domains in
the years to come. Apart from this, new sequential
pattern mining methods may also be developed
to handle special scenarios of colossal patterns,
approximate sequential patterns and other kinds
of sequential patterns specific to the applications.

REFERENCES

Chen, E., Cao, H., Li, Q., & Qian, T. (2008). Ef-
ficient strategies for tough aggregate constraint-
based sequential pattern mining. Inf. Sci., 178(6),
1498–1518. doi:10.1016/j.ins.2007.10.014

Chen, Y.-L., & Hu, Y.-H. (2006). Constraint-based
sequential pattern mining: The consideration
of recency and compactness. Decision Sup-
port Systems, 42(2), 1203–1215. doi:10.1016/j.
dss.2005.10.006

Chen, Y.-L., & Huang, T. C.-K. (2008). A novel
knowledge discovering model for mining fuzzy
multi-level sequential patterns in sequence data-
bases. Data & Knowledge Engineering, 66(3),
349–367. doi:10.1016/j.datak.2008.04.005

Cheng, H., Yan, X., & Han, J. (2004). IncSpan:
Incremental mining of sequential patterns in large
database. KDD ‘04: Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, (pp. 527-532).

Ding, B., Lo, D., Han, J., & Khoo, S.-C. (2009).
Efficient mining of closed repetitive gapped sub-
sequences from a sequence database. ICDE 09.

Exarchos, T. P., Tsipouras, M. G., Papaloukas, C.,
& Fotiadis, D. I. (2008). A two-stage methodology
for sequence classification based on sequential
pattern mining and optimization. Data & Knowl-
edge Engineering, 66(3), 467–487. doi:10.1016/j.
datak.2008.05.007

Garofalakis, M., Rastogi, R., & Shim, K. (2002).
Mining sequential patterns with regular expression
constraints. IEEE Transactions on Knowledge and
Data Engineering, 14(3), 530–552. doi:10.1109/
TKDE.2002.1000341

Han, J., Pei, J., Asl, B. M., Chen, Q., Dayal, U.,
& Hsu, M. C. (2000). FreeSpan: Frequent pattern-
projected sequential pattern mining. KDD ‘00:
Proceedings of the Sixth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and
Data Mining (pp. 355-359). Boston, MA: ACM.

Kum, H.-C., Chang, J. H., & Wang, W. (2006).
Sequential pattern mining in multi-databases via
multiple alignment. Data Mining and Knowl-
edge Discovery, 12(2-3), 151–180. doi:10.1007/
s10618-005-0017-3

Kum, H.-C., Chang, J. H., & Wang, W. (2007).
Benchmarking the effectiveness of sequential
pattern mining methods. Data & Knowledge
Engineering, 60(1), 30–50. doi:10.1016/j.
datak.2006.01.004

152

Approaches for Pattern Discovery Using Sequential Data Mining

Kuo, R. J., Chao, C. M., & Liu, C. Y. (2009). In-
tegration of K-means algorithm and AprioriSome
algorithm for fuzzy sequential pattern mining. Ap-
plied Soft Computing, 9(1), 85–93. doi:10.1016/j.
asoc.2008.03.010

Laur, P.-A., Symphor, J.-E., Nock, R., & Pon-
celet, P. (2007). Statistical supports for mining
sequential patterns and improving the incremental
update process on data streams. Intelligent Data
Analysis, 11(1), 29–47.

Lin, N. P., Chen, H.-J., Hao, W.-H., Chueh, H.-E.,
& Chang, C.-I. (2008). Mining strong positive and
negative sequential patterns. W. Trans. on Comp.,
7(3), 119–124.

Mannila, H., Toivonen, H., & Verkamo, I. (1997).
Discovery of frequent episodes in event sequences.
Data Mining and Knowledge Discovery, 1(3),
259–289. doi:10.1023/A:1009748302351

Masseglia, F., Poncelet, P., & Teisseire, M. (2003).
Incremental mining of sequential patterns in large
databases. Data & Knowledge Engineering, 46(1),
97–121. doi:10.1016/S0169-023X(02)00209-4

Masseglia, F., Poncelet, P., & Teisseire, M. (2009).
Efficient mining of sequential patterns with time
constraints: Reducing the combinations. Expert
Systems with Applications, 36(3), 2677–2690.
doi:10.1016/j.eswa.2008.01.021

Mendes, L. F., Ding, B., & Han, J. (2008). Stream
sequential pattern mining with precise error
bounds. Proc. 2008 Int. Conf. on Data Mining
(ICDM’08), Pisa, Italy, Dec. 2008.

Parthasarathy, S., Zaki, M., Ogihara, M., &
Dwarkadas, S. (1999). Incremental and interactive
sequence mining. In Proc. of the 8th Int. Conf.
on Information and Knowledge Management
(CIKM’99).

Pei, J., Han, J., Asl, M. B., Pinto, H., Chen, Q.,
Dayal, U., et al. (2001). PrefixSpan mining se-
quential patterns efficiently by prefix projected
pattern growth. Proc.17th Int’l Conf. on Data
Eng., (pp. 215-226).

Pei, J., Han, J., & Wang, W. (2007). Constraint-
based sequential pattern mining: The pattern-
growth methods. Journal of Intelligent Infor-
mation Systems, 28(2), 133–160. doi:10.1007/
s10844-006-0006-z

Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., &
Dayal, U. (2001). Multi-dimensional sequential
pattern mining. CIKM ‘01: Proceedings of the
Tenth International Conference on Information
and Knowledge Management (pp. 81-88). New
York, NY: ACM.

Seno, M., & Karypis, G. (2002). SLPMiner: An
algorithm for finding frequent sequential patterns
using length-decreasing support constraint. In
Proceedings of the 2nd IEEE International Con-
ference on Data Mining (ICDM), (pp. 418-425).

Srikant, R., & Agrawal, R. (1996). Advances in
database technology EDBT ‘96., (pp. 3-17).

Wang, J. L., Chirn, G., Marr, T., Shapiro, B.,
Shasha, D., & Zhang, K. (1994). Combinatorial
pattern discovery for scientific data: Some pre-
liminary results. Proc. ACM SIGMOD Int’l Conf.
Management of Data, (pp. 115-125).

Xing, Z., Pei, J., & Keogh, E. (2010). A
brief survey on sequence classification. SIG-
KDD Explorations Newsletter, 12(1), 40–48.
doi:10.1145/1882471.1882478

Yan, X., Han, J., & Afshar, R. (2003). CloSpan:
Mining closed sequential patterns in large datasets.
Proceedings of SDM, (pp. 166-177).

Yun, U. (2008). A new framework for detecting
weighted sequential patterns in large sequence
databases. Knowledge-Based Systems, 21(2),
110–122. doi:10.1016/j.knosys.2007.04.002

153

Approaches for Pattern Discovery Using Sequential Data Mining

Zaki, M. J. (2000). Sequence mining in categorical
domains: Incorporating constraints. CIKM ‘00:
Proceedings of the Ninth International Conference
on Information and Knowledge Management (pp.
422-429). New York, NY: ACM.

Zaki, M. J. (2001). SPADE: An efficient algorithm
for mining frequent sequences. Machine Learning,
42(1-2), 31–60. doi:10.1023/A:1007652502315

Zhang, M., Kao, B., Cheung, D., & Yip, C. (2002).
Efficient algorithms for incremental updates of
frequent sequences., In Proc. of the 6th Pacific-
Asia Conference on Knowledge Discovery and
Data Mining (PAKDD’02).

ADDITIONAL READING

Adamo, J.-M. (2001). Data Mining for Associa-
tion Rules and Sequential Patterns: Sequential
and Parallel Algorithms. Secaucus, NJ, USA:
Springer-Verlag New York, Inc.doi:10.1007/978-
1-4613-0085-4

Alves, R., & Rodriguez-Baena, D. S., Aguilar-
Ruiz, & S., J. (2009). Gene association analysis:
a survey of frequent pattern mining from gene
expression data. Briefings in Bioinformatics,
210–224.

Fradkin, D., & Moerchen, F. (2010). Margin-
closed frequent sequential pattern mining. UP
‘10: Proceedings of the ACM SIGKDD Workshop
on Useful Patterns (pp. 45-54). New York, NY,
USA: ACM.

Garofalakis, M., Rastogi, R., & Shim, K. (2002).
Mining Sequential Patterns with Regular Ex-
pression Constraints. IEEE Transactions on
Knowledge and Data Engineering, 530–552.
doi:10.1109/TKDE.2002.1000341

Han, J., & Kamber, M. (2006). Data Mining:
Concepts and Techniques (2nd ed.). Morgan
Kaufmann Publishers.

Joshi, M. V., Karypis, G., & Kumar, V. (2000).
Parallel Algorithms for Mining Sequential As-
sociations: Issues and Challenges (2000).

Li, T.-R., Xu, Y., Ruan, D., & Pan, W.-m. Sequen-
tial pattern mining. In R. Da, G. Chen, E. E. Kerre,
& G. Wets, Intelligent data mining: techniques
and applications (pp. 103-122). Springer.

Lin, M.-Y., Hsueh, S.-C., & Chan, C.-C. (2009).
Incremental Discovery of Sequential Patterns Us-
ing a Backward Mining Approach. Proceedings
of the 2009 International Conference on Com-
putational Science and Engineering (pp. 64-70).
Washington, DC, USA: IEEE Computer Society.

Lu, J., Adjei, O., Chen, W., Hussain, F., & Enach-
escu, C. (n.d.). Sequential Patterns Mining.

Masseglia, F., Cathala, F., & Poncelet, P. The PSP
approach for mining sequential patterns. Springer.

Shintani, T., & Kitsuregawa, M. (1998). Mining
Algorithms for Sequential Patterns in Parallel:
Hash Based Approach. Proceedings of the Second
Pacific–Asia Conference on Knowledge Discovery
and Data mining, (pp. 283-294).

Srinivasa, R. N. (2005). Data mining in e-com-
merce: A survey. Sadhana, 275–289. doi:10.1007/
BF02706248

Teisseire, M., Poncelet, P., Scientifique, P., Besse,
G., Masseglia, F., & Masseglia, F. (2005). Se-
quential pattern mining: A survey on issues and
approaches. Encyclopedia of Data Warehousing
and Mining, nformation Science Publishing (pp.
3–29). Oxford University Press.

Tzvetkov, P., Yan, X., & Han, J. (2005). TSP: Min-
ing top-k closed sequential patterns. Knowledge
and Information Systems, 438–457. doi:10.1007/
s10115-004-0175-4

154

Approaches for Pattern Discovery Using Sequential Data Mining

Wang, W., & Yang, J. (2005). Mining Sequential
Patterns from Large Data Sets (Advances in Da-
tabase Systems). Secaucus, NJ, USA: Springer-
Verlag New York, Inc.

Yang, L. (2003). Visualizing frequent itemsets, as-
sociation rules, and sequential patterns in parallel
coordinates. ICCSA’03: Proceedings of the 2003
international conference on Computational sci-
ence and its applications (pp. 21-30). Montreal,
Canada: Springer-Verlag.

Zhao, Q., & Bhowmick, S. S. (2003). Sequential
Pattern Matching: A Survey.

155

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 9

DOI: 10.4018/978-1-61350-056-9.ch009

S. Prasanthi
University of Hyderabad, India

S. Durga Bhavani
University of Hyderabad, India

T. Sobha Rani
University of Hyderabad, India

Raju S. Bapi
University of Hyderabad, India

Analysis of Kinase
Inhibitors and Druggability of
Kinase-Targets Using Machine

Learning Techniques

ABSTRACT

Vast majority of successful drugs or inhibitors achieve their activity by binding to, and modifying the
activity of a protein leading to the concept of druggability. A target protein is druggable if it has the
potential to bind the drug-like molecules. Hence kinase inhibitors need to be studied to understand the
specificity of a kinase inhibitor in choosing a particular kinase target. In this paper we focus on human
kinase drug target sequences since kinases are known to be potential drug targets. Also we do a prelimi-
nary analysis of kinase inhibitors in order to study the problem in the protein-ligand space in future. The
identification of druggable kinases is treated as a classification problem in which druggable kinases are
taken as positive data set and non-druggable kinases are chosen as negative data set. The classification
problem is addressed using machine learning techniques like support vector machine (SVM) and deci-
sion tree (DT) and using sequence-specific features. One of the challenges of this classification problem
is due to the unbalanced data with only 48 druggable kinases available against 509 non-drugggable
kinases present at Uniprot. The accuracy of the decision tree classifier obtained is 57.65 which is not
satisfactory. learning approaches has not been reported in literature.

156

Analysis of Kinase Inhibitors and Druggability of Kinase-Targets Using Machine Learning Techniques

PATTERN DISCOVERY IN KINASES

Human genome contains about 518 protein
kinase genes, which constitute about 2% of all
human genes (Vulpetti & Bosotti, 2004). Protein
kinases regulate almost all biochemical pathways.
They play a critical role in signal transduction,
physiological responses, and in the functioning of
nervous and immune systems. They also control
many other cellular processes like metabolism,
transcription, cell cycle progression, cyto-skeletal
rearrangement and cell movement, apoptosis, and
differentiation (Bakheet & Doig, 2009).

Kinases are enzymes which help in phos-
phorylation of substrates facilitating the transfer
of phosphate group from ATP. They may phos-
phorylate up to 30% of the proteome (Manning
et al., 2002), (Manning, 2005). Since kinases
participate in signal transduction pathways of cell
cycle and cell differentiation they are known to
be targets for diseases. Abnormal phosphoryla-
tion of the protein kinases is a cause of disease
and hence needs to be inhibited by small drug-
like molecules called kinase inhibitors. Some of
the well-known inhibitors are Serine/Threonine
kinase inhibitors and Tyrosine kinase inhibitors
which are named on the basis of the amino acid
whose phosphorylation is inhibited. Kinase inhibi-
tors are developed in the treatment of diseases like
cancers, inflammatory disorders, neurological
disorders, diabetes mellitus, heart disease etc.
Some of the available kinase inhibitor drugs are
Imatinib, Nilotinib and Gefitinib.

In this study we present two perspectives
of drug discovery: one from the view point of
kinase target and the other from kinase inhibitor.
Even though kinases are known to be targets for
diseases, not all kinases are druggable. Hence it
is important to distinguish druggable kinase tar-

gets from non-druggable kinases. Further kinase
inhibitors need to be studied to understand the
specificity of a kinase inhibitor in choosing a
particular kinase target. The ultimate goal, in some
sense, is to predict the matching between a target
and its corresponding inhibitor(s) with the help
of target and ligand properties individually and
together with protein-ligand interaction features.
In this paper we restrict ourselves to addressing the
problem of druggability of kinases and conduct a
feature analysis of kinase inhibitors. The problem
of matching will be taken up in future. In the next
section we present a study of significant properties
of kinase inhibitors.

BACKGROUND

Vieth et al., (2004) conduct a study of kinase tar-
gets and inhibitors in order to identify medicinally
relevant kinase space. Using both sequence based
information and the small molecule selectivity
information, they presented the first dendogram
of kinases based on small molecule data. This
study concludes that the structural basis of kinase
inhibitor selectivity will require knowledge of
complexes of one ligand with multiple targets.
Classification of kinase inhibitors with a bayesian
model was studied by Xia et al., (2004). Using
Bayesian statistics, a model for general and spe-
cific kinase inhibitors was proposed. They have
considered serine/ threonine and tyrosine kinase
inhibitors (Amgen compounds) from CORP data
set. Kinase model was generated using properties
like number of hydrogen bond donors, halogens,
aromatic residues, value of AlogP and molecular
weight. The general kinase model described was
trained on tyrosine kinase inhibitors achieving
prediction accuracy of 80%.

A two-tier architecture of decision trees is carefully designed such that recognition on the non-druggable
dataset also gets improved. Thus the overall model is shown to achieve a final performance accuracy of
88.37. To the best of our knowledge, kinase druggability prediction using machine

157

Analysis of Kinase Inhibitors and Druggability of Kinase-Targets Using Machine Learning Techniques

In order to initiate the study of kinase inhibitors
we need both kinase target and inhibitor features
that are available in various databases.

Databases of Chemical Compounds

A drug molecule is required to satisfy the well-
known properties known as Lipinski’s rules
(Lipinski et al., 1997). Drug Bank (http://www.
drugbank.ca) is a popular data base housing FDA
approved drugs and the corresponding targets.
We consider features of drug molecules that are
available also in other data bases like Protein
Data Bank (http://www.rcsb.org), ZINC (http://
www.zinc.docking.org) and Protein Ligand In-
teraction Database (PLID) (Reddy et al., 2008).
We present here a study of kinase inhibitors and
differentiate kinase from non-kinase inhibitors at
the feature level.

Protein Data Bank (PDB) is a central reposi-
tory for all the structures of proteins, nucleic acids
and other bio-macromolecules. PDB has been
the main source of all protein structures identi-

fied either as complex with bound ligand or in
uncomplexed form. A few structures of kinase
inhibitors are shown in Figure 1. It is computation-
ally hard to extract features from a 3D structure
and hence it is represented as a two dimensional
structure. Further, the 2D-structure is represented
in a one-dimensional string format. SMILES is a
popular string format that is used to express the
2-dimensional representation of protein structure.
Many databases like ZINC and Drug Bank pro-
vide SMILES notation specification for chemical
compounds.

For example, the formula of the kinase in-
hibitor IC261 is C18H17NO4 and the SMILES
notation is COC1=CC(OC)=C(C=C2C(=O)
NC3=CC=CC=C23)C(OC)=C1. Extraction of
relevant features using string algorithms is very
fast and hence efficient.

The DrugBank database is a unique bioinfor-
matics and cheminformatics resource that con-
tains detailed drug and the corresponding target
data with the sequence, structure, and pathway
information. The database contains nearly 4800

Figure 1. 2-dimensional representations of a few kinase inhibitors are shown

158

Analysis of Kinase Inhibitors and Druggability of Kinase-Targets Using Machine Learning Techniques

drug entries including nearly one third of which
are FDA-approved drugs. Further, protein drug
target sequences which are linked to these FDA
approved drug entries are present in the data base.
Each drug contains more than 100 descriptors half
of which correspond to drug descriptors and the
other half being linked to target data.

Some of the features computed from SMILES
notation in Drug Bank that are being used for the
study are listed:

1. Number of atoms (Carbon, Oxygen,
Nitrogen)

2. Number of non-metals (Phosphorous,
Sulphur)

3. Number of halogens (Chlorine, Bromine,
Fluorine)

4. Number of metal atoms (Gold, Silver, Iron,
Selenium)

5. Number of cyclic groups present (acyclic,
bicyclic, tricyclic, tetracyclic, >5 cycles)

6. Functional Groups

The functional groups that are extracted from
Drug Bank are as follows: -N-H-R, Alkylamine,
-N-R, dialkylamine, -COOH, Carboxylic acid,
-COOR Ester, -COOCl, Acid chloride, -R-C-O=N,
-CN, Cyano -N=C=Oisocyanate, -C=Cethylene,
-C#Cacetylene, -N#NAzo, -CHO aldehyde, -C=O,
Ketone, -C=S, thioketone, -NH-C=O, peptide,
-O-N=ONitroso, -NO2, Nitro, thiophene, phenol,
pyrolidini, phenyl furan, where # denotes triple
bond.

ZINC Database (ZINC) is a free database of
commercially available chemical compounds for
virtual screening including drug-like compounds.
ZINC contains a library of nearly 750,000 mol-
ecules, each with 3D structure and are annotated
with molecular properties. The molecules are
available in several common file formats including
SMILES, mol2, 3D SDF etc. A Web-based query
tool along with a molecular drawing interface
enables the database to be searched and browsed.
Currently ZINC provides 9 calculated properties

- molecular weight, logP, De_apolar, De_polar,
number of HBA, number of HBD, tPSA, charge
and NRB for each molecule.

Kinase inhibitors can be characterized by the
whole compound features as well as protein-ligand
binding site. The binding site details are collected
from Protein Ligand Database (PLID).

Protein Ligand Interaction Database (PLID)
was built by Reddy et al., (2008) developed from
PDB. PLID contains binding area residues for all
the complexed proteins in the PDB. Addition-
ally, it consists of physico-chemical, thermal and
quantum chemical properties of the ligands and
the active site. The modules of Ligand Extrac-
tor and BERF ((Binding Environment Residue
Finder) are developed to build the data base.
Apart from identifying binding residues, BERF
also calculates two important properties such as
fraction of contact (f) and average tightness (g)
which quantify the interaction between the protein
and ligand as described in PLID. f = Na/N and g =
Np/Na where Na = total number of ligand atoms
in the binding environment, Np = total number of
protein atoms in the binding environment and N =
total number of ligand atoms. To summarize, the
features extracted with regard to a protein ligand
binding site are number of binding pockets, tight-
ness, fraction of contact and amino acid frequency
at binding sites.

We begin the study by extracting and analyz-
ing some of the significant properties of kinase
inhibitors that are discussed above.

Analysis of Features for Kinase
vs. Non-Kinase Inhibitors

The structures for both kinase and non-kinase
inhibitors are taken from Protein Data Bank. 1492
available drug compounds were separated into
47 kinase inhibitor drugs and 1445 non-kinase
inhibitor drugs. Kinase and non-kinase inhibitors
are seen to vary quite significantly in the bind-
ing site feature space. All the properties of these

159

Analysis of Kinase Inhibitors and Druggability of Kinase-Targets Using Machine Learning Techniques

drugs are extracted from PLID and Drug bank
and tabulated in Table 1 (Priya, 2010).

Additionally, several specific functional groups
like -COOR, N-R and peptide, amide and peptide
were found to be significant for kinases whereas
-COOR and ketone, -C#C-, Thioketone,-NHR
and amide, -NHR and NR and amide and ketone
and peptide etc are found to be abundant in non-
kinases, where # denotes triple bond.

It is clear from Table 1 that especially features
that are extracted from PLID like fractions of
contact and tightness as well as number of binding
pockets are potentially useful for discrimination of
kinase and non-kinase inhibitors. This classifica-
tion problem needs to be investigated further. In
the next section, the problem of kinase druggability
is now viewed from the kinase target perspective.

A target protein is druggable if it has the po-
tential to bind the drug-like molecules. Rest of the
paper is devoted to address the binary classification
problem of predicting a given kinase sequence as
druggable or not.

DRUGGABILITY

Vast majority of successful drugs or inhibitors
achieve their activity by binding to, and modifying
the activity of a protein leading to the concept of
druggability which was introduced by Hopkins
and Groom (2002). Proteins that can bind drug-
like compounds with binding affinity below 10
µM are considered druggable proteins.

Related Work

Hopkins and Groom describe a druggable genome
as the genome which expresses the proteins that
are able to bind the drug-like molecules. Approxi-
mately 10% of the human genome is involved in
disease onset or progression (i.e ~3000 potential
targets). The genes which are common to both
druggable genome and involved in diseases are
in between 600-1500. Russ and Lampel (2005)
gave an update on the druggable genome and
suggest that the count of the druggable genes is
in between 2000 and 3000, coinciding with the
previous estimates (~3000).

Hajduk, Huth and Tse (2005) predict druggabil-
ity by analyzing the 3D structures of the proteins.
As a first step, they find true ligand-binding sites
on the protein surface using geometry-based or
energy-based algorithms. In the next step, in
order to find the small drug- molecules which
bind with high affinity and specificity, they used
NMR-based screening. They also derive drug-
gable indices from the analysis of NMR data and
the characteristics of known ligand-binding sites.
Druggability indices can be used for computational
assessment of proteins with known structure.
Further, they indicate that about 44% of protein
kinases contain a druggable pocket. They show
high variability in conformations, several loop
regions which suggest the use of multiple crystal
structures and the conformational dynamics in
druggability assessment.

Availability of experimental 3D-structures for
the proteins is limited (Hajduk, Huth & Tse, 2005).

Table 1. Summary of the features computed from
various chemical databases.

Feature
(Normalized)

Kinase Non-kinase

Molecular weight range (g/mo l) 0.147-
3096.4

0.0186-29.49

Predicted logP range -0.117-
0.212

-0.00913-0.0064

Cyclic 0-0.83 0-0.95

Acyclic 0-0.08 0-0.18

Chiral 0-0.39 0-0.65

Heterocyclic 0-0.80 0-0.85

Monocyclic 0-0.20 0-0.16

Bicyclic 0-0.22 0-0.17

Tricyclic 0-0.20 0-0.18

Tetracyclic 0-0.05 0-0.2

>5 cycles 0-0.13 0-0.30

Fraction of Contact 0-0.01 0-0.000143

Fraction of Tightness 0-0.00238 0-0.0436

Number of Binding pockets 1-16 1-210

160

Analysis of Kinase Inhibitors and Druggability of Kinase-Targets Using Machine Learning Techniques

So, we need to depend on the homology models
for the druggability assessment. But the results
are uncertain since there is no closely related pro-
tein with 3D structure that is available (Hillisch,
Pineda & Hilgnefeld, 2004). For predicting the
novel proteins that have no or low homology to
known targets, Han et al. (2007) use machine
learning method such as support vector machines.
A protein sequence is classified as druggable or
non-druggable. They obtain an average overall
prediction accuracy of 83.6%, lower than the pre-
diction by BLAST search (http://blast.ncbi.nlm.
nih.gov) which was 96.3%. This may be due to the
prediction of non-similar proteins as druggable.
SVMs perform well for the proteins of less than
20% sequence identity also. By selecting optimal
set of descriptors using feature selection methods
the performance of SVM is further improved.

More recently, Bakheet and Doig (2009) while
analyzing human protein drug and non-drug targets
list some properties as desirable in a human drug
targets, namely: high hydrophobicity, high length,
low pI etc and its participation in a crucial biologi-
cal pathway. They also identified some proteins in
the non-target set that have target like properties.

In this paper we do not consider all human
protein drug targets but focus on human kinase
drug target sequences since kinases are known
to be potential drug targets. The identification
of druggable kinases is treated as a classification
problem in which druggable kinases are taken as
positive data set and non-druggable kinases are
chosen as negative data set. The classification
problem is addressed using machine learning
techniques like support vector machine (Cortes &
Vapnik, 1995) and decision tree (Mitchell, 1997).
Firstly, feature extraction of the kinases and its
analysis is carried out.

Data Set

Kinase sequences which are drug targets as well
as kinase non-drug target sequences need to be
collected. Drug Bank provides data for drug targets

and Uniprot (http://www.uniprot.org) is utilized
to extract non-drug target kinase sequences. Ap-
proved 1610 drug target protein sequences which
are readily available in Drug Bank are taken. On
redundancy removal of up to 95% similarity using
PISCES software, drug target set count reduced
to 1556 sequences. 52 human kinase drug targets
were found in this data set. As EC classification
number is required eventually, the proteins which
contain the EC class information are only taken
which were of 48 in number. Finally 48 human
kinase drug target sequences are considered for
positive data set. As for the negative data set,
Uniprot contains more than 5 million protein se-
quences. Among these human kinase sequences are
707 in number of which upon redundancy removal
702 have remained. On removal of the identified
human kinase drug target sequences, 650 kinase
sequences can be considered as non-drug target
sequences. Further 509 sequences are found to
contain EC classification information. Thus 509
human kinase non-drug target set was prepared.
An analysis of amino acid composition is carried
out on these data sets.

Amino Acid Feature Profile

Amino acid (AA) composition among druggable
and non-druggable kinases is estimated and plot-
ted in Figure 2. It can be seen that AA profile is
not significantly differentiating druggable from
non-druggable kinases. On the other hand, as
clearly shown in Figure 3 the variance of AA
composition seems to distinguish druggable from
non-druggable kinases. Alanine is found to be
most varying followed by proline. Isoleucine is
found to be least varying.

Conventional physico-chemical features re-
garding proteins considered in the literature are
length of the protein sequence, average residue
weight, charge, hydrophobicity, isoelectric point
and EC class (Vulpetti & Bosotti, 2004, Sharma
et al., 2004, Raja, Sobha Rani & Durga Bhavani,
2004).

161

Analysis of Kinase Inhibitors and Druggability of Kinase-Targets Using Machine Learning Techniques

We investigate druggability of kinases ex-
perimenting extensively with various features
derived from physico-chemical properties of
amino acid residues and amino acid composi-
tion. The physico-chemical properties include
hydrobhobicity which is calculated using the table
given by Kyte and Doolittle (1982). The differ-
ence in average feature values of other features
like charge, hydrophobicity etc are found to be
small in magnitude whereas the average length
of druggable kinases is found to be significantly
smaller than that of non-druggable kinases. The
values are noted in the Table 2.

Figure 2. Amino acid frequency profile of druggable and non-druggable kinases

Figure 3. Variance of amino acid frequency distribution between druggable and non-druggable kinases

Table 2. Average feature values for druggable
kinases and non-druggable kinases.

Feature Average feature
value for

druggable kinases

Average feature
value for

non-druggable
kinases

Charge 6.7 6.2

Hydrophobicity -0.38 -0.4

Isoelectric point 7.21 7.34

Length (AA) 620 740

162

Analysis of Kinase Inhibitors and Druggability of Kinase-Targets Using Machine Learning Techniques

Classification Results

One of the challenges of this classification
problem is due to the unbalanced data with only
48 druggable kinases available against 509 non-
drugggable kinases present at Uniprot. Therefore
there is a need for carefully designing the experi-
ments such that the non-druggable dataset does
not dominate the classification task.

Identification of druggable kinases from non-
druggable kinases is carried out using decision
tree classifiers. Though support vector machines
are quite popular among bioinformatics com-
munity, the interpretation of the classification is
non transparent. On the other hand, a decision tree
classifier is based on deductive logic and rules can
be derived from the decision tree. Performance of
the classification results is discussed in this section.

Decision tree models the training data set by
choosing an attribute that maximally discriminates
positive from negative data set and applies this
procedure recursively. The decision tree thus
constructed is used to classify the instances of
the test data set. Each path from the root to a leaf
node corresponds to a decision rule. Efficient
implementations of these classifiers are available
in Weka (http://www.cs.waikato.ac.nz/~ml), an
open source software developed by University
of Waikato.

The druggable kinase data set considered as
positive data set is small with 48 sequences and
the non-druggable kinases as negative data set
which is of size 500. We would like to choose
2/3rd of the positive data set for training and the
remaining for testing purposes. Since there is an
imbalance in the data set sizes, different subsets
of size 32 from the total negative set are chosen to
train and test the classifier along with 32 sequences
from the positive data set. These data sets thus
built are denoted as Set1, Set2,…, Set6. During
preliminary investigation, it was found that the
physico-chemcial properties are not significantly
contributing to the performance results. Hence the
features that are considered for final experimenta-

tion are the 20 amino acid composition features
together along with protein sequence length. We
have constructed decision tree models for each of
the data sets Set1, Set2,…, Set6. Average perfor-
mance accuracy of the six data sets for all feature
sets is given in the Table 3.

It is clear from the experiments that unavail-
ability of enough positive data against a large
negative data set is impacting the results nega-
tively. In order to tackle this issue, firstly we
collect all the negative ‘difficult’ sequences those
which are not correctly classified by a majority
of the classifiers. Then we refine the classifier
models by training them with difficult negative
sequences and retaining the positive sets as in
earlier experiments. In this second level of ex-
perimentation, we build again six models and
using voting strategy, each test sequence is clas-
sified as positive or negative as per the number
of votes for that decision is greater than or equal
to 3. The results of the second level of experimen-
tation are given in Table 4. Table 5 gives the
overall accuracies after the two-tier level of clas-
sification.

In this section we propose a general strategy
on how to improve performance of a classifier. It
is seen for this problem that the negative set is
being poorly identified and many of its sequenc-
es occur as false positives during classification.

Table 3. Druggable kinase prediction accuracies
of decision tree classifier for different models
constructed choosing different subsets from the
negative data set.

Model True Positives(%) True Negatives (%)

1 75 50.7

2 25 51.7

3 56 52.36

4 68.75 48.26

5 25 47.63

6 62.5 46

After
Voting

68.75 57.1

163

Analysis of Kinase Inhibitors and Druggability of Kinase-Targets Using Machine Learning Techniques

Hence we build a second level of classifiers to
which only the sequences which are classified as
positives in the first level are given as the test set.
Therefore if the classifier is well-trained, we
expect that the false positives of the first level
would be recognized as negative which is their
true identity. Thus the overall model of classifica-
tion is a two-tier model whose final performance
accuracy has risen to 88.37 from the earlier preci-
sion of 57.65.

DISCUSSION AND CONCLUSION

Vulpetti and Bosotti (2004) define the ATP binding
pocket of protein kinases as a set of 38 residues
that can interact with inhibitors through side chain
interactions. ATP binding pocket can be divided
into adenine, sugar, phosphate and buried regions.
The survey presented by Vulpetti and Bosotti
(2004) supports the existence of aromatic C-H...O
hydrogen bonds in kinase protein–ligand interac-

tions. The buried region on the other hand consists
of hydrophobic amino acids. It is interesting that
the decision tree classifier picks up hydrophobic
amino acid residues like Metheonine, Histidine,
Glycine and Leucine for high discrimination be-
tween druggable and non-druggable kinases. It is
to be corroborated by the biologists of the specific
role that these features and the length of a protein
sequence play in the phosphorylation process.

From the drug perspective, the measures of
fraction of contact and tightness seem to be impor-
tant and have to be investigated further. Existing
work in literature concentrates on a higher level
classification problem of discriminating druggable
protein from a non-druggable protein (Han et al.,
2007). They obtain classification accuracies for
druggable proteins in the range 64-71% and for
non-druggable proteins it is of the order of 85-
85.8%. In this work we obtained an accuracy of
nearly 62.5% for druggable kinases and 90.08%
for non-druggable kinase prediction. To the best
of our knowledge kinase druggability prediction
is not reported in literature.

Of course the model built is limited to the
available data set and the kinase data set is quite
small having only 40 sequences. Hence the robust-
ness of the model needs to be validated through
other methods. The bigger problem would be
to predict the matching between a target and its
corresponding inhibitor(s) with the help of target
as well as ligand properties. Hence kinase inhibi-
tors and targets need to be studied to understand
the specificity of a kinase inhibitor in choosing
a particular kinase target which will be taken up
in the future.

ACKNOWLEDGMENT

The authors would like to thank Dr G.Narahari
Sastry, Indian Institute of Chemical Technol-
ogy (IICT), Hyderabad, India for suggesting the
problem and for the continuous interactions in the
project. The authors would like to acknowledge

Table 4. The models re-trained with difficult
negative sequences classify these sequences with
a better accuracy of 60%.

Model True Positives (%) True Negatives (%)

1 43.8 45.9

2 50 37.7

3 37.5 62.3

4 37.5 52.5

5 75 36.1

6 56.3 37.7

After
Voting

62.5 60.65

Table 5. Overall accuracy of test data set after
the second level classification.

Overall
Accuracy

TP TN Precision

62.5 90.08 88.37

164

Analysis of Kinase Inhibitors and Druggability of Kinase-Targets Using Machine Learning Techniques

Ms Preethi Badrinarayan, Research student, IICT
for clarifying biological aspects of the problem
and Ms Sowjanya, M.Tech Bioinformatics student
for re-validating some of the experimental work.

REFERENCES

Bakheet, T. M., & Doig, A. J. (2009). Properties
and identification of human protein drug targets.
Bioinformatics (Oxford, England), 25(4), 451–
457. doi:10.1093/bioinformatics/btp002

Berman, H. M., Westbrook, J., Feng, Z., Gillil-
and, G., Bhat, T. N., Weissig, H., et al. (2000).
The Protein Data Bank, Nucleic Acids Research,
28, 235-242. Retrived on January 11, 2011 from
http://www.rcsb.org

Cortes, C., & Vapnik, V. (1995). Support-Vector
Networks. Machine Learning, 20, 273–297.
doi:10.1007/BF00994018

Hajduk, P. J., Huth, J. R., & Tse, C. (2005).
Predicting protein druggability. Drug Discovery
Today, 10, 1675–1682. doi:10.1016/S1359-
6446(05)03624-X

Han, L. Y., Zheng, C. J., Xie, B., Jia, J., Ma, X.
H., & Zhu, F. (2007). Support vector approach
for predicting druggable proteins: recent prog-
ress in its exploration and investigation of its
usefulness. Drug Discovery Today, 12, 304–313.
doi:10.1016/j.drudis.2007.02.015

Hillisch, A., Pineda, L. F., & Hilgenfeld, R. (2004).
Utility of homology models in drug discovery
process. Drug Discovery Today, 9, 659–669.
doi:10.1016/S1359-6446(04)03196-4

Hopkins, A. L., & Groom, C. R. (2002). The drug-
gable genome. Nature Reviews. Drug Discovery,
1, 727–730. doi:10.1038/nrd892

Irwin, J. J., & Shoichet, B. K. (2005). ZINC - A
Free Database of Commercially Available Com-
pounds for Virtual Screening. J.Chem.Inf.Model.,
45(1), 177-82. Retrieved on January 11, 2011 from
http://www.zinc.docking.org

Johnson, M., Zaretskaya, I., Raytselis, Y., Mer-
ezhuk, Y., McGinnis, S., & Madden, T. L. (2008).
Nucleic Acids Res. 36 (Web Server issue), W5–W9.
Retrieved on January 11, 2011 from http://blast.
ncbi.nlm.nih.gov

Kyte, J., & Doolittle, R. F. (1982). A simple method
for displaying hydropathic character of a protein.
Journal of Molecular Biology, 157, 105–132.
doi:10.1016/0022-2836(82)90515-0

Lipinski, C. A., Lombardo, F., Dominy, B. W.,
& Feeney, P. J. (1997). Experimental and com-
putational approaches to estimate solubility and
permeability in drug discovery and development
settings. Advanced Drug Delivery Reviews, 23,
3–25. doi:10.1016/S0169-409X(96)00423-1

Manning, G. (2005). Genomic overview of the
kinases. In I. Greenwald (Ed.), WormBook, The
C. elegans Research Community (pp.1-19).

Manning, G., Whyte, D. B., Martinez, R., Hunter,
T., & Sudarsanam, S. (2002). The protein kinase
complement of the human genome. Science, 298,
1912–1934. doi:10.1126/science.1075762

Mitchell, T. M. (1997). Machine Learning. New
York: McGraw-Hill Series in CompSci.

Priya Lakshmanan. 2010. Establishing signature
for kinase inhibitors. Unpublished M.Tech dis-
sertation, University of Hyderabad, India.

Raja, G., Sobha Rani, T., & Durga Bhavani, S.
(2004). Global feature extraction techniques
for identification of secondary structures of a
protein sequence. In International Conference
on Information Technology (pp.101-108). India:
Universities Press.

165

Analysis of Kinase Inhibitors and Druggability of Kinase-Targets Using Machine Learning Techniques

Reddy, A. S., Amarnath, H. S. D., Bapi, R. S.,
Sastry, G. M., & Sastry, G. N. (2008). Protein
ligand interaction database (PLID). Comp. Biol.
and Chem., 32, 387-390. Retrieved on January
11, 2011 from http://203.199.182.73/gnsmmg/
databases/plid/

Russ, A. P., & Lampel, S. (2005). The druggable
genome:an update. Drug Discovery Today, 10,
1607–1610. doi:10.1016/S1359-6446(05)03666-
4

Sharma, S., Kumar, V., & Sobha Rani, T. Durga
Bhavani, & S., Bapi Raju, S. (2004). Application
of neural networks for protein sequence classi-
fication. In Intelligent Sensing and Information
Processing (pp.325-328). India: IEEE Press.

Uniprot: http://www.uniprot.org

Vieth, M., Higgs, R. E., & Roberston, D. H. (2004).
Kinomics- structural biology and chemogenom-
ics of kinase inhibitors and targets. Biochimica et
Biophysica Acta, 1697(1-2), 243–257.

Vulpetti, A., & Bosotti, R. (2004). Sequence and
structural analysis of kinase ATP pocket resi-
dues. IL Farmaco, 59, 759–765. doi:10.1016/j.
farmac.2004.05.010

Weka. http://www.cs.waikato.ac.nz/~ml/

Wishart, D. S., Knox, C., Guo, A. C., Cheng, D.,
Shrivastava, S., Tzur, D., et al. (2008). DrugBank:
a knowledgebase for drugs, drug actions and drug
targets. Nucleic Acids Res., 36 (Database issue),
D901-6. Retrieved on January 11, 2011 from
http://www.drugbank.ca

Xia, X., Maliski, E. G., Gallant, P., & Rogers, D.
(2004). Classification of kinase inhibitors using
bayesian model. Journal of Medicinal Chemistry,
47, 4463–4470. doi:10.1021/jm0303195

KEY TERMS AND DEFINITIONS

Druggability: The ability of a portion of a
genome to be targeted by a drug.

Drug-Target: The genome sequence that has
the potential to bind the drug-like molecules.

Inhibitor: Any substance that interferes with a
chemical reaction, biologic activity or that reduces
the catalytic activity of an enzyme.

Kinase: An enzyme that catalyzes the trans-
fer of a phosphate group or another high-energy
molecular group to an acceptor molecule.

Ligand: A ligand is a substance that is able to
bind to and form a complex with a biomolecule
to serve a biological purpose.

Machine Learning: Machine learning is a
discipline of artificial intelligence that focuses on
automatically learning to recognize complex pat-
terns and make intelligent decisions based on data.

166

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 10

INTRODUCTION

Numerous biological events are responsible for
the gradual change in the genetic information of
an organism over the course of time such as gene
conversions, rearrangements (e.g., inversion or

translocation), large-scale deletions and insertions
of foreign DNA (e.g., plasmid integration, trans-
position) apart from point mutations. Horizontal
Gene Transfer (HGT) is a major event responsible
to cause significant alterations in the genome
composition. It is defined as the transfer of DNA
between diverse organisms by mechanisms other

Nita Parekh
International Institute of Information Technology Hyderabad, India

Identification of Genomic
Islands by Pattern Discovery

ABSTRACT

Pattern discovery is at the heart of bioinformatics, and algorithms from computer science have been widely
used for identifying biological patterns. The assumption behind pattern discovery approaches is that a
pattern that occurs often enough in biological sequences/structures or is conserved across organisms
is expected to play a role in defining the respective sequence’s or structure’s functional behavior and/or
evolutionary relationships. The pattern recognition problem addressed here is at the genomic level and
involves identifying horizontally transferred regions, called genomic islands. A horizontally transferred
event is defined as the movement of genetic material between phylogenetically unrelated organisms by
mechanisms other than parent to progeny inheritance. Increasing evidence suggests the importance of
horizontal transfer events in the evolution of bacteria, influencing traits such as antibiotic resistance,
symbiosis and fitness, virulence, and adaptation in general. In the genomic era, with the availability
of large number of bacterial genomes, the identification of genomic islands also form the first step in
the annotation of the newly sequenced genomes and in identifying the differences between virulent and
non-virulent strains of a species. Considerable effort is being made in their identification and analysis
and in this chapter a brief summary of various approaches used in the identification and validation of
horizontally acquired regions is discussed.

DOI: 10.4018/978-1-61350-056-9.ch010

167

Identification of Genomic Islands by Pattern Discovery

than direct descent (vertical inheritance). The clus-
ters of genes acquired as a single unit by horizontal
transfer are called ‘‘Genomic Islands (GIs)’’ and
are typically 10 - 200 Kb in size. These horizon-
tally acquired regions are responsible in causing
significant alterations in the genome composition
and may provide the organism to carry out new
functions resulting in adaptation to a changing
environment. Any biological advantage provided
to the recipient organism by the transferred DNA
creates selective pressure for its retention in the
host genome and several pathways of horizontal
transfer have been established influencing traits
such as antibiotic resistance, symbiosis and fitness,
virulence and adaptation in general (Koonin et al,
2001; Lawrence & Ochman, 2002; Andersson,
2005; Gogarten & Townsend, 2005). For example,
HGT has been demonstrated in many pathogenic
strains of bacteria and shown to be responsible for
its virulence. Thus, depending on their acquired
functions these genomic islands are further clas-
sified as pathogenicity islands, metabolic islands,
secretion islands, resistance islands and symbiosis
islands (Lio & Vannucci, 2000).

General Characteristics of
Genomic Islands (GIs)

The genomic islands are found to contain some
characteristic features shown in Figure 1 which
have been exploited for their identification (Do-
brindt et al, 2004; Juhas et al, 2009). They typi-
cally contain in their vicinity intact (or residual)
mobile genetic elements, such as genes coding for

integrases (Int) or transposases that are required
for chromosomal integration and excision, are
generally found to be flanked by direct repeats
(DR) and are sometimes inserted in the vicinity
of tRNAs and tmRNAs, commonly referred to
as tRNA genes. Typically GIs also carry multiple
functional and fragmented insertion sequence
(IS) elements for carrying out the transposition
event (Dobrindt et al, 2004). The identification
of these elements basically involves searching
various databases of these elements, viz., RepBase
Update, tRNA database, etc. by pattern matching.

Apart from the structural features observed in
the vicinity of a genomic island, these regions
also exhibit bias in the nucleotide compositions.
In any genome, ancestral (vertically transmitted)
genes experience a particular set of directional
mutation pressures mediated by the specific fea-
tures of the replication machinery of the cell, such
as the balance of the dNTP pools, mutational
biases of the DNA polymerases, efficiency of
mismatch repair systems and so on (Lawrence,
1999). As a result each genome exhibits its own
unique signatures such as distinct variations in
the GC content, dinucleotide relative abundance,
variations in the usage of k-mer words, codon
usage and amino acid usage. Thus, ‘foreign’ genes
acquired through lateral transfer retain the char-
acteristics of the donor genome which may sig-
nificantly differ from that of the host genome (Lio
& Vannucci, 2000, Lawrence & Ochman 1998).
Thus variations in the occurrences of patterns of
dinucleotides and oligonucleotides along the
length of the genome, which capture the biases

Figure 1. General characteristics of genomic islands (adapted from Dobrindt et al., 2004).

168

Identification of Genomic Islands by Pattern Discovery

in the nucleotide compositions are useful for the
identification of genomic islands and are referred
to as parametric methods.

The possibility of horizontal gene transfer usu-
ally emerges when a gene/protein sequence from a
particular organism shows the strongest similarity
to a homolog from a distant taxon. For example,
in a phylogenetic tree construction, if a bacte-
rial protein groups with its eukaryotic homologs
(of a particular eukaryotic lineage) compared to
homologs from other bacteria, one can conclude
the presence of a horizontal gene transfer event.
Approaches based on comparative genomics and
phylogenetic analysis are used to identify patterns
of conserved genes between closely-related and
distantly-related taxa.

Thus presence of mobile elements, repeats,
tRNA genes, genes that form part of prophages,
pathogenicity islands, transposases, integrases and
recombinases are useful in the identification of
GIs. Atypical sequence characteristics of acquired
genes and restricted phylogenetic distribution
in specific lineages are other features useful in
their identification. Based on these characteristic
features, various methods for identifying potential
foreign genes can be categorized as follows:

• Parametric Methods: based on nucleo-
tide compositions,

• Signal-Based Methods: for analysis of
the flanking regions of the GIs for tRNA
genes, mobile elements, repeats, etc.

• Alignment-Based Methods: comparative
genomics approach, and

• Clustering-Based Approach: phyloge-
netic analysis

However, no single method can reliably
identify a genomic island and hence it would be
advantageous to use number of measures exploit-
ing the characteristic features of genomic islands.
A brief description of each of these approaches
is discussed below.

APPROACHES FOR IDENTIFYING
GENOMIC ISLANDS

Parametric Methods: Anomalous
Nucleotide Composition

Measures based on anomalous nucleotide com-
position, called parametric methods, are the most
widely used approaches for identifying recent
horizontal transfers. The underlying assumption
of this approach is that biased mutation pres-
sures, called A-T/G-C pressure, within bacterial
genomes impart distinctive biases to the composi-
tion of long-term residents of the genome, such
that recently acquired genes will appear deviant
by comparison if they have evolved in a genome
with different mutational biases (Muto and S.
Osawa, 1987; Lawrence & Ochman, 1997). The
bias in the nucleotide base composition of a
genome results in variations in dinucleotide and
higher oligonucleotide frequencies and biases in
the usage of codons and amino acids within the
genes. Various approaches have been proposed
to identify a ‘typical’ gene based on nucleotide
composition (Garcia-Vallve et al, 2000; Karlin,
2001), dinucleotide frequencies (Jenks, 1998),
codon usage biases (Garcia-Vallve et al, 2003;
Karlin & Ladunga, 1994) or patterns inferred by
Markov chain analysis (Campbell et al, 1999).
An advantage of these parametric approaches is
that putative transferred genes can be identified
without relying on comparisons with other organ-
isms, thus providing an independent means of as-
sessing the impact of gene transfer across lineages
(Hsiao et al, 2003). Some other characteristic
measures include: dinucleotide relative abundance
(genomic signature), amino acid usage, high AT
content, k-mer (word) distribution and GC skew.
The general approach involves computing these
measures in a sliding window and comparing with
the corresponding genomic average, whenever the
complete genome sequences are available. The
regions that deviate from the average genome
values by a certain threshold may have a different

169

Identification of Genomic Islands by Pattern Discovery

origin and are predicted as genomic islands. These
measures can be classified into two major classes
based on the analysis required at genome-level or
at the gene-level and are briefly described below.

Measures Involving Analysis
at the Genome Level

These approaches rely only on the availability of
the complete genomic sequence and attempt to
capture compositional deviation from the genome
backbone. These measures are computed over the
whole genome of the organism. These measures
are based on word count of k-mers (words of
size k), viz., di-nucleotides, tri-nucleotides, tetra-
nucleotides, etc. across the genome. The major
advantage of these measures is that these do not
require pre-existing annotation of the genome or
the comparison of homologous sequences, and can,
therefore, be applied directly to newly sequenced
genomes. Some of the commonly used genome-
based measures are briefly described below.

GC content anomalies: Many evolutionary
mechanisms have been proposed to explain GC
content diversity among bacteria, and it is be-
lieved that a species’s genomic GC content is set
by a balance between selective constraints at the
level of codons and amino acids and directional
mutational pressure at the nucleotide level (Yoon
et al, 2005). Thus the GC content can be used as a
signature of an organism. It is one of the simplest
and most extensively used approaches for iden-
tifying genomic islands. It is computed as a ratio
of the G+C content (i.e., frequency of G and C
nucleotides) in non-overlapping sliding windows
along the length of the genome by the overall GC
content of the whole genome. If there is significant
difference in the GC content of any window with
the genomic average, the region is considered to
be possibly horizontally transferred. However, this
method fails to identify a horizontally transferred
region if the donor and host genome both have
similar GC content.

Genomic signature: It has been shown that
the set of dinucleotide relative abundance values
constitutes a “genomic signature” of an organism
that may reflect the influence of factors such as
DNA replication and repair machinery, context-
dependent mutation rates, DNA modifications,
and base-step conformational tendencies that
impose limits on the compositional and structural
patterns of a genomic sequence (Karlin, 1998).
The dinucleotide biases assess differences be-
tween the observed dinucleotide frequencies and
those expected from random associations of the
component mononucleotide frequencies (Karlin,
2001). To identify genomic island, the average
absolute abundance difference is computed which
is defined as a measure of genomic signature dif-
ference between the sliding window (fw) and the
whole genome value (g):

δ ρ ρ* * *(,) / | () () |f g f g
w xy w xy
= −∑1 16

where δ*(fw, g) is the di-nucleotide bias of window
fw with respect to the whole genome g,
ρ
xy xy x y

f f f* * * */= where f
x
* denotes the frequency

of the mononucleotide X and f
xy
* that of the di-

nucleotide XY, both computed from the sequence
concatenated with its inverted complement (Kar-
lin & Marzek, 1997). A major advantage of genome
signature analyses is in their ability to identify
anomalous DNA regions containing large stretch-
es of non-coding DNA or small putative genes.

k-mer Distribution: It has been proposed by
Karlin that most horizontally acquired genomic
regions have distinct word (k-mer) compositions.
For k-mers of size k (k = 2 - 9), a total of 4k dif-
ferent possible k-mers are computed, both for
the whole genome and for each non-overlapping
sliding window. The average k-mer difference is
then defined as

δ
k i

w
i
g

i

n

w g
n

f f*(,)= −
=
∑1

1

170

Identification of Genomic Islands by Pattern Discovery

where n = 4k, is the number of distinct k-words
(words of length k), f

i
w is the frequency of the ith

k-mer pattern in the window and f
i
g the corre-

sponding value for the whole genome (Nag et al,
2006; Jain et al, 2008). Windows exhibiting sig-
nificant deviation from the genomic average are
identified as probable GIs. This measure is also
useful to identify genomic islands devoid of genes.
Utilizing higher order motifs is more likely to
capture deviation from the genome background
compositional distribution, as long as there is
enough data to produce reliable probability esti-
mates. However, for k > 6, this measure becomes
computationally very expensive.

Recently another method based on k-mer dis-
tribution, called the centroid method proposed by
Rajan et al (2007). In this method, the genome
is first partitioned into non-overlapping bins of
equal size and frequencies of all possible words
for a given word size are listed corresponding
to each bin, considering words in both the DNA
strands. This list represents the word frequency
vector for the bin. The average frequency of each
word across all bins is computed and is called the
centroid. The distance from the centroid is used
as the criterion for determining the outliers cor-
responding to the compositionally distinct bins.

The above measures are typically carried out
in non-overlapping windows of a fixed size. If
the window is too large, then the resolution of the
output is low. If the window is too small, then the
output is noisy and difficult to interpret. In either
case, one is likely to miss regions where there is
an abrupt change in the nucleotide composition.
Also, in general, a window of a fixed size will
not completely cover the whole genomic island;
typically neighbouring windows may partially
cover the horizontally acquired regions. This
also poses the problem of identifying the true
boundaries of the genomic islands. This problem
can be addressed by considering overlapping
sliding windows. The extent of overlap is then
an important parameter as it will increase the

computational effort required. An alternative
approach would be to identify probable genomic
islands by signal-based methods and analyze the
regions between, say two transpoases, by the
above measures; this would allow for variable
length windows of genomic regions.

The measures at the genome level described
above identify large genomic regions (~ 50KB)
which may contain a number of genes. To identify
the boundaries of the horizontally transferred
regions and further confirm their foreign origin,
one may explicitly perform analyses on the genes
in this putative GI and its flanking regions. These
measures, which involve analysis of only gene
sequences or their translations, are also useful
when the whole genome sequence of an organism
is not available, but only a limited set of genes from
the organism are available. Most commonly used
measures at the gene level are discussed below.

Measures Involving Analysis
at the Gene Level

Codon Usage Bias: Codon usage variation, i.e.,
unequal usage of synonymous codons, is a very
well known phenomenon and has been studied
in a wide diversity of organisms. Virtually every
codon has been shown to be preferentially used
in some organisms and rarely used in others. The
causes of codon usage variation are many-fold.
Mutational bias (the tendency displayed by some
organisms to have unbalanced base composition)
is frequently a contributing factor. Some organ-
isms have extremes of base composition and this
can influence the selection of codons. Prokaryotes
and also eukaryotes show preference for certain
synonymous codons over others, despite all of
them coding for the same amino acid. This un-
equal usage of synonymous codons is referred to
as codon bias. There exists a correlation between
taxonomic divergence and similarity of codon us-
age and hence it is now accepted as a signature of
a particular taxonomic group. At the gene level,
bias in codon usage is the most widely used

171

Identification of Genomic Islands by Pattern Discovery

measure for the identification of horizontally
transferred genes.

Codon frequencies for a set of genes lying
within a particular window, F, is computed and
its standard deviation from the complete gene set
of the organism (or a second representative gene
set), G, is obtained. The codon usage difference
of the set of genes F relative to the genome (or
second set of genes) G is given by

B F G p F f x y z g x y z
a

a x y z a
(|) ()[| (, ,) (, ,)|]

(, ,)
= −∑∑

=

where pa(F) are the normalized amino acid fre-
quencies of the gene family F and f(x,y,z) are
normalized average codon frequencies such that:

f x y z
x y z a

(, ,)
(, ,)

=
=
∑ 1

where the sum extends over all synonymous co-
dons, i.e., coding for the same amino acid a (Karlin
et al, 1998). If a gene’s codon usage difference
relative to the average gene in the genome exceeds
a threshold and if its codon usage also differs
from highly expressed genes such as ribosomal
protein genes, chaperone genes and protein syn-
thesis genes, then it is likely to be a horizontally
transferred gene (Karlin, 2001).

Amino Acid Bias: This bias refers to the
deviation in the frequency of usage of individual
amino acids over the average usage of all 20
amino acids. Similar to species-specific codon
preference, preference of the usage of amino ac-
ids across the organisms has been observed. The
amino acid bias between a set of genes F and the
genome (or second set of genes) G is given by:

A F G a F a G
i

i
i

(|) (/) | () () |= −
=
∑1 20

1

20

where ai(F) is average amino acid frequency of
ai in F (Karlin, 2001).

GC Content at Codon Positions: The com-
positional biases at the first and third positions
have been reported to be positively correlated
to expressivity and genomic G+C content, re-
spectively (Gutierrez et al, 1996). Hence the
computation of GC content at each codon position
is highly specific for each organism and acts as
a unique signature to the organism (Yoon et al,
2005). This involves computing the frequency of
occurrence of G and C at the three codon posi-
tions, GC1, GC2 and GC3 respectively. The mean
GC-content at the three codon positions for the
set of genes belonging to a sliding window are
compared with the corresponding values for the
complete gene set (or a second gene set) of the
organism. If this difference in the GC content at
the first and third codon positions for any window
and the genomic average (or second gene set) is
larger than a certain threshold, the genes in that
window are most likely horizontally transferred
genes. Highly expressed genes such as ribosomal
genes, chaperones, etc. also have their GC content
different from the genomic average and need to
be cross-checked to avoid false predictions. Thus,
to confirm if the genes in a particular window are
horizontally transferred, one need to compare these
measures with a set of highly expressed genes and
with a representative gene set of the organism. If
the gene(s) under investigation deviates from both
these sets, then it is likely to have a foreign origin.

Apart from only the horizontally transferred
genes, many other genes in a genome may exhibit
biases in their usage of codons and amino acids
and also variations in the GC content at the codon
positions. For example, the highly expressed genes
in most prokaryotic genomes, viz., ribosomal pro-
tein genes, translation and transcription processing
factors, and chaperone and degradation protein
complexes exhibit properties deviating from the
average gene. Hence, the horizontally transferred
genes predicted by the above measures should
also be compared with highly expressed genes, in

172

Identification of Genomic Islands by Pattern Discovery

order to reduce the error in predictions. The major
limitation of measures involving gene analysis is
thus the requirement of a well-annotated genome.

The different methods may often give differ-
ent results; therefore a combination of parametric
methods should be used to obtain a consensus for
the detection of potential HGT. Providing a number
of these approaches on a single integrated platform
is desirous as this would improve the confidence
of prediction. With this aim we have developed
a web-based tool, an Integrated Genomic Island
Identification Tool (IGIPT) where various mea-
sures discussed above have been implemented
on a single platform (Jain et al, 2008). The major
advantage of the tool is that it allows filtering of
GIs by a user-defined threshold value and also
allows extraction of the flanking regions of the
predicted GIs for further analysis, such as presence
of transposable elements, direct repeats, tRNA and
tmRNAgenes, etc. These extracted contigs can be
fed back to the tool for identifying true boundar-
ies, thereby reducing the effort of scanning the
genome in multiple overlapping windows.

The parametric methods based on anomalous
nucleotide composition are limited by the amelio-
ration of foreign genes (Garcia-Vallve et al, 2000);
that is, newly acquired genes will experience the
same mutational biases as long-term residents of
the genome and will eventually fail to be recog-
nized as anomalous. These methods, thus, reliably
detect only recently acquired genes. However, a
significant fraction of prokaryotic genomes, up
to 15%–20% of the genes, belong to this class of
recent horizontal acquisitions, suggesting their
importance. Another problem associated with
these methods is that genes arriving from donor
genomes experiencing similar mutational biases
will not be detected, because the acquired sequence
will not appear unusual in the recipient genome.
For e.g., the average GC content of E. coli, Shi-
gella and Salmonella lineages is approximately
50%, 51% and 52%, respectively, while for the
Gram-positive Staphylococcus and Streptococ-
cus lineages the average GC content is 33% and

38%, respectively. The parametric methods will
fail to identify transfer of genetic material from
one to another genome in the above groups. Also,
genes might appear atypical owing to stochastic
factors (especially if they are short) or as a result
of various mutational and selection variations and
hence may be misinterpreted as HGT regions.
This suggests need for more sensitive measures
of sequence composition for better prediction of
HGT events. The highly expressed genes also
exhibit codon usage and GC content deviating
substantially from the average gene. Hence,
putative alien genes identified by the parametric
approaches need to be compared against these
highly expressed genes of the acceptor (host)
genome, to remove false predictions. It has been
observed that these methods can predict very dif-
ferent classes of genes as HGT, hence using of a
single method could give biased results (Ragan et
al, 2006). The other limitation of the parametric
approach is that the likely source of these alien
genes cannot be identified since these measures
do not rely on comparing genes between organ-
isms. Even with these limitations, the parametric
approaches are popular because of their ease of
implementation.

Signal-Based Methods for
Analysis of Flanking Regions
of Putative Genomic Islands

In Figure 1 the structural features of a typical
genomic island is shown. Thus apart from an
analysis of genes in a putative genomic island,
regions in the vicinity of these regions can be
searched for relics of sequences that might have
helped in their integration, such as remnants of
translocation elements, attachment sites of phage
integrases, transfer origins of plasmids, presence
of transposable elements, tRNA and tmRNA genes
and direct repeats. Using tRNAscan-SE (Lowe &
Eddy, 1997) in the vicinity or within the putative
horizontally transferred region or searching for
direct repeats and transposable elements against

173

Identification of Genomic Islands by Pattern Discovery

the RepBase Update (Jurka et al, 2005) can help
in improving the confidence of prediction. Look-
ing for at least one mobility genes in the vicinity
of the putative GI provides more accuracy to the
GI prediction than by parametric methods alone.
Mobility genes can be identified by conducting
an HMMer search of each predicted gene against
PFAM mobility gene profiles and by searching the
genome annotation for terms that are commonly
used to describe mobility genes (Langille et al,
2010). This requires the genome annotation to
be complete and accurate. Thus, accuracy of the
prediction of GIS can be increased by coupling the
anomalous nucleotide composition analysis with
the identification of these structural features. To
facilitate such an analysis of the flanking regions,
we have provided the option to download the
predicted GI and its flanking regions in our tool,
IGIPT (Jain et al, 2008).

Although genomic islands have these con-
served structures, they need not have all of these
characteristics to be defined as genomic islands,
making their identification a difficult task. Hence
one needs to check for all these characteristic
features and if more than of these elements are
found in the vicinity of a probable GI, one could
be more certain of the HGT event.

An alternative approach to detect GIs could be
to divide the genome according to the presence of
transposable elements: the stretch of a chromo-
some from the start of a transposon sequence to
the start of the next transposon sequence. One
may then use the parametric methods discussed
above on this fragment to look for horizontally
transferred genes (Nag et al, 2006).

Alignment-Based Methods:
Comparative Genomics Approach

With the advent of large-scale genome sequenc-
ing projects, this approach is soon becoming the
most useful approach for identification of an HGT
event. It is an alternative approach to sequence-
composition based methods and involves compari-

son of multiple genome sequences, say, within a
species or genus to look for clear phyletic patterns
of non-vertical inheritance. Thus, by comparison
of genomes of two strains of bacteria, if one can
identify clusters of genes in one strain not pres-
ent in other closely related genomes, but found
in very distantly related species (as judged by
their degree divergence in 16S rRNAs or other
orthologs), then a horizontally transferred event
can be confirmed. In the case of comparison of
virulent and non-virulent strinas, these genes may
be responsible for the virulence of the organism
and their identification is important for drug target-
ing. Whole-genome alignment methods such as
Mauve (Darling et al, 2004) or MUMmer (Delcher
et al, 2002) can be used for identification of GIs
by comparative genomics approach.

The major limitation of this approach is the
non-availability of genomic sequences of closely
related species or strains. The other limitation of
this approach is the selection of both the query
and the comparative genomes, which may result
in inconsistent selection criteria due to the unfa-
miliarity of different phylogenetic distances within
genera (Langille et al, 2008). If the genomes being
compared are very closely related, this approach
will not be able to detect GIs acquired before
speciation. On the other hand, if the genomes
being compared include distantly related species,
one may be lead to false-predictions as a result
of rearrangements. IslandPick is a method that
automatically selects genomes for comparison
that are within a proper evolutionary distance and
identifies regions that are unique to only a single
genome (Langille et al, 2008).

The above discussed approaches can only
indicate the presence of a horizontally transferred
event, but cannot identify the source or origin.
Phylogeny-based approach discussed below is
the only approach which helps in validating the
presence of a GI and may also identify the likely
source of its origin.

174

Identification of Genomic Islands by Pattern Discovery

Clustering-Based Approach:
Phylogenetic Analysis

The horizontally transferred genes exhibit an
unusually high degree of similarity between the
donor and the recipient strains. Furthermore, be-
cause each transfer event introduces a specific set
of genes into a single lineage, the acquired trait
will be limited to the descendents of the recipient
strain and absent from closely related taxa, thereby
producing a scattered phylogenetic distribution for
genes with foreign origin (Ochman et al, 2000).
Thus, in some cases, it may be possible to establish
the evolutionary history of a gene by analyzing its
distribution among various lineages. If a gene is
confined to one taxon or species, it is more likely
to have been acquired through gene transfer than
to have been lost independently from multiple
lineages. This is the only method which can help
in identifying the likely source of the alien genes.
However, one cannot rule out the possibility that
a particular phenotypic trait such as resistance to
certain antibiotics have evolved independently
in diverse lineages through point mutations in
existing genes (Ochman et al 2000). Hence, it
may not always be possible to distinguish between
convergent evolution and horizontal transfer on
the basis of phylogenetic analyses alone. In both
comparative genome analyses and phylogenetic
analyses, the requirement of multiple genomes
whose complete sequences are available, usually
limits their application. An excellent review of
detecting GIs by this approach is given by Koonin
et al, 2001 and is summarized below. The presence
of a HGT can be confirmed when one observes:

• Unexpected Ranking of Sequence
Similarity Among Homologs: A gene se-
quence (or a protein sequence) from a par-
ticular organism shows the strongest simi-
larity to a homolog from a distant taxon.

• Unexpected Phylogenetic Tree Topology:
In a well-supported tree, a bacterial protein
groups with its eukaryotic homologs rather

than homologs from other bacteria and
shows a reliable affinity with a particular
eukaryotic lineage.

• Unusual Phyletic Patterns: A phyletic
pattern is basically the pattern of species
present or missing in the given cluster of
orthologs (COGs). This distribution of
COGs by the number of represented spe-
cies suggests major roles of lineage-specif-
ic gene loss and horizontal gene transfer in
evolution.

• Conservation of Gene Order between
Distant Taxa--Horizontal Transfer of
operons: The evolution of bacterial and
archaeal genomes involves extensive gene
shuffling, and there is little conservation of
gene order between distantly related ge-
nomes. Thus, the presence of three or more
genes in the same order in distant genomes
is extremely unlikely unless these genes
form an operon. Also, it has been shown
that each operon typically emerges only
once during evolution and is maintained
by selection ever after. Therefore, when a
(predicted) operon is present in only a few
distantly related genomes, horizontal gene
transfer seems to be the most likely scenar-
io. If such cases can be confirmed by phy-
logenetic tree analysis for multiple genes
comprising the operon, they provide the
strongest indications of horizontal transfer.

The major limitation of this approach is having
a reference species tree which has been constructed
using genes that have never been horizontally
transferred. However, identifying such a gene(s)
is not an easy task. AMPHORA (a pipeline for
AutoMated PHylogenOmic inference) is a method
that tries to construct a large genome tree, using a
selected list of genes that are shared across most
genomes (Wu & Eisen, 2008). It has an automated
pipeline developed that uses 31 ‘marker’ genes,
a hidden Markov model (HMM)-based multiple
alignment program, and maximum likelihood to

175

Identification of Genomic Islands by Pattern Discovery

construct an organism tree for 578 species. The
phylogenetic based HGT prediction methods can-
not usually detect transfers between sister branches
in a tree (very closely related species) and sparsely
distributed genes may not be detected if the gene
tree is consistent (or inconclusive) with the species
tree. Future research may minimize these limita-
tions either through increased species sampling
or by combining the power of phylogenetic and
sequence composition based approaches.

WEB-BASED TOOLS
AND DATABASES

A large number of tools and databases exist which
use different properties of genomic islands for
their identification. A few are based on the com-
positional bias measures, others involve stochastic
and probabilistic measures, while few others
use comparative genomics approach. A recent
review on the various web-based resources for
GI identification and their performance is given
by Langille et al (2010).

PAI-IDA: (http://compbio.sibsnet.org/proj-
ects/pai-ida/) The method uses iterative discrimi-
nant analysis that combines three compositional
criteria to distinguish PAIs/GIs from the rest of
the genome: G+C content, dinucleotide frequency
and codon usage (Tu and Ding, 2003). A small set
of known PAIs from a few genomes were used
as the initial training data to generate the param-
eters used in the linear functions to discriminate
anomalous regions from the rest of the genome.
Then, through iteration, the discriminant func-
tion is improved by taking additional predicted
anomalous regions into account. The program can
be used for searching virulence-related factors in
newly sequenced bacterial genomes and is freely
available for download.

GC-Profile: (http://tubic.tju.edu.cn/GC-
Profile/) It is an interactive web-based tool for
visualizing and analyzing the variation of GC
content in genomic sequences. It implements a

segmentation algorithm based on the quadratic
divergence, and integrates a windowless method
for the G + C content computation, known as the
cumulative GC profile which partitions a given
genome or DNA sequence into compositionally
distinct domains (Gao & Zhang, 2006; Zhang et
al, 2005). The precise boundary coordinates given
by the segmentation algorithm and the associated
cumulative GC profile for analyzing the variation
of GC content along the length of the genome or
chromosome makes it a very useful tool.

SIGI-HMM: (www.tcs.informatik.uni-
goettingen.de/colombo-sigihmm) The program
SIGI-HMM predicts GIs and the putative donor of
each individual alien gene and is publicly available
for download along with the program Artemis for
visualizing its output (Waack et al, 2006). The
algorithm exploits taxon specific differences in
codon usage for the identification of putative alien
genes and the prediction of their putative origin.
Codon usage of each gene is compared against
a carefully selected set of Codon Usage tables
representing microbial donors or highly expressed
genes. The product of the codon usage frequency
for each gene is calculated using the host codon
frequency table and all the frequency tables that
are available for other organisms (donor tables).
Based on certain cut-offs, it decides if each gene
resembles another species (that is, a putative donor
species) more closely than the host species and,
if so, the gene is labelled as a putative foreign
gene. An inhomogeneous hidden Markov model
(HMM) is implemented on a gene level to distin-
guish between normal background variations in
codon usage and variations that are due to genuine
HGT events, and which incorporates the removal
of highly expressed genes.

SWORDS: (http://www.isical.ac.in/~probal/
main.htm) The authors have proposed an unsuper-
vised statistical identification of genomic islands
(Nag et al, 2006). SWORDS is a statistical tool for
analyzing short oligonucleotide frequencies. As
transposons are known to be involved in horizon-
tal acquirement into the genome, they divide the

176

Identification of Genomic Islands by Pattern Discovery

genome according to the presence of transposable
elements, from the start of a transposon sequence
to the start of the next transposon sequence consid-
ered as a fragment. The frequencies of the k-words
are computed for each fragment using SWORDS
and standard hierarchical average linkage cluster
analysis carried out among the chosen segments
of a specific chromosome. The fragments having
very different word usage compared to the other
fragments of the same chromosome branch out
and shows up as genomic island fragments in the
dendrogram tree.

IslandPick: (http://www.pathogenomics.sfu.
ca/islandviewer/) IslandPick uses a comparative
genomics approach to detect GIs by automatically
identifying suitable genomes for comparison for
a given query genome as input. This selection
process allows GI predictions to be pre-computed
for any genome without any bias from manual
genome selection. Once the comparison genomes
are selected, whole-genome alignments are con-
structed using Mauve, and BLAST is used as a
secondary filter to ensure that the region is not a
recent duplication that is not aligned by Mauve.
IslandPick predictions are automatically updated
monthly for all currently available genomes using
default criteria, and unpublished genomes can be
submitted privately for analysis (Langille et al,
2008). Since IslandPick requires several phylo-
gentically related genomes to be sequenced to be
able to make a prediction; therefore, predictions are
not be available for many genomes. IslandViewer
is available from the same site for visualization
and download of the pre-computed GIs for all
published sequenced genomes.

MobilomeFINDER: (http://mml.sjtu.edu.
cn/MobilomeFINDER) It as a comprehensive,
comparative-genomics-based “mobile genome”
(mobilome) discovery platform in bacterial
strains allowing high-throughput genomic island
discovery by using microarray-derived compara-
tive genomic hybridization data and comparative
analysis of the contents and contexts of tRNA
sites (tRNAcc) and/or other integration hotspots

in closely related bacteria. It integrates ArrayOme
and tRNAcc software packages for the discovery
pipeline (Ou et al, 2007).

PredictBias: (http://www.davvbiotech.res.in/
PredictBias/) It is a web application for the iden-
tification of genomic and pathogenicity islands
in prokaryotes based on composition bias (%GC,
dincucleotide and codon bias), presence of inser-
tion elements (Transposase, Integrase, tRNA),
presence of genes encoding proteins similar to
known virulence factors (viz., adhesins, invasin,
toxin & others) by searching against Virulence
Factor Profile database (VFPD) and absence
from closely related non-pathogenic species by
using the ‘compare genome feature’ of the tool
(Pundhir et al, 2008). An important feature of
this tool is that it provides comparative analysis
of an island in related non-pathogenic species
which aids in validating the results and defining
the boundaries of PAIs.

IGIPT: (http://ccnsb.iiit.ac.in/nita/IGIPT/srk/
index.php): Integrated Genomic Island Prediction
Tool (IGIPT) is a web-based tool for identifying
genomic islands (GI) in prokaryotic genomes
(Jain et al, 2008). It provides six different mea-
sures which capture variations in the nucleotide
composition of a region compared to that of the
genomic average. Measures for analysis at the
genome level include computing GC content,
genomic signature based on dinucleotide biases
and k-mer biases (k = 2 – 6) based on word bi-
ases, in sliding windows and comparing with the
genomic average. These measures can be used in
the absence of any annotation of the genomes. At
the gene level, the three measures incorporated
involve computing biases in codon and amino
acid usages and GC content at the three codon
positions. These measures can also be applicable
when the complete genome of an organism is not
available, but only few genes are available. The
tool provides output in excel format, giving values
of various measures in each window making it suit-
able for plotting purposes. The tool also provides
option to screen the anomalous windows based

177

Identification of Genomic Islands by Pattern Discovery

on user-defined cut-off based on standard devia-
tion. On the web-server, provision to extract the
predicted GIs and its flanking region for further
investigations facilitates screening of transposable
elements, repeats, tRNA and mobility genes in the
proximity of GIs.

A large number of pre-computed databases
of Genomic Islands (GIs) and Pathogenecity
Islands (PAI) are available on the web which can
be used for further analysis. A few of these are
summarized below.

IslandPath: (http://www.pathogenomics.sfu.
ca/islandpath/) It is a network service incorporat-
ing multiple DNA signals and genome annotation
features into a graphical display of a bacterial or
archaeal genome to aid the detection of genomic
islands. It provides a list of bacterial genomes in
which GIs have been identified based on G+C
content in predicted ORFs (instead of sliding
window), dinucleotide bias for gene clusters, the
location of known or probable mobility genes, the
location of tRNAs and with annotation features
retrieved from public resources. It provides a
whole-genome graphical web interface for con-
venient visualization and analysis of genomic
islands highlighting features associated with GI
(Hsiao et al, 2003).

HGT-DB: (http://genomes.urv.cat/HGT-DB)
Under the hypothesis that genes from distantly
related species have different nucleotide compo-
sitions, the Horizontal Gene Transfer DataBase
(HGT-DB) includes statistical parameters such as
G+C content, codon and amino acid usages, for
identifying genes that deviate in these parameters
for prokaryotic complete genomes. For each ge-
nome, the database provides statistical parameters
for all the genes, as well as averages and standard
deviations of G+C content, codon usage, relative
synonymous codon usage and amino acid content,
as well as lists of putative horizontally transferred
genes, correspondence analyses of the codon usage
and lists of extraneous groups of genes in terms
of G+C content. For each gene, the database lists
several statistical parameters, including total and

positional G+C content, and determines whether
the gene deviates from the mean values of its own
genome (Garcia-Vallve et al, 2003).

PAIDB: (http://www.gem.re.kr/paidb) Patho-
genicity Island Database (PAIDB) is a relational
database of all reported PAIs and potential PAIs
regions predicted by a method that combines fea-
ture based and similarity based analyses. Due to
the difficulty in assigning virulence features to a
gene, a gene is considered a virulence gene in the
database only if it was experimentally validated
or reported in literature. Apart from the sequence
exhibiting compositional bias, PAIDB provides
GI information for these regions if they are found
to be homologous to previously described PAIs.
Using the PAI Finder search application, a multi-
sequence query can be analyzed for the presence
of potential PAIs and the PAIs can be browsed by
species, text searched or searched with BLAST
(Yoon et al, 2007).

NMPDR: (www.nmpdr.org/) The National
Microbial Pathogen Database Resource (NMPDR)
contains the complete genomes of ~ 50 strains of
pathogenic bacteria, and > 400 other genomes that
provide a broad context for comparative analysis
across the three phylogenetic domains (McNeil
et al, 2007). The current edition of the NMPDR
includes 47 archaeal, 725 bacterial, and 29 eu-
karyal genomes providing curated annotations for
comparative analysis of genomes and biological
subsystems, with an emphasis on the food-borne
pathogens and STD pathogens.

Islander: (http://kementari.bioinformatics.
vt.edu/cgi-bin/islander.cgi) The Islander database
is a comprehensive online resource of GIs in
completely sequenced bacterial genomes identi-
fied using the algorithm by Mantri and Williams
(2004). It exploits the feature that islands tend
to be preferentially integrated within tRNA and
tmRNA genes and identify the fragmented parts
of the RNA genes using BLAST to mark the
endpoints of the genomic islands.

178

Identification of Genomic Islands by Pattern Discovery

FUTURE RESEARCH DIRECTIONS

Since genomic islands contain genes responsible
for the virulence, antibiotic resistance, ecological
importance and responsible for the adaptability,
improved prediction of such regions from primary
sequence data is of significant interest. Integra-
tion of the various approaches is the need of the
hour as it has been observed that various methods
discussed above may result in different sets of
genes as HGT. With large bacterial genomes now
available, new algorithms based on biological
insights from the large samples, especially from
closely related organisms must be developed for
improving the prediction of genomic islands and
also understanding the mechanisms of transfer.
More accurate bioinformatics tools are needed
especially for precise identification of the bound-
aries of the genomic islands. Sequences from
metagenomics projects provide another challenge
since in these datasets the organism sources of
the sequences are unknown and short sequence
reads from next-generation sequencing further
complicates the problem.

CONCLUSION

The identification of genomic islands (GIs) is a key
task in annotation pipelines, especially in the case
of pathogens since it helps in identifying virulent
genes which can be potential drug targets. In this
chapter we have discussed three main types of
approaches used for the identification and valida-
tion of genomic islands. The parametric methods,
based on anomalous nucleotide compositions are
the most widely used method for detecting GIs
because of the ease with which these can be used.
These methods require only the genome (which
may or may not be annotated) or a representative
set of genes of an organism for detecting the GIs.
Searching in the neighbourhood of the predicted
GIs by any signal-based methods for the pres-
ence of tRNA or tmRNA genes, direct repeats,

mobility genes, etc. can help in reducing the false
predictions. Filtering of highly expressed genes
such as ribosomal protein genes, and prophages
can further improve the prediction accuracy of
the parametric methods. The different methods
may sometimes give different results; therefore
a combination of parametric methods should
normally be used to obtain a consensus for the
detection of potential HGT. It should be noted
that only recent horizontal acquisitions can be
identified by the parametric methods as a result
of the process called amelioration. Thus both
parametric and signal-based methods extract the
characteristic features within a genomic island
for its identification. However, different regions
in a genome may exhibit similar compositional
biases, for e.g., highly expressed genes. Hence
the predicted GIs must be confirmed by other
approaches. If the genomes of the closely related
species of the genome of interest are available,
then these predictions should further be confirmed
by comparative genomics approach. The choice
of the genomes used for comparison is very
crucial in this analysis, since comparison with
very closely related genomes may not be able
to detect GIs acquired before speciation. On the
other hand, comparison with genomes of distantly
related species may lead to false-predictions. To
validate the GI and identify the source of the
horizontal transfer event, phylogenetic analysis
of all the genes in the predicted GI is essential.
If all the genes in a neighbourhood show similar
phylogenetic relationship, different from the
average gene of the genome, then a GI can be
confirmed. However care should be taken while
analyzing the phylogenetic relationship since this
approach may not be able to distinguish between
convergent evolution and horizontal transfer. In
both comparative genomics and phylogenetic
analysis approaches, the requirement of multiple
genomes from closely and distantly related spe-
cies is required. If genes in the predicted GIs by
parametric or signal-based methods, exhibit either
similarity to a homolog from a distant taxon, or

179

Identification of Genomic Islands by Pattern Discovery

unusual phyletic patterns in clusters of orthologs,
or presence of a conserved operon in a few dis-
tantly related organisms confirm their horizontal
acquisitions. Each of the approaches discussed
above has its strengths and weaknesses and a
combination of methods is often most suitable.

REFERENCES

Andersson, J. O. (2005). Lateral gene transfer
in eukaryotes. Cellular and Molecular Life Sci-
ences, 62(11), 1182–1197. doi:10.1007/s00018-
005-4539-z

Campbell, A. (1999). Genome signature compari-
sons among prokaryote, plasmid and mitochon-
drial DNA. Proceedings of the National Academy
of Sciences of the United States of America, 96(16),
9184–9189. doi:10.1073/pnas.96.16.9184

Darling, A. C. E., Mau, B., Blattner, F. R., &
Perna, N. T. (2004). Mauve: Multiple alignment
of conserved genomic sequence with rearrange-
ments. Genome Research, 14(7), 1394–1403.
doi:10.1101/gr.2289704

Delcher, A. L., Phillippy, A., Carlton, J., & Salz-
berg, S. L. (2002). Fast algorithms for large-scale
genome alignment and comparison. Nucleic Ac-
ids Research, 30(11), 2478–2483. doi:10.1093/
nar/30.11.2478

Dobrindt, U., Hochhut, B., Hentschel, U., &
Hacker, J. (2004). Genomic islands in pathogenic
and environmental microorganisms. Nature Re-
views Microbiology, 2(5), 414–424. doi:10.1038/
nrmicro884

Gao, F., & Zhang, C. T. (2006). GC-Profile: A
Web-based tool for visualizing and analyzing the
variation of GC content in genomic sequences.
Nucleic Acids Research, 34, W686–W691.
doi:10.1093/nar/gkl040

Garcia-Vallve, S., Guzman, E., Montero, M. A., &
Romeu, A. (2003). HGT-DB: A database of puta-
tive horizontally transferred genes in prokaryotic
complete genomes. Nucleic Acids Research, 31(1),
187–189. doi:10.1093/nar/gkg004

Garcia-Vallve, S., Romeu, A., & Palau, J. (2000).
Horizontal gene transfer in bacterial and archaeal
complete genomes. Genome Research, 10,
1719–1725. doi:10.1101/gr.130000

Gogarten, J. P., & Townsend. (2005). Horizontal
gene transfer, genome innovation and evolu-
tion. Nature Reviews Microbiology, 3, 679–687.
doi:10.1038/nrmicro1204

Gutierrez, G., Marquez, L., & Marin, A. (1996).
Preference for guanosine at first codon position
in highly expressed Escherichia coli genes. A
relationship with translational efficiency. Nucleic
Acids Research, 24(13), 2525–2527. doi:10.1093/
nar/24.13.2525

Hsiao, W., Wan, I., Jones, S. J., & Brinkman,
F. S. L. (2003). IslandPath: Aiding detection of
genomic islands in prokaryotes. Bioinformatics
(Oxford, England), 19(3), 418–420. doi:10.1093/
bioinformatics/btg004

Jain, R., Ramineni, S., & Parekh, N. (2008). In-
tegrated genome island prediction tool (IGIPT).
In IEEE Proceedings of International Conference
on Information Technology (ICIT2008), (pp. 131-
132). DOI: 10.1109/ICIT.2008.42

Jenks, P. J. (1998). Microbial genome sequencing
beyond the double helix. BMJ (Clinical Research
Ed.), 317(7172), 1568–1571.

Juhas, M., van der Meer, J. R., Gaillard, M., Hard-
ing, R. M., Hood, D. W., & Crook, D. W. (2009).
Genomic islands: Tools of bacterial horizontal
gene transfer and evolution. FEMS Microbiology
Reviews, 33(2), 376–393. doi:10.1111/j.1574-
6976.2008.00136.x

180

Identification of Genomic Islands by Pattern Discovery

Jurka, J., Kapitonov, V. V., Pavlicek, A., Klonows-
ki, P., Kohany, O., & Walichiewicz, J. (2005).
Repbase update, a database of eukaryotic repeti-
tive elements. Cytogenetic and Genome Research,
110(1-4), 462–467. doi:10.1159/000084979

Karlin, S. (1998). Global dinucleotide signatures
and analysis of genomic heterogeneity. Cur-
rent Opinion in Microbiology, 1(5), 598–610.
doi:10.1016/S1369-5274(98)80095-7

Karlin, S. (2001). Detecting anomalous gene clus-
ters and pathogenicity islands in diverse bacterial
genomes. Trends in Microbiology, 9(7), 335–343.
doi:10.1016/S0966-842X(01)02079-0

Karlin, S., & Ladunga, I. (1994). Comparisons of
eukaryotic genomic sequences. Proceedings of the
National Academy of Sciences of the United States
of America, 91(26), 12832–12836. doi:10.1073/
pnas.91.26.12832

Karlin, S., & Mrazek, J. (1997). Compositional
differences within and between eukaryotic ge-
nomes. Proceedings of the National Academy of
Sciences of the United States of America, 94(19),
10227–10232. doi:10.1073/pnas.94.19.10227

Karlin, S., Mrazek, J., & Campbell, A. M. (1998).
Codon usages in different gene classes of the E. coli
genome. Molecular Microbiology, 29(6), 1341–
1355. doi:10.1046/j.1365-2958.1998.01008.x

Koonin, E. V., Makarova, K. S., & Aravind, L.
(2001). Horizontal gene transfer in prokaryotes:
Quantification and classification. Annual Review
of Microbiology, 55, 709–742. doi:10.1146/an-
nurev.micro.55.1.709

Langille, M. G. I., Hsiao, W. W. L., & Brink-
man, F. S. L. (2008). Evaluation of genomic
island predictors using a comparative genomics
approach. BMC Bioinformatics, 9, 329–338.
doi:10.1186/1471-2105-9-329

Langille, M. G. I., Hsiao, W. W. L., & Brinkman,
F. S. L. (2010). Detecting genomic islands us-
ing bioinformatics approaches. Nature Reviews
Microbiology, 8(5), 373–382. doi:10.1038/
nrmicro2350

Lawrence, J. G. (1999). Selfish operons: The evo-
lutionary impact of gene clustering in prokaryotes
and eukaryotes. Current Opinion in Genetics &
Development, 9(6), 642–648. doi:10.1016/S0959-
437X(99)00025-8

Lawrence, J. G., & Ochman, H. (1997). Ameliora-
tion of bacterial genomes: Rates of change and
exchange. Journal of Molecular Evolution, 44(4),
383–397. doi:10.1007/PL00006158

Lawrence, J. G., & Ochman, H. (2002). Reconcil-
ing the many faces of lateral gene transfer. Trends
in Microbiology, 10(1), 1–4. doi:10.1016/S0966-
842X(01)02282-X

Lio, P., & Vannucci, M. (2000). Finding pathoge-
nicity islands and gene transfer events in genome
data. Bioinformatics (Oxford, England), 16(10),
932–940. doi:10.1093/bioinformatics/16.10.932

Lowe, T. M., & Eddy, S. R. (1997). tRNAscan-SE:
A program for improved detection of transfer RNA
genes in genomic sequence. Nucleic Acids Re-
search, 25(5), 955–964. doi:10.1093/nar/25.5.955

Mantri, Y., & Williams, K. P. (2004). Islander:
A database of integrative islands in prokaryotic
genomes, the associated integrases and their DNA
site specificities. Nucleic Acids Research, 32,
D55–D58. doi:10.1093/nar/gkh059

McNeil, L. K., Reich, C., Aziz, R. K., Bartels,
D., Cohoon, M., & Disz, T. (2007). The National
microbial pathogen database resource (NMPDR):
A genomics platform based on subsystem annota-
tion. Nucleic Acids Research, 35, D347–D353.
doi:10.1093/nar/gkl947

181

Identification of Genomic Islands by Pattern Discovery

Nag, S., Chatterjee, R., Chaudhuri, K., &
Chaudhuri, P. (2006). Unsupervised statistical
identification of genomic islands using oligo-
nucleotide distributions with application to vibrio
genomes. Sadhana, 31(2), 105–115. doi:10.1007/
BF02719776

Ochman, H., Lawrence, J. G., & Groisman, E.
A. (2000). Lateral gene transfer and the nature of
bacterial innovation. Nature, 405(6784), 299–304.
doi:10.1038/35012500

Ou, H. Y., He, X., Harrison, E. M., Kulasekara,
B. R., Thani, A. B., & Kadioglu, A. (2007).
MobilomeFINDER: Web-based tools for in silico
and experimental discovery of bacterial genomic
islands. Nucleic Acids Research, 35, W97–W104.
doi:10.1093/nar/gkm380

Pundhir, S., Vijayvargiya, H., & Kumar, A. (2008).
PredictBias: A server for the identification of ge-
nomic and pathogenicity islands in prokaryotes.
In Silico Biology, 8(3-4), 223–234.

Ragan, M. A., Harlow, T. J., & Beiko, R. G. (2006).
Do different surrogate methods detect lateral
genetic transfer events of different relative ages?
Trends in Microbiology, 14(1), 4–8. doi:10.1016/j.
tim.2005.11.004

Rajan, I., Aravamuthan, S., & Mande, S. S. (2007).
Identification of compositionally distinct regions
in genomes using the centroid method. Bioinfor-
matics (Oxford, England), 23(20), 2672–2677.
doi:10.1093/bioinformatics/btm405

Tu, Q., & Ding, D. (2003). Detecting pathogenic-
ity islands and anomalous gene clusters by itera-
tive discriminant analysis. FEMS Microbiology
Letters, 221(2), 269–275. doi:10.1016/S0378-
1097(03)00204-0

Waack, S., Keller, O., Asper, R., Brodag, T.,
Damm, C., & Fricke, W. F. (2006). Score-based
prediction of genomic islands in prokaryotic
genomes using hidden Markov models. BMC
Bioinformatics, 7, 142–153. doi:10.1186/1471-
2105-7-142

Wu, M., & Eisen, J. A. (2008). A simple, fast,
and accurate method of phylogenomic inference.
Genome Biology, 9(10), R151. doi:10.1186/gb-
2008-9-10-r151

Yoon, S. H., Hur, C. G., Kang, H. Y., Kim, Y. H.,
Oh, T. K., & Kim, J. F. (2005). A computational
approach for identifying pathogenicity islands in
prokaryotic genomes. BMC Bioinformatics, 6,
184–194. doi:10.1186/1471-2105-6-184

Yoon, S. H., Park, Y. K., Lee, S., Choi, D., Oh,
T. K., Hur, C. G., & Kim, J. F. (2007). Towards
pathogenomics: A Web-based resource for patho-
genicity islands. Nucleic Acids Research, 35,
D395–D400. doi:10.1093/nar/gkl790

Zhang, C. T., Gao, F., & Zhang, R. (2005).
Segmentation algorithm for DNA sequences.
Physical Review E: Statistical, Nonlinear, and
Soft Matter Physics, 72, 041917. doi:10.1103/
PhysRevE.72.041917

KEY TERMS AND DEFINITIONS

Comparative Genomics: Involves comparing
whole genomes/chromosomes of two or more
organisms.

Genomic Islands (GIs): The movement of
genetic material between phylogenetically unre-
lated organisms by mechanisms other than parent
to progeny inheritance.

Horizontal Gene Transfer (HGT): The
transfer of genes by mechanisms other than direct
descent (vertical inheritance) between diverse
organisms.

Laterally Transferred Genes: Same as Hori-
zontally transferred genes.

Pathogenicity Islands (PAIs): The genomic
islands containing genes responsible for the viru-
lence of the bacterial strains.

Phylogeny: The evolutionary relationship
between taxonomic group of organisms (e.g.,
specis or population).

182

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 11

INTRODUCTION

The speed and precision of natural vision system
for living beings (human, animal, birds or insects)
is amazing, yet less explored because of complex-
ity involved in the biological phenomena. Every
intelligent system (Intelligent robotics, Intelligent
Traffic system, Interactive medical applications

and human intension recognition in retail domain
etc.) in many industries is attempting to simu-
late natural vision system. The major hurdles in
such process are high computational complexity
because of very high dimensional images data
and the semantic gap between the image content
and the observed concepts from natural images/
scenes. Recent progress in computational power

Rudra Narayan Hota
Frankfurt Institute for Advanced Studies, Germany

Kishore Jonna
Infosys Labs, Infosys Technologies Limited, India

P. Radha Krishna
Infosys Labs, Infosys Technologies Limited, India

Video Stream Mining for On-
Road Traffic Density Analytics

ABSTRACT

Traffic congestion problem is rising day-by-day due to increasing number of small to heavy weight
vehicles on the road, poorly designed infrastructure, and ineffective control systems. This chapter ad-
dresses the problem of estimating computer vision based traffic density using video stream mining. We
present an efficient approach for traffic density estimation using texture analysis along with Support
Vector Machine (SVM) classifier, and describe analyzing traffic density for on-road traffic congestion
control with better flow management. This approach facilitates integrated environment for users to derive
traffic status by mining the available video streams from multiple cameras. It also facilitates processing
video frames received from video cameras installed in traffic posts and classifies the frames according to
traffic content at any particular instance. Time series information available from various input streams
is combined with traffic video classification results to discover traffic trends.

DOI: 10.4018/978-1-61350-056-9.ch011

183

Video Stream Mining for On-Road Traffic Density Analytics

and understanding of local and global concepts
in images opens path for new line of work in
dynamic automation. Table 1 summarizes some
of the emerging applications in various domains
and existing challenges in vision based solutions.

Video cameras are used in various industry
segments for security, surveillance and object
tracking purposes. Inferences derived from Video
analytics systems will be of great importance for
taking critical decisions and predictions in varied
industry application scenarios. One such applica-
tion area is traffic and transport management by
using video cameras installed at traffic posts in a
city. The traffic can be congested in some areas
and the vehicular flow towards that area still in-
creases the congestion. To avoid these types of
issues, the area under congestion has to be esti-
mated and the vehicular flow has to be directed
in other possible routes. Because of the difficulty
faced in recent traffic management and suitabil-
ity of applying vision based approaches, it is of
high interest in recent time. In the rest of this

chapter, we focus on traffic density problems,
issues and solution approach.

Traffic density and traffic flow are important
inputs for an intelligent transport system (ITS) to
manage traffic congestion better. Presently, this
is obtained through loop detectors (LD), traffic
radars and surveillance cameras. However, install-
ing loop detectors and traffic radars tends to be
difficult and costly. Currently, more popular way of
circumventing this is, to develop some sort of Vir-
tual Loop Detector (VLD) by using video content
understanding technology to simulate behavior of
a loop detector and to further estimate the traffic
flow from a surveillance camera. But difficulties
arise when attempting to obtain a reliable and
real-time VLD under changing illumination and
weather conditions.

In this work, we present an approach to esti-
mate on-road traffic density using texture analysis
and Support Vector Machine (SVM) classifier,
and analyze traffic density for on-road traffic
congestion control and flow management. Our
system provides an integrated environment for

Table 1. Vision based application in different domain and issues

Domain Applications General functions in computer
vision systems

Issues of Computer vision
Systems

1. Health Care Computer-aided diagnosis, surgical
applications, Mammography Analysis,
Detection of Carcinoma tissue, Re-
trieval of similar diagnosed images.

i. Image acquisition: (Sensors-
light, ultra sonic, tomography,
radar)
ii. Pre-processing (Re-sampling,
Noise reduction, Enhancement,
Scale normalization)
iii. Feature extraction (Lines,
edges, interest points, corners,
blobs, color, shape and texture)
iv. Detection/Segmentation (re-
gion of interest, foreground and
background separation, Interest
points)
v. High-level processing (Object
Detection, Recognition, Clas-
sification and Tracking)

i. Various types of image and
videos (binary, gray, color),
different data types (GIF, BMP,
JPEG and PNG), and sizes
(SQCIF, QCIF, CIF, 4CIF).
ii. Camera Sabotage (FOV
obstruction, sudden pan, tilt,
zoom) and Discontinuity in
video streams
iii. Illumination (varied intensity
and multiple source of lights)
iv. Blurring
v. Occlusion
vi. Different object size
vii. Changing Field of View in
moving cameras

2.Transport Small to large vehicle detection, Ve-
hicle count, Traffic density estimation,
Incident detection, Traffic rule viola-
tion detection, Eye and head tracking
for automatic drowsiness detection,
Lane/Road detection etc.

3. Security
Surveillance

People detection and tracking, Abnor-
mal behavior recognition, Abandoned
Objects, Biometric pattern recognition
(Face, Finger prints), Activity monitor-
ing in mines etc

4. Manufacturing Camber measurement, Item detection
and classification, and Vision-guided
robotics etc.

5. Retail Cart detection, Vegetable recognition
etc.

184

Video Stream Mining for On-Road Traffic Density Analytics

users to derive traffic status by mining available
video camera signals. Proposed traffic decision
support system process the video frames received
from video cameras installed in traffic signals and
classifies the frames according to traffic content
at any particular instance. One of our goals is
to classify each given frame into low, medium
or high traffic density category with given ROI
(Region of Interest). Secondly, we apply analyt-
ics on output of density estimator to manage and
optimize the traffic flow within the city. Cameras
installed at multiple locations of a city provide
video sequences as frames to video analytics so-
lution. This solution classifies frames to provide
the category information. Time series information
available from the inputs sequence is combined
with traffic video classification, and used in traffic
trend estimation for any specified time interval.
Our developed solution demonstrates the work-
ing model on various cameras placed at different
location of the city.

The rest of the chapter is organized as fol-
lows. In the Background Section, we describe the
basics of video streaming, video stream mining
and SVM Classifier that are related to our work.
Next, we briefly discuss existing approaches for
estimating traffic density. In the Video Stream
Mining for Traffic Density Estimation section, we
describe our approach for specific traffic applica-
tion scenarios followed by the method of texture
feature extraction to represent the local image
patch and classification task. We also describe
the data sets used and present the results obtained
followed by discussion. We conclude the chapter
with a summary.

BACKGROUND

Video Streaming

Streaming video is defined as continuous trans-
portation of images via internet and displayed at
the receiving end which appears as a video. Video

streaming is the process where packets of data in
continuous form were given as input to display
devices. The player takes the responsibility of
synchronous processing of video and audio data.
The difference between streaming and download-
ing video is that in downloading video, the video
is completely downloaded and we cannot perform
any operations on the file while it is being down-
loaded. The file is stored in the dedicated portion
of memory. In streaming technology, the video is
buffered and stored in a temporary memory, and
once the temporary memory is cleared the file is
deleted. Operations can be performed on the file
even when the file is not completely downloaded.

The main advantage of video streaming is that
there is no need to wait for the whole file to be
downloaded and processing video can be started
after receiving first packet of data. On the other
hand, streaming a high quality video is difficult
as the size of high definition video is huge and
bandwidth may not be sufficient. Also, the band-
width has to be good so that there will not be any
breaking in the video flow. It can be revealed
that for video files of smaller size, downloading
technology can be used; and for larger files stream-
ing technology is more suitable. Still there is a
space for improvement in streaming technology,
by finding an optimized method to stream a high
definition video with smaller bandwidth through
the selection of key frames for further operations.

Video Stream Mining

Stream mining is a technique to discover useful
patterns or patterns of special interest as explicit
knowledge from a vast quantity of data. A huge
amount of multimedia information including
video is becoming prevalent as a result of ad-
vances in multimedia computing technologies
and high-speed networks. Due to its high informa-
tion content, extracting video information from
continuous data packets is called as video stream
mining. Video stream mining can be considered
as subfields of data mining, machine learning and

185

Video Stream Mining for On-Road Traffic Density Analytics

knowledge discovery. In mining applications, the
goal of a classifier is to predict the value of the
class variable for any new input instance provided
with adequate knowledge about class values of
previous instances. Thus in video stream min-
ing, a classifier is trained using the training data
(class values of previous instances). The mining
process will be ineffective if samples are not a
good representation of class value. To get good
results from classifier, the training data should
include majority of instance that a class variable
can possess.

SVM-Based Classifier

Classifying data is a crucial task in machine
learning. When an instance is given as input, the
classifier should categorize to which class the input
belongs. Classifier should know the boundaries
and data points of its classes. In this work, we used
SVM classifier for classifying the traffic density.

SVM’s (Cristianini & Shawe-Taylor, 2000;
Vapnik 1998) are very effective than other con-
ventional non- parametric classifiers (e.g., the
RBF Neural Networks, Nearest-Neighbor (NN),
and Nearest-Center (NC) classifiers) in terms
of classification accuracy, computational time,

and stability to parameter setting. The theory of
SVM is to create a hyper-plane which separates
the classes with maximum accuracy. There can be
many hyper-planes to separate the two categories.
The largest separation between the two categories
is considered as the best plane.

The hyper-plane is chosen such that the distance
between the nearest different class points is
maximum. This is called as the “maximum-
margin hyper plane”. The margin (γ) and hyper-
plane (w) for a non-linearly separable class is
shown in Figure 1. A hyper-plane, which is de-
noted by (,) ,w b R Rn∈ × consists of all x

satisfying w x b, + = 0 .
The problem thus can be formed as:

Minimize 1
2

2
w subject toy w x b

i i
(,) .+ ≥ 1

 (1)

The solution to this optimization problem of
SVM’s is given by the saddle point of the Lagrange
function. Let C be the upper bound of the Lagrange
multipliersα

i
, and then equation (1) can be for-

mulated as

Figure 1. Margin and hyper plane classification problem

186

Video Stream Mining for On-Road Traffic Density Analytics

L y y x x
i

i
i

ji
j i j i j

() ,α α α α= −∑ ∑∑12

(2)

with constraints α
i

i
i
y∑ = 0 and 0 ≤ ≤α

i
C .

TRAFFIC DENSITY ESTIMATION
APPROACHES

Heavy traffic congestion of vehicles, mainly dur-
ing peak hours, creates a big problem in major
cities all around the globe. The ever-increasing
number of small to heavy weight vehicles on the
road, poorly designed infrastructure, and ineffec-
tive traffic control systems are major causes for
traffic congestion problem. Intelligent Transpor-
tation System (ITS) with scientific and modern
techniques is a good way to manage the vehicular
traffic flows in order to control traffic congestion
and for better traffic flow management. For this
ITS takes estimated on-road density as input and
analyze the flow for better traffic congestion
management.

One of the most used technologies for deter-
mination of traffic density is the Loop Detector
(LD) (Stefano et al., 2000). These loop detectors
are placed at the crossing and junctures. Once any
vehicle passes over, it generates signals. Signals
from all the LDs placed in crossing are combined
and analyzed for traffic density and flow estima-
tion. Recently, more popular way of circumvent-
ing automated traffic analyzer is by using video
content understanding technology to estimate the
traffic flow from a set of surveillance cameras
(Lozano, et. al., 2009; Li, et. al., 2008). Because
of low cost and comparatively easier maintenance,
video based system with multiple CCTV (Closed
Circuit Television) cameras are also used in ITS,
but mostly for monitoring purpose (Nadeem, et.
al., 2004). Multiple screen displaying the video
streams from different location are displayed
at central location to observe the traffic status

(Jerbi, et. al., 2007; Wen, et. al., 2005; Tiwari, et.
al., 2007). Presently this monitoring system is a
manual task of observing these videos continu-
ously or storing them for lateral use. In this set
up it is very difficult to recognize any real time
critical happenings (e.g., heavy congestions).

Recent techniques such as Loop detector have
major disadvantages of installation and proper
maintenance. Computer vision based traffic ap-
plication is considered as cost effective option.
Applying image analysis and analytics for better
congestion control and vehicle flow management
in real time has multiple hurdles, and most of
them are in research stage. Some of the important
limitations for computer vision based technology
are as follows:

• Difficulty in choosing the appropriate sen-
sor for deployment.

• Trade-off between computational com-
plexity and accuracy.

• Semantic gap between image content and
perception poses challenges to analyze the
images hence it is difficult to decide which
feature extraction techniques to use.

• Finding a reliable and practicable model
for estimating density and making global
decision.

The major vision based approaches for traffic
understanding and analyses are object detection
and classification, foreground and back ground
separation, and local image patch (within ROI)
analysis. Detection and classification of moving
objects through supervised classifiers (e.g. Ada-
Boost, Boosted SVM, NN etc.) (Li, et. al., 2008;
Ozkurt & Camci, 2009) are efficient only when the
object is clearly visible. These methods are quite
helpful in counting the number of vehicles and
tracking them individually, but in traffic scenario
due to high overlapping of objects, most of the
occluded objects are partially visible and very
low object size makes these approaches imprac-
ticable. Many researchers have tried to separate

187

Video Stream Mining for On-Road Traffic Density Analytics

foreground from background in video sequence
either by temporal difference or optical flow (Oz-
kurt & Camci, 2009). However, such methods are
sensitive to illumination change, multiple sources
of light reflections and weather conditions. So,
vision based approach for automation has its own
advantages over other sensors in terms of cost on
maintenance and installment process. Still the
practical challenges need high quality research
to realize it as solution. Occlusion due to heavy
traffic, shadows (Janney & Geers, 2009), varied
source of lights and sometimes low visibility
(Ozkurt & Camci, 2009) makes it very difficult
to predict traffic density and flow estimation.

Given the fact that, low object size, high
overlapping between objects and broad field of
view in surveillance camera setup, estimation of
traffic density by analyzing local patches within
given ROI is an appealing solution. Further, levels
of congestion constitute a very important source
of information for ITS. This is also used for
estimation of average traffic speed and average
congestion delay for flow management between
stations. In this work, we developed a solution
to estimate vehicular traffic density and apply
analytics to manage traffic flow.

VIDEO STREAM MINING FOR
TRAFFIC DENSITY ESTIMATION

In a set up of multiple cameras placed at different
location/junctions our target is to extract mean-
ingful insights from video frames grabbed from
video streams. This is achieved by estimating
traffic density at each of these junctions. Apply-
ing analytics on this time series data is useful
for trend monitoring and optimal route finding.
Since a very specific portion of whole image in
the camera field-of-view is of our interest, first
we provide an option for users to choose a flex-
ible convex polygon to cover the best location
in the camera field view for density estimation.
One such example is shown in Figure 2. Here, we

first categorize each frame, from selected camera
and its field of view, into different density classes
(Low, Medium and High category) according to
the traffic present in it by using supervised clas-
sification method. These classification results are
archived in database for selected video frames.
Database also contains time series information
for each frame extracted from video sequence.
Analyzer component will mine the time series
data along with classification data to provide
the traffic patterns. User will be given option to
visualize the mined results to view average traffic
condition in timely basis.

The presented system serves as automation
for manual monitoring system by alert generation
in critical situations. It can aid in traffic monitor-
ing system and reduces labor-intensive work. Our
system can work in real time for multiple cam-
eras (e.g., 100 cameras at the same time). The
output of the proposed method is further used for
analytics in the traffic flow. Alarms generation
for abnormal traffic condition, trend monitoring
and route identification are the major use of traf-
fic density estimation. This helps in vehicular
flow routing, shorted or less congested path find-
ing (Gibbens & Saacti, 2006).

The basic flow diagram of the proposed
methodology is shown in Figure 3. The major
modules are: Camera/ROI selection, Classifier,
Traffic flow analyzer and Dashboard to show
the output. The detail diagram for traffic density
estimation is shown in Figure 4 and its components
are explained below.

ROI (Region of Interest) Selection

In surveillance camera setup, the camera field-of-
view covers a very wide region. But the informa-
tive data lies only in small region. So it is better to
remove the unnecessary information from image
and process only useful information. Moreover,
it is also important to select significant region
of interest for effective analysis. The user has to
select points (coordinates) in the image such that

188

Video Stream Mining for On-Road Traffic Density Analytics

Figure 2. Region of interest for traffic density estimation

Figure 3. Traffic density solution flow diagram

189

Video Stream Mining for On-Road Traffic Density Analytics

the connection of these points form a closed region
(convex polygon) on which the model classifier
operates. The ROI can be of any shape but region
should cover the view of entire traffic congestion.

Preprocessing

Lighting and illumination are very important fac-
tors while collecting clear images. Bad lighting,
shadows due to buildings or obstacles and light
variation from day to night etc. would hamper
the precision of traffic density estimation. For
the same density of traffic, the density estimation
may vary from day to night because of variation in
lighting. So there is a necessity to preprocess the
image patches before estimation. This preprocess-
ing includes contrast enhancement which helps
in processing the shadowed region adequately.
Smoothing is another operation in the preprocess-
ing which cutoffs the major variation in the im-
age. Contrast enhancement as well as smoothing
helps in better gradient feature extraction and it
has following advantages:

• Robust system for variation of intensity of
light source.

• Takes care for low visibility of objects.
• Tackle well in noisy scenarios.

Division into Sub Windows

An inherent problem with global feature extraction
and representation approaches is that they are sen-
sitive to local image variations (e.g., pose changes,
illumination changes, and partial occlusion). Local
feature extraction methods, on the other hand are
less sensitive to these effects. Moreover, utiliza-
tion of geometric information and constraints in
the configuration of different local features make
them robust (either explicitly or implicitly while
constructing target object models). The entire
image (within ROI) is not processed at a time as
it can be of any shape and size (option given for
users to select ROI). The image within the ROI
is divided into small windows of size W x W
with overlapping of D pixels (These W and D are
parameters to find the best size and overlapping
of windows) and the sub-windows are given as
input to the classifier.

Figure 4. Block diagram of traffic density classification

190

Video Stream Mining for On-Road Traffic Density Analytics

Texture Feature

The number of objects (e.g. vehicles) present in
the ROI for density analysis is inversely propor-
tional to the sparseness of the edge component
or pixels with higher gradient values. So, we use
textural feature extraction technique to represent
the variation (gradient) among the neighboring
pixel values. To measure the traffic density, we
used Histogram of Oriented Gradient (Dalal &
Triggs, 2005) as the feature for each overlapping
local patch. The sub-windows are converted into
feature vectors and these feature vectors are fed
to SVM classifier (Cristianini & Shawe-Taylor,
2000) for classifying them into ‘Traffic’ class or
‘No Traffic’ class as described below.

Classification

Each of the extracted feature vectors of the sub-
windows are classified by a trained classifier. This
binary classifier is developed with large number
of manually selected image data with and with-
out the presence of traffic objects. The classifier
generates classification confidence which can be
negative or positive. The positive output denotes
the Traffic congestion in image patch and the nega-
tive represents no traffic or less traffic condition.
The cumulative results from all the sub-windows
are calculated as Percentage of Traffic Density.
As camera field-of-view covers a wide range in
ground (approximately from 2 meter to 100 meter
view), the number of objects can be placed in
the near field of view is comparatively smaller
than the number of object in farther view. So,
we considered weights (by linear interpolation)
as higher weight for the farther patch decision
than that of nearer patch while accumulating the
global decision. The decision of classifier is based
on weighted confidence which is computed ac-
cording to distance of the sub-windows from the
camera field-of-view. That is, the percentage of
global traffic density is obtained as:

Traffic Density
Noof subwindows with traffic

Total number of w
%

.
() =

iindows within ROI
* 100

(3)

Based on the percentage of traffic density
with respect to the two user defined threshold
values, the image is classified into low, medium
or high density as follows. Let T1 and T2 be the
two thresholds, T1 be the minimum threshold
below which density is low and T2 be the maxi-
mum threshold above which density is consider
being high. Let T be the traffic percentage of the
image then,

• The image is ‘Low’ Density if T <= T1.
• The image is ‘Medium’ Density if T1 < T

<= T2.
• The image is ‘High’ Density if T >T2.

The step wise algorithm is presented in Table 2.

Retraining the Classifier

The trained classifier may not be perfect and ac-
curate in decision making. To make the classifier
robust and accurate, images which are wrongly
classified have to be collected and use them to
retrain the classifier. To make the trained classifier
robust against the changing scenarios, different
light sources and camera positioning, we have
provided the option of retraining the classifier
for better density estimation. Periodically the user
can collect data which are wrongly classified and
retrain classifier (with cross validation) to get
appropriately trained for particular setting (e.g.
view angle, distance and height).

Results and Observations

For our experiments and performance compari-
son of the proposed approach of traffic density
estimation, we considered both synthetic as well
as real world data sets.

191

Video Stream Mining for On-Road Traffic Density Analytics

The synthetic data sets are prepared by plac-
ing segmented vehicles on the traffic images with
different density patterns. To simulate on-road
traffic with different densities (from 0 to 100%),
we placed different number of vehicle samples
on the empty road images. The manual way of
creating synthetic data helps us to control the
density amount in discrete state, which we used
for performance evaluation.

Different kinds of traffic densities with mixed
number of vehicles are shown in Figure 5. We
created six different data set with 1, 3, 5, 10
13 and 17 vehicles placed at random positions
(within ROI) and each set contains 100 images.
We categorized the first two types (images with
1 and 3 vehicles) as low density, images with 5
vehicles as medium density and the last two types
as high density.

Table 2. Traffic density estimation algorithm

Input

Image : Extracted Image frame from video stream
T1 & T2 : Threshold for categorization of Image frame density within ROI

W : Size of the local window patch
D : Overlapping Pixel width among the local window

Output Categorization of Image into Low, Medium or High traffic density

Steps:

1 Select a flexible convex polygonal region of interest (ROI), covering the complete expected traffic area.

2 Divide the image patch within the ROI into widows of size WxW with overlapping D pixels.

3 Extract texture feature for each of the image patch.

4 Classify each local window by using the extracted feature vector and trained binary classifier for presence of traffic or not

5 Compute the percentage of traffic density within ROI by using equation 1.

6 Apply threshold T1 and T2 to categorize the frame into low, medium or high.

Figure 5. Synthetic traffic data with different number of vehicles.(a)1, (b)3, (c)5,(d)10, (e)13 and (f)17

192

Video Stream Mining for On-Road Traffic Density Analytics

Real data sets are collected from the surveil-
lance cameras placed at the traffic posts. These
data sets are collected with time stamp. For ex-
perimental purpose, we selected a set of images
from the video sequence captured in 24x7 bases
and labeled them as low, medium and high traffic
density according to their vehicle occupancy. The
experiment is done on bmp images of 24 BPP
(bits per pixels) data and of 352x288 pixels in
size.

Some of the classification results on real data
representing three categories are shown in Figure
6. It can be observed that the images with higher
vehicle occupancy are classified as high or me-

dium than low density class. The performances
of correct classification on both synthetic and real
data are shown in Figure 7(a) and 7(b) respec-
tively. The percentages of density prediction are
shown in Figure 8. From the annotated data we
computed the thresholds for image categorization
(threshold are shown in thick and dotted lines). It
can be observed from the density curve that after
smoothing the predicted density in time window,
the abruptness of the density variation reduces and
hence accuracy of correct classification increases
for both the data sets.

The performance of correct classification in
synthetic data is improved from 86.3% to 97.5%

Figure 6. Results showing classification of image frames

Figure 7. Density estimation performance for (a) synthetic and (b) real world data

193

Video Stream Mining for On-Road Traffic Density Analytics

by smoothening, and in the case of real data set
we achieved 90.7% accuracy.

CONCLUSION

In this chapter, we described a computer vision
based approach for on-road traffic density estima-
tion and analytics for flow control management.
The efficacy of this method is supported with
various experiments on synthetic and real world
data sets. The performance of traffic analytics
are presented for texture feature extraction tech-
niques. With extensive experiments, we show that
the gradient features with contrast normalization
and smoothing works reasonably well in the real

life data sets. The presented work can be further
enhanced by extending with reliable re-trainable
model which is adaptive in changing scenarios
and weather condition.

REFERENCES

Cristianini, N., & Shawe-Taylor, J. (2000). Support
vector machines and other kernel-based learning
methods. Cambridge University Press.

Dalal, N., & Triggs, B. (2005). Histograms of ori-
ented gradients for human detection. Proceedings
of International Conference on Computer Vision
& Pattern Recognition (CVPR ‘05), 1, 886—893.

Figure 8. Traffic density flow and classification on (a) synthetic and (b) real data

194

Video Stream Mining for On-Road Traffic Density Analytics

Gibbens, R. J., & Saacti, Y. (2006). Road traffic
analysis using MIDAS data: Journey time pre-
diction. (Technical Report, UCAM-CL-TR-676).
Computer Laboratory. England: University of
Cambridge.

Janney, P., & Geers, G. (2009). Framework for
illumination invariant vehicular traffic density
estimation. Proceedings of Pacific Rim Sympo-
sium on Image and Video Technology (PSIVT
2009), Japan.

Jerbi, M., Senouci, S.-M., Rasheed, T., & Ghamri-
Doudane, Y. (2007). An infrastructure-free traf-
fic Information System for vehicular networks.
Proceedings of Vehicular Technology Conference
(VTC-2007).

Li, Z., Tan, T., Chen, J., & Wassantachat, T. (2008).
On traffic density estimation with a boosted
SVM classifier. Proceeding of 2008 Digital Im-
age Computing - Techniques and Applications
(DICTA2008), Australia.

Lozano, A., Manfredi, G., & Nieddu, L. (2009).
An algorithm for the recognition of levels of
congestion in road traffic problems. Mathematics
and Computers in Simulation, 79(6), 1926–1934.
doi:10.1016/j.matcom.2007.06.008

Nadeem, T., Dashtinezhad, S., Liao, C., & If-
tode, L. (2004). TrafficView: A scalable traffic
monitoring system. Proceedings of IEEE Interna-
tional Conference on Mobile Data Management
(MDM’04).

Ozkurt, C., & Camci, F. (2009). Automatic traffic
density estimation and vehicle classification for
traffic surveillance systems using neural networks.
[MCA]. Mathematical and Computational Appli-
cations An International Journal, 14(3), 187–196.

Stefano, L. D., Milani, I., & Viarani, E. (2000).
Evaluation of inductive-loop emulation algorithms
for UTC systems. Proceedings of the Sixth In-
ternational Conference on Control, Automation,
Robotics and Computer Vision (ICARCV 2000),
Singapore.

Tiwari, G., Fazio, J., & Baurav, S. (2007). Traffic
planning for non-homogeneous traffic. Sadhna
(Special Issue on Transportation Research - Safety
and Sustainability), 32(4), 309-328.

Vapnik, V. (1998). Statistical learning theory.
New York, NY: Wiley-Interscience.

Wen, Y.-H., Lee, T.-T., & Cho, H.-J. (2005).
Missing data treatment and data fusion toward
travel time estimation for ATIS. Journal of the
Eastern Asia Society for Transportation Studies,
6, 2546–2560.

195

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 12

DOI: 10.4018/978-1-61350-056-9.ch012

INTRODUCTION

A successful business is often conditioned by its
ability to identify, collect, process, and disseminate
information for strategic purposes. However, a
company can be over-informed, and not be able
to search through all this information. Now, to be
competitive it must know their environment. The
establishment of a competitive intelligence (CI)
approach is the inevitable answer to this challenge.

In the last few years, a lot of work has been
done in order to ensure CI approaches. Discover-
ing weak signals and define new strategies have
been the main motivation for applying them in
company contexts. The CI approach can provide
the company with detailed information about its
environment through internal and external infor-
mation which it has access to. This environmental
scanning is intended to assist decision makers in
their choice of strategies.

Anass El Haddadi
University of Toulouse III, France & University of Mohamed V, Morocco

Bernard Dousset
University of Toulouse, France

Ilham Berrada
University of Mohamed V, Morocco

Discovering Patterns in Order
to Detect Weak Signals and

Define New Strategies

ABSTRACT

Competitive intelligence activities rely on collecting and analyzing data in order to discover patterns
from data using sequence data mining. The discovered patterns are used to help decision-makers con-
sidering innovation and defining the strategy for their business. In this chapter we present four methods
for discovering patterns in the competitive intelligence process: “correspondence analysis,” “multiple
correspondence analysis,” “evolutionary graph,” and “multi-term method.”

196

Discovering Patterns in Order to Detect Weak Signals and Define New Strategies

In our CI approach, we use techniques for
extracting knowledge from textual data to study
scalable relational data from the information
environment of a company. In this context,
we propose our competitive intelligence tools:
“TETRALOGIE1” and “Xplor” (Web service of
TETRALOGIE). These tools extract the weak
signals and define new strategies using sequence
data mining from a corpus. These patterns are
used also in various areas: biology (Qindga and
al., 2010; Shuang and Si-Xue, 2010), traffic pre-
diction (Zhou and al., 2009; Zhou and al., 2010),
space research (Walicki and Ferreira, 2010; Yun
and al., 2008), and so on.

In this chapter, a CI approach based on sequence
data mining is detailed. It uses four methods:

• Correspondence Analysis (CA), which
aims at detecting the evolution of a research
area, authors, company’s, keywords, etc…
or the temporal sequence, that allows us to
have an overview of changes in very spe-
cific areas.

• Multiple Correspondence Analysis
(MCA), which aims at detecting the time
series for decision making.

• Multi-term Method, which aims at ex-
tracting the weak signals.

• Evolutionary Graph, which shows in de-
tail the structural changes of networks over
time. For example, we detect the appear-
ance and changes in social networks.

This document is organized as follows. First,
we identify in section 1 the knowledge extraction
process in order to demonstrate our methodology
of analysis, and various measures of information
structure. In section 2, we explain extraction
of strategic information and the discovery of
patterns by correspondence analysis (CA). Sec-
tion 3 presents the patterns of weak signals, and
describes methods to detect a pattern for new

strategies in a company. In Section 4, we explain
the methodology to detect “temporal,” “pattern”
sequences using evolutionary graphs. And finally
in section 5, to illustrate the methods presented in
the previous sections, a presentation of a complete
analysis of emerging field of agronomy in China
is performed by our research team.

KNOWLEDGE EXTRACTION
PROCESS IN CI

The key step of the CI process is the selection
of information, which is to develop a “corpus”,
depending on the target, which will be later ana-
lyzed through methods of text mining. We often
use the term “corpus” to describe large sets of
semi or fully-structured textual data available
electronically.

Following predefined criteria, this step allows
us to focus on data defined as “interpretable” and
with high informative potential. Data is firstly
prepared by selecting it according to objectives
fixed using the techniques of information retrieval
(Büttcher et al., 2010) (Croft et al., 2010). This
process (Saltan & McGill, 1984) seeks to match
a collection of documents and the user needs
(Maniez et Grolier, 1991), translated in the form
of a request (Kleinberg, 1999) through an infor-
mation system. This is composed of an automatic
or semi-automatic indexing module, a module of
document/request matching and possibly a module
of query reformulation.

Different models are used in search engines
to match the query with the document, such as
the probabilistic model (Sparck-Jones, 2000), the
connexionnist and genetic model (Boughanem et
al., 2000), the flexible model (Sauvagnat, 2005),
the language modeling (Ponte & Croft, 1998), etc.

Monitoring devices are based on two types on
information: formal and informal.

197

Discovering Patterns in Order to Detect Weak Signals and Define New Strategies

CONSTRUCTION OF THE
CORPUS OF DATA

In the approach we propose, target data is selected
according to the purpose of exploitation (Dkaki
et al., 1997). Initially, these methods cut the data
into units (words, dates or strings of characters),
then they apply mathematical and statistical cal-
culations in order to obtain, in the form of graphs
or charts, a representation of units according to
relations or proximity that have been calculated.

The corpus is composed of ‘notes’, i.e docu-
ments structured in fields (Dkaki et al., 2000). The
word, a unit which is too semantically poor, has
been replaced by the notion of ‘term’ that can be
associated to a concept in an ontology Hernandez
et al., 2007).

A ‘field’, the basic unit, is the informational
container identified by a tag and a piece of data,
for example author, date, address, and organiza-
tion. An ‘item’ is the container of the field, i.e the
data. It can be (Dousset, 2003):

• Mono-Valued: having only one pos-
sible value, such as date or language ex.
PUBLICATION YEAR=2010 ;

• Multi-Valued: having multiple values,
such as names of several authors for a co-
authored article, delimited by separators;

• Diversified: if the field contains several
values representing different concepts.
For example SOURCE=Lancet, 2010-01,
-32p., This field can be decomposed into
a magazine, a publication date: 2010-
01, which itself is divided into year and
month, a reference: 32p. indicating the
page number.

PROCESSING OF DATA STRUCTURE

Data processing (El Haddadi et al., 2010) has been
used to treat data in its native form. The native
format provides several advantages including bet-

ter responsiveness, an easier update of the corpus
and a preservation of all information. However,
to fit almost all structures, it is necessary to use
meta-data which are tools of format description
whose aim is to:

• find a technique to differentiate between
documents (or textual units);

• identify markers of semantic fields in the
database and give them a name and stan-
dard initials;

• determine their usefulness and their
priority;

• determine judicious cutting techniques to
extract each type of information.

We also noted that over 90% of cases en-
countered can be treated without reformatting.
Indeed, it is possible to work simultaneously on
different formats and different sources by devel-
oping correspondence rules between the relevant
(or useful) fields using second-level meta-data.
These can both orchestrate the synchronization of
all formats, and interface with a unique semantic
extraction tool. Each source has a specific format,
which itself has a specific descriptor (first-level
meta-data). A collection of formats is managed
by a generic descriptor (second level meta-data:
the conductor). For each database, structured or
semi-structured, it is advisable to define its own
specific format descriptor that allows interfac-
ing with our platform of information processing
“TETRALOGIE”.

DATA CROSSBREEDING

Once the data corpus is built, information is
crossed, either within the same type (associations)
or between two different types in order to achieve
a first static study of their mutual influences:
contingency matrix, frequency matrix, matrix of
presence-absence and co-occurrence matrix. It is

198

Discovering Patterns in Order to Detect Weak Signals and Define New Strategies

also possible to explode the obtained tables by the
time (by homogeneous period): Cube.

Once the data corpus is built, information is
crossed, either within the same type (associations)
or between two different types in order to achieve
a first static study of their mutual influences:
contingency matrix, frequency matrix, matrix of
presence-absence and co-occurrence matrix. It is
also possible to split the obtained tables using time
(organized by homogeneous period) to achieve
scalable and prospective analysis which are the
only ones to highlight the strategic dimension of
a field, and detection of sequential pattern.

After this step, a set of analysis methods is
deployed to extract information from these endog-
enous structures. Now, we can start the reporting
for detecting pattern, or temporal sequence.

EXTRACTION OF STRATEGIC
INFORMATION AND THE
DISCOVERY OF PATTERNS BY THE
CORRESPONDENCE ANALYSIS (CA)

CA can be applied to qualitative data: tables of
individuals - qualitative modal variables, matrix
of presence – absence, matrices of contingencies
and correlations. Before the implementation of the
CA, data preprocessing is necessary:

• Standardization of rows of the matrix (sum
of unitary weight),

• Add at the bottom of the matrix, an identity
matrix, to consider the pure variables (col-
umns) as additional individuals.

Below is an example of a factorial map ob-
tained after CA on a co-occurrence matrix Top-
ics - Authors for a large laboratory in research
on computers. We can notice groups of authors
correlated by the theme of their research, interface
themes (between two groups of authors), experts
of interfaces, interface themes, sequence varia-
tion of themes. After verification, the thematic

teams detected correspond exactly to those of
the publicity for that laboratory. This is like the
discovery of a pattern sequence of a theme, i.e.,
the variation of a theme continues in a research
laboratory. This allows assumptions about the
trend of research in a laboratory.

Three observations are possible:

• The concerned laboratory has conducted
an objective presentation of its structure,

• It is possible to obtain a perfect knowledge
of this structure from the outside,

• Moreover, the qualities and imperfections
of this structure are now known.

When we focus on a particular element (Pe-
riod, author, topic) or group, it is possible to
highlight it using rotations, i.e. data mining se-
quences, choice of axes and zoom on one side of
the view. In some cases (too many items to dis-
play), we can manipulate only the searched class
of items. In the example shown below, we chose
to manipulate the outcome of CA conducted on
a matrix of co-occurrence between keywords and
first authors.

THE PATTERNS OF WEAK SIGNALS

The method of extracting weak signals is based on
data mining sequences (evolutionary analysis) and
structural semantic fields. This method involves
the following tools:

• Matrix of crossing semantic terms with
time,

• Extraction of emerging terms (by normal-
ization, then by sorting the last column),

• Matrix of co-occurrence crossing emerg-
ing terms with themselves,

• Sort by diagonal blocks of this matrix,
• Extraction of blocks representing the

emerging and consistent concepts.

199

Discovering Patterns in Order to Detect Weak Signals and Define New Strategies

SORT METHOD FOR
EXTRACTING WEAK SIGNALS

Sort by Blocks on the Absolute Links

This technique has many applications:

• Search for related classes,
• For each class, an internal block sorting

brings directly together the most linked el-
ements (i.e. a pattern of sequence),

• Reorganization of a closely related matrix
in diagonal blocks.

Its use in text analysis allows, as shown below,
to detect emerging semantic classes which are the
most pronounced. We therefore start by creating a
crossing matrix of the new terms. This emergent
terminology can eventually form groups corre-
sponding to emerging concepts. A single term is not
enough because it may be a change in terminology

which englobes an old concept, which now has a
specific vocabulary (often a single word replaces
an expression or a compound word).

Sort by Blocks on Relative Links

This technique is used when the crossed terms
have very different frequencies. Indeed, in the
texts, much used or common terms in the field
are mixed with others that are more precise and
target specificities. If we want to find groups that
match these emerging semantic or rare issues, we
must first go to the relative mode before doing
the sorting. Note that for symmetric matrices of
co-occurrence crossing exclusive modalities (e.g.
authors or keywords), the diagonal elements are
in fact the frequencies in the corpus.

We kept two techniques in TETRALOGIE.

• The first serves to normalize the matrix,
i.e. to modify this matrix, then to sort it. It

Figure 1. The factorial 4D map of CA topic

200

Discovering Patterns in Order to Detect Weak Signals and Define New Strategies

has the advantage of the choice of normal-
ization, but it destroys the initial values of
the matrix.

• The second is based on a compatible stan-
dard with the non symmetric matrices. It
sorts the matrix based on new values, but
keeps the old ones. So only the structure of
the matrix changes, but not the values.

INTERACTIVE EXTRACTION
OF INFORMATION: THE
EMERGENCE PATTERN

The emergence pattern introduces the time vari-
able at many levels of the exploration in the level
of multidimensional analysis methods. Below is
a method of extracting emergence patterns using

interactive manipulations on a CA made depend-
ing on the time variable:

• Cross the variable to be analyzed with time
expressed in periods that have sufficiently
homogeneous numbers (in a ratio of 1 to 2
at most),

• Make a CA of the obtained matrix,
• Visualize the map of temporal modalities

(columns only),
• Using rotations, process the cloud of data

to isolate the last temporal component in a
corner of the window (1997 at the top, on
the left in the following figure),

• Visualize the global map (variable to be
analyzed plus the time),

• Export onto this map the azimuth obtained
in the first one,

Figure 2. Extraction of emergent elements basing on a CA Thematic - Time.

201

Discovering Patterns in Order to Detect Weak Signals and Define New Strategies

• Extract items that are located beyond or
near the icon associated with the last pe-
riod (in orange on the 4D map),

• Generate the filter containing all the emerg-
ing modalities of the analyzed variable.

This filter can then be reused to cross the
emergences between themselves and to find the
emerging concepts.

We will then extend this type of approach to
other strategies for knowledge discovery based
mainly on interactivity, detecting the emergence
pattern: new semantic network, new innovation…

Detection of Weak Signals

This method is to extract an emerging semantic
class that represents what happens repeatedly in
a given field. So, we must:

• Start from a Keywords – Dates matrix or
even better, from a Terms – Dates matrix,

• Extract the emergent sequence patterns
terminology,

• Cross it with itself (square matrix of
co-occurrence),

• Sort this matrix by diagonal blocs,
• Extract the more visible classes,
• Ask for details (list of words connected

togeher).

The result often exceeds all expectations,
because the underlying concepts are completely
new. This destabilizes the experts who often de-
clare themselves incompetent in the matter. Of
course, new subjects detected by this method must
be subject to a more in-depth analysis, which can
be obtained by crossing their specific terminol-
ogy with the actors in the field and other concepts.

Figure 3. Illustration of the method of weak signal extracting

202

Discovering Patterns in Order to Detect Weak Signals and Define New Strategies

It is also desirable to re-examine the origin of the
information on this new theme (of which the re-
search equation is given to us) to complete its
identity and to better understand its potential.

The Evolutionary Graphs
and Patterns

The notion of graphical representation includes all
the techniques to develop a visualization of data
in the plan so as to make reading easier (Loubier
& Dousset, 2007; Loubier, 2009). The graph
presentation is intended to help explore data, the
tasks encountered in information visualization are
broadly related to Information Retrieval:

• Rapid exploration of unknown information;
• Demonstration of relationships, structures

and sequence pattern in the information;
• Demonstration of paths to relevant

information;
• Classifying interactive information.

TEMPORAL PLACEMENT
ALGORITHM BASED ON FORCE
DIRECTED PLACEMENT (FDP)

The data is represented in a graph G characterized
by two sets: a set V = {v1,v2,…,vn} whose elements
are called nodes and a set E = {e1,e2,…,em}, de-
rived from a set parts of V, whose elements are
called arcs.

We note G = (V, E). G is an undirected graph
(there is no distinction between (u, v) and (v, u)
for u and v in V) and simple (no loops (v, v) into
E and there exists at most one link between two
vertices).

The temporal dimension is affected by the
consideration of several periods distinguished in
the form of co-occurrence matrix. For each period
every node has a specific metric value.

Thus the global metric denoted Mg a node s,
consisting of the sum of metric m for periods p1,
p2,…pn, which will be marked as follows:

Msg= msp1+msp2+…+mspn

Each node is represented by a histogram where
the size of each bar is relative to the value of the
metric for the period.

However, it is important to characterize the
temporal data to allow a more comprehensive
analysis. To do this, for each period, we assimi-
lated a point of reference. For each period, if the
node has a metric value greater than zero, then an
invisible arc is created to reach the node to mark.
We apply the algorithm of association between the
nodes Sj and landmarks marki of periods:

For each period i{

 For each node j{

If m
spi
>0 then creat_arc(node1=s,

node2=mark
i
, weight= m

spi
X2);

j++ ;

}

i++ ;

}

TEMPORAL PLACEMENT
ALGORITHM

To improve the graphical representation of graph
and obtain a planar display (minimizing the num-
ber of intersected arcs) we rely on the analogy “arc
= placement”. The system produces forces between
the nodes, which naturally leads to displacement.

In a first step we propose a general algorithm
allowing a better rendering for graphic representa-
tion, whatever the type of data (temporal or not),
when: The attraction between two nodes u and v
is defined by:

203

Discovering Patterns in Order to Detect Weak Signals and Define New Strategies

f u v
d

Ka
uv

a

(,)=
×β α

β is a constant. duv is the distance between u and
v. α

a
used to increase/decrease the attraction.

The K factor is calculated in terms of the area
of design window and the number of nodes in the
graph. For this, L is the length of the window, l
the width and N is the number of the visible nodes
in the graph.

K
Lxl
N

=

If the nodes u and v are not connected by an
arc then ƒa (u, v) = 0.

The repulsion between two nodes u and v is
defined by:

f u v
a xK

dr
r

uv
c

(,)=
2

α
a

 used to increase/decrease the attraction and c
is a constant.

The temporal placement algorithm based on
the application of the repulsion between all nodes.
In a second step, all attractions are taken into ac-
count, for any pair of nodes connected.

In this algorithm, the parameters were studied
to obtain relevant results:

Thus, to calculate the attraction: is a constant,
initialized to 2;

• d
uv
αε is the distance between u and v, where

corresponds to the value of the slider can
interact on the ride.

To calculate the repulsion:

Box 1.

For each node u {if u is visible

 then {

 Calculating distance d(u,v) ;

 For each node v {

 fr(u,v, d(u,v));

 if there is an arc between u and v{

 fa(u, v);

 if (u ou v is a temporal mark)

 Slider
force_reperes_temporels

 X f
a
(u, v, d(u,v));

 }

 }}}

For each node u {

 if (u is not a mark)

 Moving nodes ;

 }

/* *Verification of no-over lapping nodes by comparing position**/

For each node u{

For each node v{

 if(xu,yu) == (xv, xy)

 then change position of v.

 }}

204

Discovering Patterns in Order to Detect Weak Signals and Define New Strategies

• α
r

is the value of the slider, to interact on the
repulsion ;

• c is a constant, initialized to 1,5.

In the example (cf. Figure 4), we study specific
authors in the field of data mining within four pe-
riods: 2003, 2004, 2005, 2006-7. For each period,
a mark is assigned, listed in red on the Figure 4
and each node with a metric valuated for a period
is then linked to a corresponding reference by an
invisible arc. On the first graph of Figure 4, no
force of attraction and repulsion has been applied.
On the second, they are applied. It is noticeable
that every part of the second graph is specific to
a time characteristic called “temporal sequence”.

The nearer a node is to a landmark, the stron-
ger it is characterized by this period. The peaks
located halfway between two markers reveal a
part of the two periods. Thus, in the following
figure, it is easy to distinguish the peaks specific
to 2003 because it is the set of nodes located

around the landmark. This reveals the presence
of the node during the first period with a charac-
teristic metric value.

Similarly for other periods, the nearer a node is
to the center of the figure, the greater the number
of periods to which it belongs. Thus, the authors
represented in the center of the Figure are the most
persistent. Those represented near the landmark
2003 are the oldest and those nearest to 2006-7
are the most newly emerging authors.

Our experiences lead us to recommend a
specific data mining sequence for a better visual
result, regarding the setting of these three forces.

• Step 1: Apply a very high value of at-
traction in order to obtain a concentrated
grouping of data. Apply the temperature up
through the slider to enable rapid and ef-
ficient movement of nodes.

• Step 2: Reduce the force of attraction and
repulsion increase, to get a readable graph.

Figure 4. An evolving graph (left graph), application of temporal placement, parameterized using the
slider «Force temporal» (right graph)(Loubier 2009).

205

Discovering Patterns in Order to Detect Weak Signals and Define New Strategies

Reduce temperature to avoid too abrupt a
movement of vertices.

• Step 3: Adjust the three sliders substantial-
ly, lowering the temperature, until a satis-
factory result.

Analysis of Temporal Structure and
Detection of “Temporal Sequence”

The visualization of temporal data should be able
to provide the right information at the right time,
for decision making. In this approach, a very
important aspect is the dynamic surveillance of
system “the temporal sequence, the pattern se-
quence, performance evolution, the detection of
faint signals, changes collaborations, alliances,
associations”.

From the results emerge a readability of temporal
characteristics, simplifying decision-makers’ work
on evolutionary data. Following the application of

these forces, a typology appears significant and
nodes neighboring a single landmark are character-
ized by the unique presence for that period (if the
authors occasionally appear). These are located
between several specific periods to which they
are near. Thus, authors are pioneers in the central
area of study, that is to say present for all periods.

The application of this algorithm allows to
observe groups of data according the common
temporal characteristics, allowing a temporal
classification.

Thus, this proposal improves the performance
by:

• Reducing cognitive resources mobi-
lized by the user to analyze the temporal
information;

• Increasing opportunities for detection of
evolutionary structures (changes between

Figure 5. Social network analysis: Extraction of the main teams by authorship

206

Discovering Patterns in Order to Detect Weak Signals and Define New Strategies

data relationships, significant consolida-
tion, strategic positions, centrality,...);

• Monitoring of events (changes in struc-
ture, appearance or movement patterns,
clusters,...);

Analysing Emerging Field
of Agronomy in China

To illustrate the methods presented in the previ-
ous sections, we present the evolution of author
relationships and the weak signal of emerging
field of agronomy in china, performed in (Dous-
set, 2009; Guenec, 2009). To do so, we use the
scientific digital library (DL)2.

Social Network

Figure 5 presents the topology of the main teams.
We can immediately see that there is very little
co-authoring in the Chinese scientific publica-
tions we analyzed. A second observation is that

the teams are generally directed by a main author
who has control of 2, 3 or 4 distinct sub-teams.

Evolution of Author Relationships

The evolutionary graphs (section 4) and patterns of
sequence method consist in using a three dimen-
sional cross referencing table where two dimen-
sions represent the authors (thus co-authoring is
represented) and the third dimension corresponds
to time. We can then visualize the evolution of the
author network on a graph. Figure 6 displays this
network. At the bottom left corner, for example,
the authors associated with 2006-8 are the only
ones to appear.

Figure 6 brings together the sequence pattern
of the main Chinese teams in the emerging field
of agronomy. Some collaboration continues
whereas others can be seen as emergent, moreover
there are collaborations that either finish for a
period of time or stop altogether. It is easy to
locate the leaders of the author groups; indeed the

Figure 6. Networking and sequence pattern of the main teams (co-authoring).

207

Discovering Patterns in Order to Detect Weak Signals and Define New Strategies

size of each histogram is proportional to the ap-
pearances of the author in the collection. It is also
easy to extract the authors that appear in the end
year only (green) or in the beginning year (red).
Finally Figure 6 also shows the main authors who
are responsible for the connections between teams,
for example, the team represented at the center
of Figure 6.

This analysis can be completed using a cor-
respondence analysis based on the same three
dimensional cross referencing table. This shows
the trajectories of the authors when they collabo-
rate with other authors. In the data we analysed,
no such mobility could be extracted.

Detecting Weak Signals

To detect weak signals (section 3), we first extract
the keywords and the known terms from the title
and abstract. Then we detect the new sequences
patterns that exceed a number of occurrences.
Afterwards we cross reference these new n-grams
with time and we keep only those which occur
frequently during the end time period (here 2006-

2008). Finally these terms are cross referenced
(co-occurrence) and we sort the subsequent matrix
to obtain diagonal blocks. Each block represents
an emergent concept identified by a new termi-
nology which does not exist in the keyword field
and which only occurs in some documents. Weak
signals can then be validated by cross referencing
them with all the other fields and in particular
the keywords. In Figure 7, part a) we represent
the cross referencing matrix; each plot indicates
a non-nil value for the cross referencing. Along
the diagonal of the matrix, a certain number of
clusters consist of new terms and correspond to
a semantic group. Each cluster is extracted in a
square sub-matrix and can be visualized in the form
of a semantic graph (Figure 7b). This information
should then be submitted to an expert in the field
for validation.

CONCLUSION

Strategic analysis lies at the heart of any competi-
tive organization. There are many ways to perform

Figure 7. Analysis of newly detected terms and their clusters

208

Discovering Patterns in Order to Detect Weak Signals and Define New Strategies

an analysis of internal and external factors which
bear an influence on the strategy of a company.
In this chapter, we have suggested a CI approach
based on sequence data mining for discovering
weak signals, patterns, emergence patterns and
define new strategies.

CI is expressed on the basis of a sequence data
mining. Therefore, using the appropriate methods
of mining and discovering is essential to decision
makers in any business. Discovering weak signals
and define new strategies suggests that companies
have to use CI approaches. Thus, the companies
have adopted this analysis approach of environ-
ment for strategy execution in order to achieve
better performance. The sequence data mining
and procedures described in this chapter provide
a framework which companies can use to adopt
good practices in competitive intelligence.

With the method presented here, the decision
makers are able to clearly discover the com-
pany’s strategy. Moreover, they have a method
for analyzing internal and external information.
In addition, sequence patterns of strategy can be
identified and monitored to reach the intended
goals. Given a CI approach based on sequence
data mining, companies can build good practices
in strategic analysis.

REFERENCES

Boughanem, M., Chrisment, C., Mothe, J., Soulé-
Dupuy, C., & Tamine, L. (2000). Connectionist
and genetic approaches to achieve IR. In Crestani,
F., & Gabriella, P. (Eds.), Soft computing in in-
formation retrieval techniques and applications
(pp. 173–198). Springer-Verlag.

Boughanem, M., & Dousset, B. (2001). Relation-
ship between push and optimization subscriptions
in documentation centers. VSST’01, (pp. 239-
252). Tome 1.

Büttcher, S., Clarke, C. L. A., & Cormack, G. V.
(2010). Information retrieval: Implementing and
evaluating search engines. MIT Press.

Croft, B., Metzler, D., & Strohman, T. (2011).
Search engines: Information retrieval in practice.
Addison-Wesley.

Dkaki, T., Dousset, B., Egret, D., & Mothe,
J. (2000). Information discovery from semi-
structured sources – Application to astro-
nomical literature. Computer Physics Com-
munications, 127(2-3), 198–206. doi:10.1016/
S0010-4655(99)00509-3

Dkaki, T., Dousset, B., & Mothe, J. (1997). Mining
information in order to extract hidden and stra-
tegical information. 5th International Conference
RIAO, (pp. 32-51).

Dousset, B. (2003). Integration of interactive
knowledge discovery for strategic scanning.
Habilitation. Toulouse: Paul Sabatier University.
in French

Dousset, B. (2009). Extracting implicit informa-
tion by text analysis from websites in unicode.
Nancy: VSST. in French

El haddadi, A., Dousset, B., Berrada, I., & Lou-
bier, E. (2010). The multi-sources in the context
of competitive intelligence. Paper presented at
the Francophone Conference on Mining and
Knowledge Management, (pp. A1-125-A1-136).
Hamammat, Tunisia.

Guenec, N. (2009). Chinese scientific information:
An essential information source to any business
intelligence competitive watch. Nancy: VSST.
in French

Hernandez, N., Mothe, J., Chrisment, C., & Egret,
D. (2007). Modeling context through domain on-
tologies. Information Retrieval, 10(2), 143–172.
doi:10.1007/s10791-006-9018-0

209

Discovering Patterns in Order to Detect Weak Signals and Define New Strategies

Huiyu, Z., Mabu, S., Shimada, K., & Hirasawa,
K. (2009). Generalized time related sequential
association rule mining and traffic prediction.
International Conference on Evolutionary Com-
putation, (pp. 2654-2661).

Huiyu, Z., Mabu, S., Xianneng, L., Shimada, K.,
& Hirasawa, K. (2010). Generalized rule extrac-
tion and traffic prediction in the optimal route
search. International Conference on Evolutionary
Computation, (pp. 1-8).

Jolliffe, I. T. (2002). Principal component analysis
(2nd ed.). Springer.

Kleinberg, J. M. (1999). Authoritative sources in
a hyperlinked environment. Journal of the ACM,
46(5), 604–632. doi:10.1145/324133.324140

Loubier, E. (2009). Analysis and visualization of
relational data by graph morphing taking temporal
dimension into account. PhD Thesis, in French.
Toulouse, France: Paul Sabatier University.

Loubier, E., & Dousset, B. (2007). Visualisation
and analysis of relational data by considering
temporal dimension. International Conference on
Enterprise Information Systems, (pp. 550-553).
INSTICC Press.

Maniez, J., & Grolier, E. (1991). A decade of
research in classification.

Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979).
Multivariate analysis. Academic Press.

Ponte, J. M., & Croft, B. (1998). A language
modeling approach to information retrieval. Pro-
ceedings of the 21st Annual International ACM
SIGIR Conference on Research and Development
in Information Retrieval, (pp. 275–281).

Qingda, Z., Qingshan, J., Sheng, L., Xiaobiao, X.,
& Lida, L. (2010a). An efficient for protein pattern
mining. International Conference on Computer
Science and Education, (pp. 1876-1881).

Salton, G., & Mcgill, M. (1984). Introduction to
modern information retrieval. McGrawHill Int.
Book Co.

Sauvagnat, K. (2005). Flexible model for infor-
mation retrieval in the corpus of semi-structured
documents. Unpublished thesis. Toulouse, France:
Paul Sabatier University.

Shang, B., & Si-Xue, B. (2009). The maximal
frequent pattern mining of DNA sequence. IEEE
International Conference on Granular Computing
(pp. 23-26).

Sparck Jones, K., Walker, S., & Robertson, S.
E. (2000). A probabilistic model of informa-
tion retrieval: Development and comparative
experiments. Information Processing & Man-
agement, 36(6), 779–840. doi:10.1016/S0306-
4573(00)00015-7

Walicki, M., & Ferreira, D. R. (2010). Mining
sequences for patterns with non-repeating sym-
bols. International Conference on Evolutionary
Computation (pp. 1-8).

Yun, L., Yunhao, Y., Yan, S., Xin, G., & Ling, C.
(2008). Mining self-adaptive sequence patterns
based on the sequence fuzzy concept lattice. Sec-
ond International Symposium on Intelligent In-
formation Technology Application (pp. 167-171).

ADDITIONAL READING

Journal Papers

Gay., B. and Dousset., B.(2005). Innovation and
network structural dynamics: Study of the alliance
network of a major sector of the biotechnology
industry. Research Policy, Elsevier, http://www.
sciencedirect.com/, Vol. 34 N. 10, p. 1457-1475.

210

Discovering Patterns in Order to Detect Weak Signals and Define New Strategies

Ghalamallah., I., Loubier., E.and Dousset., B.
(2008). Business intelligence_a proposal for a
tool dedicated to the analysis relational. SciWatch
Journal, hexalog, Barcelona - Spain, Vol. 3: http://
mtdjournals.wordpress.com/issues/sciwatch-
journal/

Karouach, S., & Dousset, B. (2003). Visualisation
de relations par des graphes interactifs de grande
taille. [Information Sciences for Decision Mak-
ing]. Journal of ISDM, 6(57), 12.

Mothe, J., Chrisment, C., Dkaki, T., Dousset, B.,
& Karouach, S. (2006).Combining mining and
visualization tools to discover the geographic
structure of a domain.: Computers, Environment
and Urban Systems, Elsevier, Special issue: Geo-
graphic Information Retrieval, N. 4, p. 460-484.

Mothe., J., Chrismeent., C., Dousset., B. and
Aloux., J.(2003). DocCube: Multi-Dimensional
Visualisation and Exploration of Large Docu-
ment Sets. Journal of the American Society for
Information Science and Technology, JASIST,
Special topic section: web retrieval and mining,
Vol. 7 N. 54, p. 650-659

Edited Books

Clark, R. M. (Ed.). (2009). Intelligence Analysis:
A Target-centric Approach.

Coutenceau, C., Valle, C., Vigouraux, E., Poullain,
M., Jacquin, X., & Gillieron, A. (Eds.). (2010).
Guide pratique de l’intelligence économique
(French edition). Eyrolles.

Jenster, P. V., & Solberg, K. (Ed.). (2009). Market
intelligence, building strategic insight. Copenha-
gen business school press.

Miller, F. P. Vandome. A. F. and McBrewster. J.
(Ed.). (2009). Competitive Intelligence: Competi-
tive intelligence, Intelligence (information gather-
ing), Competitor analysis, Society of Competitive
Intelligence Professional, … SWOT analysis,
Business intelligence.

Richards, J. H., & Randolph, H. P. (Eds.). (2010).
Structured Analytic Techniques for Intelligence
Analysis.

Seena, S. (Ed.). (2009). Competitive Intelligence
Advantage: How to Minimize Risk, Avoid Sur-
prises, and Grow Your Business in a changing
World. Wiley.

Waters, T. J. (Ed.). (2010). Hyperformance: Us-
ing Competitive Intelligence for Better Strategy
and Execution.

Website

Dousset. B., Tetralogie web site.http://atlas.irit.
fr (French Edition)

KEY TERMS AND DEFINITIONS

Sequence: A sequentially ordered set of related
things or ideas.

Temporal Sequence: An arrangement of
events in time.

Mining Sequence: Is concerned with find-
ing statistically relevant patterns between data
examples where the values are delivered in a
sequence. It is usually presumed that the values
are discrete, and thus time series mining is closely
related, but usually considered a different activity.
Sequence mining is a special case of structured
data mining.

Competitive Intelligence: Is a systematic
and ethical program for gathering, analyzing, and
managing external information that can affect your
company’s plans, decisions, and operations. (De-
fined by the Society of Competitive Intelligence
Professionals (SCIP)).

Weak Signals: Is a factor of change hardly
perceptible at present, but which will constitute
a strong trend in the future.

Social Network: Is a social structure made up
of individuals (or organizations) called “nodes”,

211

Discovering Patterns in Order to Detect Weak Signals and Define New Strategies

which are tied (connected) by one or more specific
types of interdependency, such as friendship, com-
mon interest, financial exchange, etc.

Decision Making: The thought process of
select a logical choice from among the available
options. When trying to make a good decision, a
person must weigh up the positive and negative
points of each option, and consider all the alter-
natives. For effective decision making, a person
must be able to forecast the outcome of each option
as well, and based on all these items, determine
which option is the best for that particular situa-
tion. (from BusinessDictionary.com)

Innovation: The act of introducing something
new (the american heritage dictionary); A new
idea, method or device (Webster online); Change
that creates a new dimension of performance (Peter
Drucker); The introduction of new goods (…),
new methods of production (…), the opening of

new markets (…), the conquest of new sources
of supply (…) and the carrying out of a new or-
ganization of any industry (Joseph Schumpeter);
Innovation is a new element introduced in the
network which changes, even if momentarily, the
costs of transactions between at least two actors,
elements or nodes, in the network (Regis Cabral);
The three stages in the process of innovation:
invention, translation and commercialization
(Bruce D. Merrifield); The ability to deliver new
value to a customer (Jose Campos); Innovation
is the way of transforming the resources of an
enterprise through the creativity of people into
new resources and wealth (Paul Schumann);
Innovation does not relate just to a new product
that would come into the marketplace. Innova-
tion can occur in processes and approaches to the
marketplace (David Schmittlen); http://atlas.irit.
fr; http://www.cqvip.com.

212

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 13

Pınar Senkul
Middle East Technical University, Turkey

Nilufer Onder
Michigan Technological University, USA

Soner Onder
Michigan Technological University, USA

Engin Maden
Middle East Technical University, Turkey

Hui Meen Nyew
Michigan Technological University, USA

Discovering Patterns for
Architecture Simulation by

Using Sequence Mining

ABSTRACT

The goal of computer architecture research is to design and build high performance systems that make
effective use of resources such as space and power. The design process typically involves a detailed simu-
lation of the proposed architecture followed by corrections and improvements based on the simulation
results. Both simulator development and result analysis are very challenging tasks due to the inherent
complexity of the underlying systems. The motivation of this work is to apply episode mining algorithms
to a new domain, architecture simulation, and to prepare an environment to make predictions about
the performance of programs in different architectures. We describe our tool called Episode Mining
Tool (EMT), which includes three temporal sequence mining algorithms, a preprocessor, and a visual
analyzer. We present empirical analysis of the episode rules that were mined from datasets obtained by
running detailed micro-architectural simulations.

DOI: 10.4018/978-1-61350-056-9.ch013

213

Discovering Patterns for Architecture Simulation by Using Sequence Mining

INTRODUCTION

The goal of computer architecture research is to
design and build high performance systems that
make effective use of resources such as space and
power. The design process typically involves a
detailed simulation of the proposed architecture
followed by corrections and improvements based
on the simulation results. Both simulator develop-
ment and result analysis are very challenging tasks
due to the inherent complexity of the underlying
systems. In this chapter, we present our work on
applying sequence mining algorithms (Mannila et
al., 1997; Laxman et al. 2007) to the analysis of
computer architecture simulations (Onder, 2008).
Sequence mining is an important branch of data
mining and was designed for data that can be
viewed as a sequence of events with associated
time stamps. Using sequence mining to analyze
architectural simulations carries significant advan-
tages for three main reasons. First, a time based
analysis is essential because events that repeat or
certain events that are clustered temporally can
affect processor performance. Second, automated
and well-defined techniques give more profound
insights as compared to manual analysis. In the
literature, there are few studies that propose using
data mining and machine learning for architecture
simulation analysis. In (Hamerly, et. al., 2006),
clustering is used as the basic method to find repeti-
tive patterns in a program’s execution. In another
recent work (Akoglu & Ezekwa, 2009), the use of
sequence mining for improving the prefetching
techniques is investigated. The existence of a con-
siderable amount of unexplored uses of sequence
mining for architecture simulation analysis is the
third motivation for our study.

Our research methodology is as follows. We
first take a micro-architecture definition developed
using a special description language (Zhou &
Onder, 2008). The definition includes a specifica-
tion of the micro-architectural components of a
computer system, how these components interact,
and how they are controlled. We then simulate the

written specification on benchmark programs and
record the behavior of the system using a micro-
architecture simulator (Onder, 2008). We finally
feed the recorded results into the sequence based
mining tool we developed. Our tool is called
Episode Mining Tool (EMT) and consists of three
modules. The first module is the data preproces-
sor which transforms the raw output data of the
architecture simulation into processable data. The
second module is the episode miner that takes the
inputs along with the user specified options and
applies sequence mining algorithms to generate
the frequent episodes and rules seen in the data.
The episode miner includes implementations of
three algorithms, namely window based episode
mining algorithm (Mannila et al., 1997), minimal
occurrence based episode mining algorithm (Man-
nila et al., 1997), and non-overlapping occurrence
based algorithm (Laxman et al, 2007). The third
module of EMT is the visual analyzer, which
produces graphical charts depicting the frequent
episodes and rules.

In our experiments, the primary functionality
of EMT is to generate a variety of patterns that
show strong relationships between microprocessor
events. In addition to this, relationship between
event types and Instructions Per Cycle (IPC)
changes can be investigated. Such an analysis pro-
vides information on how the particular software
being run interacts with the processor and allows
us to create concise information about the nature
of the benchmark programs. As another analysis,
it is possible to compare the patterns generated
for two different architectures and to analyze the
difference between them. Such a comparison pro-
vides helpful information to predict the behavior
of new architectures without actually running
simulations on them.

This chapter is organized as follows. In the
Background Section, we describe the components
of computer hardware that are related to this
work, how processor performance is improved,
and how simulation based techniques are used.
In the Representation Section, we show how

214

Discovering Patterns for Architecture Simulation by Using Sequence Mining

micro-architectural events are represented as time
sequence data. In the Episode Mining Section, we
present the algorithms implemented and used.
In the Empirical Work Section, we explain the
experiments performed and their results. In the
Episode Mining Tool Section, we describe the
features and usage of our tool. We conclude with
a summary, lessons learned, and further potential
applications of our findings.

BACKGROUND

The section presents an overview of the research
in computer processors. We explain the main fac-
tors that contribute to processor performance and
the complexities involved in modern systems. We
describe the role of micro-architecture simulators
in assessing performance and use this to motivate
our research. For more detailed information on
mis-speculation, interested readers may refer to
(Shen & Lipasti, 2005, Osborne, 1980, Hennessy
& Patterson, 2007).

Fundamentals of Micro-
Architecture Research

The main driving force in computer architecture
research is to improve processor performance. In
computer architecture literature, the iron law of
processor performance is given by the following
equation (Shen & Lipasti, 2005):

The left hand side of the equation shows that a
processor’s performance is measured in terms of
the time it takes to execute a particular program.
The first factor on the right hand side of the equa-
tion shows the number of instructions that will
be executed. This refers to the dynamic count
of instructions as opposed to the static count,
where the former may involve many iterations
of the instructions in the latter due to the loops.
The second factor shows the average number of
machine cycles required for each instruction.
Similar to the first factor, this number is a feature

of a particular program. The last factor refers to
the length of time of each machine cycle and is
a hardware feature. Obviously, decreasing one
or more of the factors involved in the iron law
will reduce execution time, and thus improve
performance. In this work, we focus on the second
factor, namely, how to reduce the average number
of cycles each instruction takes.

The types of instructions that comprise a
program are defined by the instruction set ar-
chitecture (ISA) of the machine. Widely known
ISAs are IBM 360/370 and Intel IA32. An ISA
constitutes a contract between the hardware and
the software and consequently is the basis for
developing system software such as operating
systems and compilers. Computer architecture
research usually does not involve changing ISAs
because alterations require updating the system
software, a process that can easily take in the order
of 10 years (Shen & Lipasti, 2005). As a result,
much of the research is devoted to developing
new micro-architectures. In fact, the main fac-
tors that contributed to the significant speed up
of computers during the recent decades are the
advances in the chip manufacturing technology
and the advances in the parallelism internal to the
processor (Hennessy & Patterson, 2007).

The average number of machine cycles spent
per instruction during the execution of a program
is referred to as cycles per instruction (CPI). The
fundamental technique to increase CPI is to use
processor level parallelism through instruction
pipelining and multiple instruction execution.
Pipelining splits an instruction into stages each of
which can be overlapped with different stages of
other instructions. Multiple instruction execution
means fetching multiple instructions at a time and
executing them in parallel.

We illustrate the concept of pipelining in Figure
1. The figure shows five instructions (I1 through
I5) running on a pipelined processor. The five
vertical bars represent the stages. In this case,
there are five stages corresponding to a pipeline
depth of five. The stages are the instruction fetch

215

Discovering Patterns for Architecture Simulation by Using Sequence Mining

stage (IF), instruction decode/register fetch stage
(ID), execution/effective address stage (EX),
memory access/branch completion stage (MEM),
and write-back stage (WB).

A pipeline depth of five allows five instructions
to be executed in parallel. In this case, instruction
I1 is about to complete and is in the final stage of
write-back, instruction I2 is in memory access
stage, instruction I3 is in execution stage, instruc-
tion I4 is in decoding stage, and instruction I5 is
starting at its fetch stage. In general, perfect par-
allelism cannot be achieved with pipelining be-
cause the pipeline might need to stall in order to
avoid incorrect execution of dependent instruc-
tions. For example, if instruction I2 uses a value
that is computed by instruction I1, then these two
instructions cannot execute in parallel and instruc-
tion I2 must be stalled until I1 writes the value
needed by I2 to memory. There is a vast body of
research that is devoted to detecting and mitigat-
ing pipeline hazards.

While pipelining overlaps different phases of
instruction execution, pipelined processors are
limited to the completion of at most one instruc-
tion per cycle under ideal conditions. In other
words, when there are no stalls in the pipeline,

a pipelined processor can achieve a cycles per
instruction (CPI) value of at most one. Modern
processors exceed this limit by employing multiple
instruction issue. Multiple instruction issue is the
basic principle behind Instruction Level Parallel
processors. Multiple instruction issue is almost
always combined with instruction pipelining and
allows simultaneous processing of many instruc-
tions where instruction execution is overlapped
both in terms of distinct instructions as well as their
phases such as fetch and decode. Such processors
are called superscalar processors. For example, a
dual issue superscalar pipeline can have at most
two instructions at each stage.

Similar to the case with simple pipelining, haz-
ards occur both horizontally (between instructions
in different stages) as well as vertically (between
instructions in the same stage) in superscalar
processors. For example, any two instructions
which are simultaneously in the EX phase cannot
be data-dependent on each other.

Pipelining of instruction steps and multiple
instruction issue requires fetching new instruc-
tions into the pipeline at every clock cycle. For
sequentially executing instructions, fetching a new
instruction every cycle can easily be achieved by
incrementing the program counter that is being
used to fetch the current instruction so that at the
beginning of the next cycle a new instruction can
enter the pipeline. However, programs are not ex-

Figure 1. Five pipelined instructions

216

Discovering Patterns for Architecture Simulation by Using Sequence Mining

ecuted sequentially because they contain decision
instructions which alter the control flow of the
program. Such instructions are called conditional
branch instructions, or, shortly branch instruc-
tions. These instructions test a value and based
on the outcome of the test, change the program
counter to either the next sequential instruction
(i.e., branch not taken) or to another target instruc-
tion (i.e., branch taken). Consider the following
simple if-then-else statement:

 if (x > y) then

 z = x - y (instruction 1)

 else

 z = y - x (instruction 2)

The instructions corresponding to the above
statement consist of a branch instruction that
jumps to the part containing instruction 1 if the
condition x>y is true. The execution sequentially
proceeds to the section containing instruction 2 if
the condition is false. The layout of the machine
instructions is as follows.

 branch if x>y to label 1

 instruction 2 (a = y - x)

 branch to label 2

label 1: instruction 1 (a = x - y)

label 2: the instructions following

the if statement

Unfortunately, in a pipelined implementation,
the value of the branch condition might not be read-
ily available because it is in the process of being
computed. Therefore, instead of waiting for the
outcome, contemporary processors employ branch
prediction techniques. Without branch prediction,
the next instruction to be fetched can only be
determined after the value of the condition x > y
is computed. With branch prediction, the circuit
computes a prediction and fetches instruction 1,
if the result of the prediction is ``branch taken’’,
and fetches instruction 2 if the result is ``branch

not taken’’. This is called speculative execution
or control speculation.

The prediction is typically computed by ob-
serving the past behavior of branch instructions.
If the prediction is correct, the new instructions
fetched by using the predicted direction and
target are correct and the execution can continue
unhindered. On the other hand, if the prediction
is wrong, the processor must undo the effects of
the incorrectly fetched instructions. In computer
architecture terminology, an incorrect prediction is
called a mis-prediction. The cost of mis-prediction
is dependent on the micro-architecture of the
processor and it is a function of the number of
stages between the execute stage of the pipeline
and the fetch stage, as well as the mechanism for
restoring the state of the processor to the point
before the execution of the mispredicted branch
instruction. Branch prediction can also be per-
formed statically, although this kind of prediction
is currently used only by optimizing compilers,
and not by contemporary processors (Hennessy
& Patterson, 2007; Shen & Lipasti, 2005).

The processors of today are much faster than
the memory. Therefore, most processors include
multiple levels of data and instruction caches. A
cache is a fast memory with a limited size. In this
hierarchy, the processor is at the top and the cache
it interacts with is called an L1 (level one) cache.
Typically, an L1 cache is small and can run at a
speed close to the processor’s speed. Below this,
there can be an L2 caches and even an L3 cache.
Each cache in this sequence is slower and bigger
as one travels from the processor towards the
memory. Each cache keeps most frequently refer-
enced items. If an item is not found in a particular
cache, the cache is said to have missed. When a
cache misses, it requests the item from the level
below. Upon obtaining the value from the lower
level, the cache discards some unused item, and
replaces that position with the new one. Research
in memory cache technology involves improving
both the hardware speeds of memory units and the
algorithms for dealing with cache misses.

217

Discovering Patterns for Architecture Simulation by Using Sequence Mining

The Domain of Micro-Architecture
Research and Data Mining

The domain of micro-architecture offers a very
rich environment suitable for the application of
data mining techniques. Advanced techniques
such as control and data speculation, multiple
instruction processing and pipelining create an
environment where it becomes extremely difficult
to detect and understand the interaction of various
techniques. In addition to the difficulty brought in
by the interaction of these advanced techniques,
the picture is further complicated by out-of-order
instruction execution.

In order to achieve a high degree of instruction-
level parallelism, contemporary processors find
and execute instructions in a different order than
the program specified order. This way, instructions
are executed as early as possible based on the avail-
ability of data and resources they need. In many
cases, instructions are executed speculatively as
in the case of branch prediction before they are
known that they should be executed. Furthermore,
the order of memory operations might also be
changed to facilitate the early execution of those
which already have their data.

Such an approach results in a very dynamic
environment in which many simultaneous events
arise at any given clock cycle and these events
interact with and affect each other. For example,
the execution of a memory operation may result in
a cache miss in a given cycle but modern proces-
sors do not wait for the cache miss to complete,
but rather put the instruction that encountered the
cache miss aside and continue executing other
instructions. Note that an instruction that missed
in the cache might actually be an instruction that
has been executed speculatively and the cache
miss event may be followed by a control mis-
speculation event. Similarly, a previous cache miss
might just complete yielding a mixture of events
within a window of execution that originated
at different cycles. Furthermore, this behavior
is a strong function of the implemented micro-

architecture as well as the program executing on
this micro-architecture. For example, even if two
micro-architectures differ simply in the number
of buffered instructions or the number of avail-
able cache ports, the events observed during the
execution of programs might differ significantly.
Events such as a series of cache misses overlap-
ping with a branch mis-prediction might not oc-
cur in one of the micro-architectures because the
branch instruction may not be within the buffered
instructions, or, the maximum number of cache
misses has been exceeded in the other.

In addition to the interaction of various events
in this dynamic environment, there is great vari-
ability in terms of instantaneous performance.
Because the branch instructions disrupt the nor-
mal fetch flow, a variable number of instructions
can be fetched and executed in a given cycle. As
a result, the observed IPC value changes from
clock cycle to clock cycle and this change is
a strong function of the program that is being
executed. For example, floating point intensive
scientific programs typically offer highly uniform
sequential blocks of instructions resulting in less
variability in the observed IPC in different parts
of the execution of the program. Similarly, delays
originating from memory hierarchy such as cache
misses significantly affect the amount of available
instruction-level parallelism, i.e., the potential
overlap of instruction execution, and hence the
IPC (Shen & Lipasti, 2005).

Because of the complexity of the interaction of
these events, state-of-the-art research techniques
rely on many time consuming simulations and trial-
and-error techniques. On the other hand, proper
data mining driven analysis performed on the
observed sequence of events, their interaction, and
the effect of their interaction on performance, can
present valuable hints to the micro-architect. In the
next section, we illustrate how micro-architectural
events can be efficiently represented and analyzed
by using time sequence data mining.

218

Discovering Patterns for Architecture Simulation by Using Sequence Mining

Representation of Architecture
Events as Sequence Data

As previously pointed out, computer architecture
studies rely on simulations without exception.
These simulators range from simple functional
simulators to detailed cycle-accurate simulators.
A functional simulator typically only simulates
the instruction set of a processor and focuses on
correct execution of programs so that the compiler,
system software and operating system related
software development can be carried out. Cycle-
accurate simulators simulate the behavior of the
hardware in sufficient detail so that the number of
cycles observed during the simulation of a given
program will be exactly the same as the number
of cycles when the program is executed on a real
processor.

In order to perform data mining, we use the
results provided by the Flexible Architecture
Simulation Toolkit (FAST) system, which is a
cycle-accurate simulator developed by one of
the authors (Onder, 2008). The FAST toolkit
provides the means to describe and automati-
cally generate cycle-accurate simulators from a
processor description. The tool has been in use for
about a decade for advanced micro-architecture
studies by academia and industry researchers.
The specific case we used for this chapter is a
dual core superscalar processor that enters the
run-ahead mode upon encountering a L2 cache
miss. In this mode, the instructions are executed
but their results are not committed to the proces-
sor state. The goal is to execute as far as possible
and reference the memory addresses so that the
cache requests will be initiated early. The second
processor serves as a state-recovery processor and
the thread running in that processor updates the
processor state to the correct values once the data
from the cache is returned. In other words, the
simulated architecture involves the interaction of
two threads originating from the same program.
The main-thread is the actual execution of the
program. The recovery-thread is only responsible

for repairing damaged values during the run-ahead
mode. Further details of the micro-architecture
are described in Zhou & Onder’s article on the
use of fine-grained states (2008).

Because several events take place at each
cycle, we have designed a simple data set in the
form of a sequence of lines where each line is in
the following format:

<cycle> <event> <inst-PC> <mem-addr>

<block-addr> <replacement-block-addr>

In other words, our simulator writes a summary
line for each event observed during the simula-
tion. In this data format, only the first two are
useful for sequence mining as we are interested
in the interaction of various events. The rest of the
line has been used to validate, track, and debug
the correctness of the collected information. For
example, by observing the replacement address
field, we can verify the cache accesses are being
simulated correctly. The instruction program
counter value (inst-PC) allows us to track which
instruction has actually caused the event in ques-
tion. A good example is a cache miss triggered by
an instruction must have the same value when the
data has been loaded. For sequence mining, we
filtered the data and used the format shown below:

<Time of occurrence> <Event type>

The time of occurrence value is simply the cycle
number observed by the processor. Event type is
represented by a number. The numbers denoting
the events and the corresponding descriptions are
listed in Table 1.

Prior to applying data mining algorithms, we
frequently processed the original data sets mul-
tiple times for various reasons discussed in the
following sections. The most important reason is
the huge amount of data that results. For example,
a few seconds of actual execution time for a pro-
gram typically results in billions of cycles and
hence gigabytes of data. In the next section, we

219

Discovering Patterns for Architecture Simulation by Using Sequence Mining

describe the algorithms we used and the results
we obtained.

EPISODE MINING OF EVENT BASED
ARCHITECTURE SIMULATION DATA

Computer architecture researchers are interested in
identifying both expected and unexpected patterns
in simulation data. The retrieval of expected pat-
terns increase the confidence in the methodologies
used. The discovery of unexpected patterns reveals
previously unknown features of the programs and
micro-architectures that are being investigated.
Of particular interest to our research are sequence
data mining techniques that show the relations
between groups of events along a time interval.
In this context, an event is a simple happening

that takes a unit amount of time. An episode is a
partially ordered collection of events.

The data mining tool we developed is called
Episode Mining Tool (EMT) and it incorporates
three types of temporal data mining algorithms that
were used for mining architecture simulation data:

1. Window episode mining algorithms
(WINEPI) for parallel and serial episodes
developed by Mannila et al. (1997)

2. Minimal occurrence based algorithms
(MINEPI) for serial and parallel episodes
developed by Mannila et al. (1997)

3. Non-overlapping occurrence counting
algorithms for parallel and serial episodes
developed by Laxman at al. (2007)

Table 1. The events that take place during micro-architecture simulation

Event ID Event

01 Main-thread branch mis-prediction

02 Main-thread L1-miss

03 Main-thread L2-miss

04 Main-thread load mis-speculation

05 Main-thread rollback due to branch mis-prediction

06 Main-thread rollback due to load mis-speculation

07 Main-thread enters runahead mode

08 Recovery-thread is forked

09 Main-thread is killed due to a branch mis-prediction’s rollback in recovery-thread

10 Main-thread is killed due to a load-wrong-value in recovery-thread

11 Main thread enters the blocking mode

12 Recovery-thread catches up the main-thread which is under runahead-mode. Kill the main thread.

13 Recovery-thread catches up the main-thread which is under blocking-mode. Recovery-T is done.

21 Recovery-thread branch mis-prediction

22 Recovery-thread L1-miss

23 Recovery-thread L2-miss

24 Recovery thread load

25 Recovery thread roll back due to branch missprediction

26 Recovery thread roll back due to load missprediction

100 L1 data cache: a block (block-addr) is fetched from L2, a victim (replacement-block-addr) block is kicked out if conflicted.

200 L2 data cache: a bloc k(block-addr) is fetched from memory, a victim (replacement-block-addr) block is kicked out if conflicted.

220

Discovering Patterns for Architecture Simulation by Using Sequence Mining

In general, we directly employed the original
pseudo code of these algorithms. However at
certain points, we have made modifications due
to the differences between the structure of our
dataset and the reference dataset of these algo-
rithms. A detailed presentation of the tool we
developed can be found in the section “Episode
Mining Tool (EMT)”.

The WINEPI Approach

WINEPI is a window-based approach which
counts the number of occurrences of episodes in
a given dataset. The dataset is represented as an
event sequence consisting of events with associ-
ated times of occurrence as shown in Figure 2. In
this figure, there are 12 time points representing
machine cycles and are labeled from C01 to C12.
Five events take place within these 12 cycles, and
no events happen during C04 through C08 and
during C11 through C12. The figure also depicts
sample windows of size four. The first window
ends at cycle C01 and the last window begins at
the last cycle (C12). A parallel episode is defined
as a collection of events that are not ordered.
For example, in Figure 2, the parallel episode
consisting of events 1 and 5 appears at the time
interval [C01, C02] and also at [C09, C10]. If the
window size is eight or more, another occurrence
in reverse order is observed at [C02, C09]. The
occurrence at [C02, C09] is in reverse order. A
serial episode is defined as a collection of events

that are totally ordered. For example, [1 => 5]
denotes an episode where event 1 is followed by
event 5. In the figure, the interval [C02, C09] does
not contain an occurrence of episode [1 => 5],
whereas intervals [C01, C02] and [C09, C10] do.

The WINEPI algorithm works by generating
all the episodes of length 1, keeping only those
episodes with a frequency above a user defined
threshold, using these to generate the episodes
with length 2, and repeating this process as the
episode set grows. The set of all length l+1 epi-
sodes that can be generated from the set of length
l episodes is called a candidate set. An episode
that meets or exceeds the frequency threshold is
called a frequent episode. Retaining only the
frequent episodes from the candidate set mini-
mizes the number of candidates, reduces the
number of passes on the dataset and allows the
algorithm to have a time complexity that is inde-
pendent of the length of the event sequence and
is polynomial in the size of the collection of fre-
quent episodes. The candidate generation opera-
tions are very similar for parallel and serial epi-
sodes.

The frequency of an episode is defined as the
ratio of the windows containing the episode to
the total number of windows. For example, in
Figure 2, there are 6 windows that contain the
parallel episode consisting of events 1 and 5.
Thus, the frequency of this episode is 6/15=0.4.
An episode rule is defined as an expression α=>β,
where β is a super episode of α. The confidence

Figure 2. Windows of a time sequence

221

Discovering Patterns for Architecture Simulation by Using Sequence Mining

of a rule is computed by dividing the frequency
of the consequence (β) with the frequency of the
premise (α). For example, if an episode α with a
single event 2 (L1 cache miss) has a frequency
of 0.02 and an episode β with two events 2,2
has a frequency of 0.01, then the confidence of
event 2 being followed by another event 2 is
0.01/0.02=0.5. In other words, the rule [2 => 2,
2] has a confidence of 0.5.

The process for finding the frequent episodes
is remarkably different for parallel and serial
episodes. Consider two consecutive windows w
and w’ where w = (tstart, tstart + win-1) and w’ = (tstart
+ 1, tstart + win). These two windows share the
events between tstart + 1 and tstart + win - 1. There-
fore, after the episodes in w are recognized, the
updates are done incrementally in data structures
to shift the window w to get w’. In recognizing
parallel episodes, a simple counter is sufficient.
For each candidate parallel episode α, a counter
α.event_count that holds the number of events of
α that are present in the window. However, for
serial episodes, a state automaton that accepts
the candidate episodes needs to be used. There
is an automaton for each serial episode denoted
by α and there can be several instances of each
automaton at the same time, so that the active states
reflect the (disjoint) prefixes of α occurring in the
window. For further details, the reader may refer
to Mannila et al.’s description (1997).

The original algorithm has three input param-
eters: window width, frequency threshold and
confidence threshold. We have added a fourth

parameter, maximum length of the episodes to
be generated. This addition is due to the fact that
it may be necessary to concentrate on episodes
much shorter than the window size, and helps
constrain the size of the set of candidate episodes.

Although the basics of the algorithm have been
followed in this work, we have made two more
modifications in addition to the new parameter
limiting the maximum length of episodes. The first
one is that we have followed a different approach
about processing the input dataset and avoided
reading the entire data into memory. Reading the
input file once into memory has the advantage of
reducing the I/O operations. However, the simula-
tor produces huge datasets of size 10GB or more,
and it is not possible to read it entirely into main
memory. Therefore, we used an iterative technique
for processing the input data and kept only one
window in main memory. At each iteration, the
program slides from one window to the next by
dropping the first event and adding the incoming
event, as shown in Figure 3.

As the second modification, we changed the
process of recognizing the occurrences of serial
episodes in the WINEPI approach. The original
algorithm keeps a single automaton per episode.
In the architecture domain, we need to count all
possible occurrences of an episode. Therefore,
we designed a straight-forward algorithm for
recognizing the occurrences of the serial episodes,
which uses the sliding window mechanism. In
our approach, we get all the events into the win-
dow and check whether each candidate episode

Figure 3. Window in memory

222

Discovering Patterns for Architecture Simulation by Using Sequence Mining

occurs in this window or not. The important point
is to check all combinations of the events because
there may be multiple events in each cycle as
shown in Figure 4. In such a situation, to check
whether a candidate episode such as “{C,C,A,C}”
occurs, we should check the following combina-
tions:

• {A,B,A,A,C}: Episode does not occur
• {B,B,A,A,C}: Episode does not occur
• {C,B,A,A,C}: Episode does not occur
• {A,B,C,A,C}: Episode does not occur
• {B,B,C,A,C}: Episode does not occur
• {C,B,C,A,C}: Episode occurs

The MINEPI Approach

In the WINEPI algorithm, the episode counting is
done on a per window basis. The MINEPI approach
uses the minimal occurrences of episodes as the
basis. The minimal occurrence of an episode α is
defined as a time interval T such that T contains
α and there are no subintervals of T that also
contain α. For example, in Figure 2, the minimal
occurrences of parallel episode containing events
1 and 5 are the time intervals: [C01, C02], [C02,
C09], and [C09, C10]. Rather than looking at the
windows and considering whether an episode
occurs in a window or not, in this approach, we
now look at the exact occurrences of episodes and

the relationships between those occurrences. One
of the advantages of this approach is that focus-
ing on the occurrences of episodes allows us to
more easily find rules with two window widths,
one for the left-hand side and one for the whole
rule, such as “if A and B occur within 15 seconds,
then C follows within 30 seconds” (Mannila et al.,
1997). Our implementation follows the original
algorithm. For each frequent episode, we store
information about the locations of its minimal
occurrences. In the recognition phase we can then
compute the locations of the minimal occurrences
of a candidate episode α as a temporal join of the
minimal occurrences of two subepisodes of α1 and
α2 of α. To be more specific, for serial episodes the
two subepisodes are selected so that α1 contains all
events except the last one and α2 in turn contains
all except the first one. For parallel episodes, the
subepisodes α1 and α2 contain all events except
one; the omitted events must be different.

The Non-Overlapping
Episodes Approach

The WINEPI and MINEPI algorithms allow epi-
sodes to overlap and this results in observing more
occurrences of a superepisode than the episode
itself. To remedy this situation, Laxman et al.
(2007) define non-overlapping episodes as two
episodes that do not share any events and define
algorithms that use this concept. Consider the
example shown in Figure 5. In the given time se-
quence, two overlapping occurrences of the serial
episode “1 followed by 2” can be observed. These
two episodes overlap because they share event 1
at cycle C01. In the same sequence, four overlap-
ping occurrences of the episode “1 followed by
2, which is followed by 3” can be observed. As a
result, the super-episode appears more frequently
than the episode itself. When overlapping occur-
rences are disregarded, both episodes appear only
once in the same time sequence.

The non-overlapping algorithm has the same
worst-case time and space complexities as the

Figure 4. Processing multiple events in a single
cycle

223

Discovering Patterns for Architecture Simulation by Using Sequence Mining

windows-based counting algorithms. However,
empirical investigations reveal that the non-
overlapped occurrence based algorithm is more
efficient in practice. Our implementation follows
the basic algorithm (Laxman et al., 2007). In
order to count the non-overlapped occurrences of
an episode, we need only one automaton. Until
the automaton reaches its final state, we do not
need a new instance of this automaton after the
initialization. The same methods in the WINEPI
implementation have been used in order to gener-
ate candidate episodes in each iteration and rule
generation process.

EXPERIMENTS AND RESULTS

We have conducted a series of experiments, which
involve the steps of micro-architecture develop-
ment, simulation data collection, data mining tool
runs, filtering and analysis by the domain experts.
During this endeavor, we have collected about 25

gigabytes of data using the Spec 2000 benchmark
suite. The benchmarks have been simulated for
about 10 million cycles. In all runs, window sizes
of 4, 8, 16 and 32 events have been used with
very low threshold values ranging from 0.1 to 10-9
with the purpose of capturing rare episodes. After
analyzing the results of hundreds of runs during
the exploration phase, we focused on three sets of
experiments. In the first and the second sets we
analyzed the episode rules mined from unfiltered
and filtered datasets, respectively. In the third set,
we used datasets that were generated from program
structure rather than micro-architecture event
sequences and explored the resulting patterns.

The first set of experiments was conducted
using the simulator results on a superscalar micro-
processor with dual processors. The original data
set contained 12,377,038 cycles corresponding to
the execution of the program and had a size of
about 25 GB. We applied the WINEPI algorithm
with a window size of 4 and used 0.00 for the
frequency threshold in order to obtain all the pos-

Figure 5. Non-overlapping occurrences

224

Discovering Patterns for Architecture Simulation by Using Sequence Mining

sible rules. We generated both parallel and serial
episodes and the interpreted the results in two
categories, namely, rules with high confidence
and rules with low confidence.

In the high confidence category, we thoroughly
scanned the rules with top confidence values and
we discovered “expected and present,” “coinciden-
tal,” “expected but not present,” and “unexpected”
rules. In Table 2, we present a subset of the rules
generated by our tool where the rule confidence
is equal to 1.0 and the rules are “expected and
present”.

Some rules appeared to be coincidental, even
with a confidence of 1.0. For example rules [1 =>
1, 7], [7 => 1, 7], [1 => 1, 8] and [8 => 1, 8] bear
no significance from an architectural perspective.
Event 1 denotes a branch mis-prediction and does
not have a causal relationship to events 7 (enter-
ing run-ahead mode) or 8 (forking the recovery
thread). Other examples of coincidental rules are
[3, 26 => 1, 3, 26], [4, 26 => [1, 4, 26] and [5,
200] => [5, 200, 100]. In the first two, events 3
and 4 refer to events in the main-thread, whereas
event 26 is a recovery-thread event. In the last
rule, event 5 is main-thread rollback due to branch
mis-speculation and events 100 and 200 are re-
lated to cache fetches.

Notably missing from the set of expected rules
are rules such as [7 => 8, 11, 13] indicating that
once the main-thread enters run-ahead mode (7),
it should fork the recovery thread (8), the main-
thread should enter blocking mode where it is
waiting for the recovery thread to finish (11) and
the recovery thread catches up the main-thread
(13). This rule is not found by the WINEPI algo-
rithm because there are hundreds or thousands of

events between the beginning and the ending of
such sequences. With the limited window sizes
that can practically be used, the sequence never
resides in the window completely. We tackle this
problem through filtering and discuss the results
later in this section.

We observed a number of rules which were
not readily obvious to the micro-architect (“unex-
pected” rules). The rule [3, 26 => 1, 3, 26] is quite
interesting because it indicates that whenever the
main thread L2 miss (3) coincides with a recov-
ery thread load mis-speculation (26), this always
happens when there is a branch mis-prediction
(1). This is a consequence of the features of the
micro-architecture used in the study. In the micro-
architecture implementation, the processor never
speculates a load instruction again if the particular
load instruction has been misspeculated in the past.
For the recovery thread to misspeculate the load,
it should not have seen the load instruction before;
for the main thread, a branch mis-prediction shows
that the main thread is executing a piece of code it
should not have been executing. In this case, it is
likely that the code contains data references that
have not been touched before, which explains the
L2 miss. Since the recovery thread is following
main-thread’s branch predictions, it in turn means
the code area is new to the recovery thread as well
and this results in a load mis-speculation in the
recovery thread. The rule [4, 26 => 1, 4, 26] is the
sister rule to [3, 26 => 1, 3, 26], this time the same
phenomenon happening in the main-thread only.
These rules show that branch mis-predictions, load
mis-speculations and cache misses are inherently
related with each other. Although this relationship
is known to exist, the WINEPI results strongly

Table 2. Sample high-confidence rules out of WINEPI which were expected

Rule Explanation

[7 => 7, 8] Run-ahead mode main thread always forks the recovery thread.

[25 => 25, 9] When the recovery thread gets a branch mis-prediction, the main thread is killed.

[3, 200 => 3, 200, 100] Main thread L2 miss, L2 data fetch coincides with L1 misses.

[1 => 1, 5] Branch mis-prediction leads to rollback.

225

Discovering Patterns for Architecture Simulation by Using Sequence Mining

confirm that the relationship is stronger than what
is believed in the domain.

The rule [5, 200 => 5, 200, 100] indicates that
a roll-back after a branch mis-prediction (5) that
coexists with an L2 data fetch event (200) will
result in an L1 fetch event (100) as well. This rule
indicates that some of the data fetches initiated
during a mispredicted branch will arrive after the
mis-prediction has been detected. The studied
micro-architecture follows the common practice
and does not tag data requests to the memory with
respect to branch instructions. Further investiga-
tion of benefits of such tagging is necessary,
nevertheless the observation is quite interesting.

Besides these high confidence rules which were
found through the WINEPI experimentation, lower
confidence, yet significant observations have
also been made. During the program execution
in a speculative processor, multiple branch mis-
predictions may be observed in rapid succession.
One of the main reasons behind this observation
is the exploitation of instruction-level parallelism.
The processor issues multiple instructions at each
cycle and never waits for the resolution of branches
as long as pending branch instructions continue
to resolve correctly, i.e., predictions continue to
be correct. As a result, at any given time there are
many branch instructions waiting for resolution.
When one of these branch instructions is mis-
predicted, several others preceeding this branch
might have been mispredicted as well. This fact
is supported through a rule [1 => 1, 1]: a branch
mis-prediction (1) leads to multiple branch mis-
predictions (1, 1).

On a few occasions, similar to the phenomenon
discussed above branch mis-predictions (1) may
lead to additional cache misses (3). The rule [1 =>
1, 3] shows such expected clustering of events.

Rule [4 => 1, 4] indicates that an incorrect
load value obtained from a load speculation may
trigger branch mis-speculations, obviously un-
expectedly. This rule is another example which
yields information that is not common knowledge
in computer architecture. Although a deeper

analysis of the processor behaviour is needed to
assess the frequency and the importance of the
phenomenon, it clearly is a case which indicates
that there is merit in investigating architectural
simulation data using data mining techniques.

In order to understand this particular case bet-
ter, consider the process of load speculation in an
ILP processor. Load speculation is the process of
executing load instructions out of program order,
before preceeding store instructions complete.
Consider the following code:

I1: SW $8, a1

I2: LW $4, a2

If I2 is executed before I1 and a1 != a2, this
will lead to improved performance because the
instructions waiting for the value of register 4 can
proceed sooner. If a1 = a2, the load instruction
will obtain the stale value from the memory and
a load mis-speculation will result. We reason that
the observed case arises because of the interaction
of load mis-speculation with branch prediction
and validation. Consider the sequence:

I1: SW $8, a1

I2: LW $4, a2

I3: Beq $4, $8, L1

and assume that I3 has been correctly predicted.
However, if the load has been speculatively ex-
ecuted and the speculation is not successful the
load will obtain the wrong value. The branch
instruction, although correctly predicted, may be
considered an incorrect prediction because the
processor upon verifying the values of $4 and
$8 does not find them to be equal. Note that the
processor would correctly conclude that the branch
was correctly predicted had the memory operations
been executed in program order. As a result, we
observe [4 => 1, 4], i.e., a load mis-speculation
(4) leads to a branch mis-prediction (1) as well as
an additional load mis-speculation (4).

226

Discovering Patterns for Architecture Simulation by Using Sequence Mining

Each set of experiments clearly indicates the
need to apply domain specific information and
filter the data as necessary. This is a necessity due
to several reasons. First of all, the sheer size of the
collected event data makes it very difficult to seek
relationships among events which are too far away
from each other. The required window size and the
resulting computational needs are very difficult
to meet, even with a well thought-out and effi-
cient implementation of the existing algorithms.
Second, some of the architectural events are rare
and their observation requires very low settings of
threshold values. This in turn results in unaccept-
ably high computational times. It is much more
efficient to filter the information from the dataset
which is known to be unnecessary or unrelated,
based on the domain knowledge. As a result, in
our second set of experiments we progressively
applied filtering as data mining results showed
both known and unknown relationships among the
micro-architectural events. In these experiments,
we extracted the rules for parallel episodes using
0.0005 for frequency and confidence thresholds,
and varying window sizes of 4, 8, 16, and 32.

In order to observe the effects of window size
on the results, we have filtered event sequences
which have an opening and closing event associ-
ated with them. One such example was discussed
previously, after going into the run-ahead mode,
a certain sequence of events should happen and
eventually, the run-ahead mode should terminate.
Removing these event sequences from the input
file enabled the WINEPI algorithm discover
relationships among events separated from each
other by long distances. In this respect, one well-
known fact in computer architecture research is
that cache misses are clustered. In other words,
when the processor experiences a cache miss, it is
followed by a sequence of additional cache misses.
This is because, when there is a cache miss for a
particular item that is part of the program’s work-
ing set, the rest of the working set is also not in
the cache. What is not known clearly is how these
clusters are related to each other. In the following

experiment, we have collected data and listed
those with the highest confidence. Rules [7 =>
7, 8] and [8 => 7, 8] had been explained before.
Rule [3, 3, 2 => 3, 3, 2, 2] illustrates the cluster-
ing effect. Both L1 and L2 cache misses rapidly
follow each other. This local cluster is easily seen
by even a small window size, but all such rules
indicate an interesting behavior. As shown in Table
3 and Figure 6, as the window size is increased,
the confidence also increases. Although further
analysis would make a better case, it is quite likely
that the observed behavior is due to encountering
clusters of cache misses which are close to each
other. Such inter-cluster formation is difficult to
see in smaller window sizes, but as the window
size gets bigger, additional cache misses from the
following cluster also can be seen and analyzed
by the episode miner.

Table 3 indicates the results of filtering in this
manner. Each row indicates the confidence values
observed at the given window size indicated by
the column. Events 5, 6, 9, 10, 11, 12, 13, 25, 26,
100 and 200 have been removed from the data
set. These events are closing events for micro-
architecture events that have a beginning and
ending. The corresponding graph is plotted in
Figure 6. Observe that rules such as [7 => 7, 8]
have very little variation as a function of window
size since their occurrence is in close proximity
always, whereas rules which have events sepa-
rated far from each other demonstrates consistent
increase in confidence values as the window size
is increased.

Using data mining in the computer archi-
tecture domain is not limited to analyzing the
relationship among events observed through the
micro-architecture studies. In fact, programs and
their behavior can also be analyzed using episode
mining. In order to illustrate the concept, we have
modified our micro-architecture simulator so
that upon seeing certain types of instructions, it
generates a corresponding event. By representing
critical instructions as events, it becomes possible
to see how the interaction of various instructions

227

Discovering Patterns for Architecture Simulation by Using Sequence Mining

relate to observable performance criteria such as
IPC. For this purpose, we focus on instructions
that change the program’s control flow: function

calls, function returns, backward and forward
branch instructions. Each of these instructions is
assigned an event id as given below:

Figure 6. Graph plot for the effect of window size on rule quality

Table 3. Effect of window size on rule confidence

Rules 4 8 16 32

[7 => 7, 8] 1 1 1 1

[8 => 7, 8] 1 1 1 1

[3, 3, 2 => 3, 3, 2, 2] 0.947425 0.952256 0.953822 0.95738

[3, 23, 23 => 3, 3, 23, 23] 0.938679 0.956189 0.973992 0.97849

[3, 23 => 3, 3, 23] 0.938033 0.953017 0.966461 0.965144

[3, 2, 2 => 3, 3, 2, 2] 0.930421 0.942661 0.950478 0.96378

[2 => 2, 2] 0.925434 0.942002 0.948303 0.95308

[3, 3, 23 => 3, 3, 23, 23] 0.920951 0.951008 0.95706 0.969514

[3, 23 => 3, 23, 23] 0.920318 0.947853 0.94966 0.956289

[3, 2 => 3, 2, 2] 0.913168 0.938552 0.946946 0.954705

228

Discovering Patterns for Architecture Simulation by Using Sequence Mining

Event ID Instruction

1 backward branch

2 forward branch

3 function return

4 function call

5 load

6 store

We have analyzed the resulting data set using
our tool with WINEPI for serial episodes. Table 4
shows a summary of the highest confidence rules.

In architectures which use load and store in-
structions to access memory, every function starts
with a series of store instructions to save the
contents of the register and they reload the values
of the register before returning. It is highly likely
that most store clustering (rule 7) occurs because
of this phenomenon. Although, this is common
knowledge in the domain, data mining results
point to new micro-architecture designs can exploit
the fact that multiple store instructions would be
forth-coming once a function call is detected. A
very frequent type of operation in most programs
is to test a value, and conditionally load a value,
or, modify a storage location’s value.

For example:

if (a < b)

{

z= 5;

// this really becomes a store

}

is captured by rule 5 and it is quite frequent.
Similarly, consider the same piece of code, this
time slightly modified:

if (a < b)

 {

 z=x; //this may be a load and a

store, or no store, or no load,

 // depending on the avail-

ability of the values in registers.

 }

Such code is responsible for rule 5, and possibly
10. One of the most interesting observations is the
capture of the program’s structure through rule 1:

if (foo() < 1)

 {

 // this really is a forward

branch

 }

The high confidence value indicates that most
function calls in these set of programs actually
test the function’s return value.

Table 4. Summary of highest confidence rules for WINEPI serial episodes

Rule number Confidence Rule Explanation

1 0.67 [3 => 3, 2] Function return is followed by a forward branch.

2 0.67 [4 => 4, 6] Function call is followed by a store.

3 0.63 [5 => 5, 5] Loads are clustered.

4 0.57 [6 => 6, 6] Stores are clustered.

5 0.56 [2 => 2, 5] Forward branches are followed by a store.

6 0.52 [6, 6 => 6, 6, 6] Stores are clustered.

7 0.50 [4, 6 => 4, 6, 6] Same as (6)

8 0.50 [5, 4 => 5, 4, 6] Load, function call is followed by store.

9 0.50 [6, 4 => 6, 4, 6] Store, function call is followed by store.

10 0.37 [5, 2 => 5, 2, 5] Load followed by forward branch is followed by further loads.

229

Discovering Patterns for Architecture Simulation by Using Sequence Mining

Our results demonstrate that the application
of data mining in the computer architecture and
compiler domain enhances the analysis capabili-
ties beyond what is typically achieved through
profiling. While profiling can provide exact in-
formation about a particular point in the program,
data mining provides global knowledge about the
structure of the program.

EPISODE MINING TOOL (EMT)

General Properties

Episode Mining Tool (EMT) is a tool developed
to investigate the relationships between events in
a given event sequence. It was designed to incor-
porate a variety of sequence mining algorithms for
parallel and serial episodes, to provide support in
the domain of micro-architecture simulations, and
to facilitate ease of use by researchers. The tool was
implemented in Java programming language and
includes specific features for mining architectural
events. However, it is general purpose, provides
fundamental functionalities, and can be used for
episode mining in other domains. Interested us-
ers can access the EMT site through the authors’
websites at http://www.cs.mtu.edu and http://
ceng.metu.edu.tr.

The main features of EMT are as follows:

• Before processing the input data, the event
types can be filtered in order to concentrate
on certain event types.

• The tool supports the analysis of input data
containing IPC values with the events.

• It is possible to analyze the input data in
unconventional formats such as an input
file containing several event sequences
where each one is written in a separate line.
In such a case, these lines are processed as
if they are separate input files.

• Users can analyze the event sequences
with any of the three episode mining tech-

niques in the tool under window width,
minimum support threshold and minimum
confidence threshold parameters.

• The patterns generated by episode min-
ing can be visually analyzed with respect
to support, confidence and length of the
patterns.

• Multiple output files can be analyzed in a
single step and they can be grouped with
respect to the common rules or episodes.

Components of EMT

There are three main components in EMT:

• Data pre-processor: This component in-
cludes pre-processing operations that can
be applied on dataset and generates a new
input file with a postfix “_processed”. The
supported pre-processing operations are as
follows:
 ◦ Event types that will not be included

in the analysis and thus will be fil-
tered can be specified.

 ◦ If there are IPC values in the input
sequence, the pre-processor can com-
pute the changes in the IPC values
and produce a new input file contain-
ing the “delta-IPC” values.

 ◦ If the input file includes a set of se-
quences where each one is repre-
sented with a line, the pre-processor
generates a new input files for each
sequence.

• Episode miner: This component provides
the core data mining functionalities of
EMT. It provides window based, minimal
occurrence based and non-overlapping oc-
currence based episode mining for serial and
parallel episodes. The selected technique
generates frequent patterns for the input data
(after pre-processing if necessary) under the
provided parameters. The generated output
file includes frequent episodes with their

230

Discovering Patterns for Architecture Simulation by Using Sequence Mining

frequency values and strong rules with their
confidence values.

• Visual analyzer: This component is the vi-
sualization part of EMT. Extracted frequent
episodes and rules can be presented in the
form of various types of graphs. In addi-
tion, multiple output files can be analyzed
together and grouped with respect to support
or confidence values in a single step.

Usage

EMT has two usage modes: command line mode
and GUI mode. The command line mode was
designed to facilitate automated processing of
the results. In this mode, the results are written
into a file that becomes an input file for further
analysis. The pre-processor and episode miner
components, which are actually two separate
executable files, can be used in the command line
mode. The visual analyzer component, on the other
hand, contains the GUI modules and presents the
resulting patterns in the form of human friendly
charts. Therefore, in the GUI mode, in addition
to pre-processor and episode miner components,
output analyzer is also available.

• The GUI Mode: When EMT starts running
in GUI mode, the very first screen presents
the operations menu, from which the user
can either select pre-processing, episode
mining or output analysis as the operation.

If pre-processing operation is selected, the user
is firstly asked to specify the file to be worked on
through the browser. As the first pre-processing
task, the user can specify the event types to be
filtered as depicted in Figure 7.

Once this specification is completed, accord-
ing to the structure of the input file, the type of
pre-processing operation is selected and applied.
If the dataset contains IPC values, a new input is
generated according to the changes in IPC values.
If the input dataset contains unique sequences,
new input files can be generated for each of the
line in dataset. The pre-processing method selec-
tion interface is presented in Figure 8.

For investigating the relationships between
the rules of unique sequences and IPC changes,
we should first provide an input file in an appro-
priate form. To this aim, another operation called
“Process Unique Sequence Lists with IPC chang-
es” is provided. In addition, the user can enter
IPC change level. Another operation available

Figure 7. Filtering event types in GUI mode

231

Discovering Patterns for Architecture Simulation by Using Sequence Mining

under the pre-processing component is filtering
the results obtained from episode mining opera-
tion.

If episode mining operation is selected, user
is firstly asked to select the technique to be ap-
plied for each type of episodes from the algorithm
menu, which includes the following menu items:

• WINEPI Parallel Episodes
• WINEPI Serial Episodes
• Non-overlapping Parallel Episodes
• Non-overlapping Serial Episodes
• MİNEPI Parallel Episodes
• MINEPI Serial Episodes

According to the selected algorithm, the user
provides the relevant parameters such as window
width, minimum frequency threshold, minimum
confidence threshold, maximum episode length
and input types of events to be ignored, through
the dialog boxes of EMT. Then, the user selects
the input file containing the dataset to be processed
according to the chosen method. Finally, the user
gives the name of the output file where the results

to be written and when the execution is completed,
the user is notified.

If the output analyzer operation is selected,
the results of episode mining operations can be
visualized in different types of charts. As the first
step, the user should specify whether the output
analysis would be done on single or multiple
outputs. The user interface for this selection is
shown in Figure 9.

Once this selection is completed, the user is
prompted for file selection through the browser.
As the next step, the user specifies whether to
analyze episodes or rules. Afterwards, in order to
limit the number of items to be visualized, user
can select the length of rules or episodes. Lastly,
the chart type for visualization is selected through
the GUI. In Figure 10, a sample visual analysis
is shown in which the grouping of rules from
multiple outputs are represented as a bar chart
with respect to their confidence values.

The command-line mode: In command line,
the user gives the necessary parameters to run
pre-processor and the results are printed to the

Figure 8. Selecting the pre-processing method in GUI mode

232

Discovering Patterns for Architecture Simulation by Using Sequence Mining

specified output file. Here, the parameters should
be given in the following format:

DataPreProcessor.jar <input file>

<outputFile> <option>

The option can be “--IPC” to process the input
containing IPC values, “--unique-sequence” to
process the input file containing unique sequences
in its each line, “--AnalyseRulesWithIPC” to gen-
erate rules obtained from unique sequences and

Figure 9. Output analysis on single or multiple outputs

Figure 10. Resulting chart after grouping the output files in GUI mode

233

Discovering Patterns for Architecture Simulation by Using Sequence Mining

IPC changes in given files and “--filterAnalysis”
to filter the rules containing only a rule and an IPC
level value. A sample command is given below:

D:\>DataPreProcessor.jar input.dat

output.txt --IPC

For episode mining, the user supplies the
parameters in the following format:

EpisodeMiner.jar <input file> <win-

dow width> <min frequency> <max epi-

sode length> <min confidence> <algo-

rithm string> <output file> <window

width-2>

Here, the parameter “window width-2” is used
only for MINEPI algorithm and the parameter
algorithm string is an option string containing 6
characters where each of these characters represent
an implemented algorithm and must be either 0
or 1. The order of the algorithms to be specified
is as follows:

• WINEPI for parallel episodes
• WINEPI for serial episodes
• Non-overlapping counts for parallel

episodes
• Non-overlapping counts for serial episodes
• MINEPI for parallel episodes
• MINEPI for serial episodes

Below we show a sample episode miner call.
In this example, the command line with the algo-
rithm string as “000001” denotes selecting only
“MINEPI for serial episodes”.

D:\>EpisodeMiner.jar input.dat 3 0.01

4 0.05 000001 output.txt 5

CONCLUSION

Data mining is an important tool for data-rich
domains. One of the branches of data mining is
mining sequence data where the data can be viewed
as a sequence of events each having a time of oc-
currence. Sequence and episode mining techniques
and algorithms have been applied to various do-
mains such as medicine or telecommunications.
The motivation of this work is to apply episode
mining algorithms to a new domain, architecture
simulation, and to prepare an environment to make
predictions about the performance of programs
in different architectures. In micro-architecture
research, the behavior of designed architectures
are observed through simulations on benchmark
programs. These simulations generate outputs
consisting of sequence of program execution
events occurring at each clock cycle. This provides
a very rich environment for applying sequence
mining techniques. Extracting patterns about the
behavior of the designed architecture can facilitate
the process of improving the design in two ways.
First, in addition to expected patterns, sequence
mining can reveal previously undetected behav-
ior patterns. Second, this automated approach
shortens the analysis of simulation results, which
is conventionally held manually. Furthermore, it
may even be possible to make predictions about
behavior without simulation.

Within the scope of this study, we have devel-
oped an analysis tool named Episode Mining Tool
(EMT), in order to analyze the architecture simula-
tion results. The tool includes the implementation
of three different episode mining techniques:
window-based episode mining, non-overlapping
occurrence based episode mining and minimal oc-
currences based episode mining. In addition to the
episode mining module, EMT includes modules
for pre-processing and visualization of the gener-
ated patterns. The pre-processing module supports
several features that are specific to the domain,
such as handling the IPC values in the data set.

234

Discovering Patterns for Architecture Simulation by Using Sequence Mining

We have conducted several analyses on bench-
mark results by using EMT. As the first analysis
task, we have found patterns involving a limited
set of events that are accurate for architecture
simulation. Therefore, we have accomplished
our first goal for finding patterns supporting the
expected behaviors and some general rules for
the computer architecture by using sequence
mining techniques. In order to discover new pat-
terns that can facilitate predicting the behavior of
programs, we have further analyzed the program
executions and we have observed that the program
blocks can be summarized and represented by
a set of unique sequences. Therefore, we have
analyzed these unique sequences, and generated
rules showing the characteristic behavior of the
program blocks. In addition, we have analyzed the
IPC changes between the executions of blocks in
different architectures and extracted relationships
between IPC change values and the rules. As a
result, these relationships discovered in EMT may
help predicting the performance of a program in a
given architecture without running or simulating
the program.

This work provided invaluable experiences
to the collaborators who had very diverse back-
grounds:

• Several trials were needed to understand
and select the most suitable algorithms and
parameters. We ran the experiments many
times to understand the effects of window
size and frequency thresholds.

• We learned to deal with huge datasets by
restricting the event types and number of
episodes. This helped keep experiment run
times reasonable but most were still in the
range of several days.

• The analysis of the mining results required
several iterations. Most of the applica-
tion domains in the literature reviewed are
suitable for finding the rules with highest
frequencies. In our micro-architecture do-
main, we are also interested in the patterns

of rule occurrence such as, where are the
cache misses are clustered, how do the rule
confidences change within different sec-
tions of the program, or can any anomalies
be observed in the processor’s behavior. As
a result, we had to set very low values for
frequency thresholds and had to deal with a
plethora of rules that looked identical.

The work described in this chapter lays the
foundation for future work in a number of direc-
tions. For example, in this work, instance based
events are considered and the duration of the
events are not analyzed. In order to extend this
approach, continuous events having duration
values may be evaluated by using temporal data
mining techniques. Therefore, more interesting
and hidden relations between sequences and
subsequences of events might be discovered. The
visualization module can be further improved to
facilitate effective communication of the results
to the domain experts in micro-architecture or
other domains. Especially, the output analyzer
component can be considered as a starting point
and more visual features such as time series charts
containing frequent episodes or confident rules
generated from program blocks can be added to
aid with the analysis of results. In the future, it
will be interesting to relate the performance of
the program to its structure through the use of
data mining.

REFERENCES

Akleman, L., & Ezekwa, C. U. (2009). FREQuest:
Prefetching in the light of frequent episodes. Re-
trieved from http://www.cs.cmu.edu/~lakoglu/
classes/arch_paper.pdf

Hamerly, G., Perelman, E., Lau, J., Calder, B., &
Sherwood, T. (2006). Using machine learning to
guide architecture simulation. Journal of Machine
Learning Research, 7, 343–378.

235

Discovering Patterns for Architecture Simulation by Using Sequence Mining

Hennessy, J. L., & Patterson, D. A. (2007). Com-
puter architecture: A quantitative approach (4th
ed.). Amsterdam, Holland: Elsevier.

Laxman, S., Sastry, P. S., & Unnikrishnan, K. P.
(2007). A fast algorithm for finding frequent epi-
sodes in event streams. In P. Berkhin, R. Caruana,
& X. Wu (Eds.), Proceedings of the Thirteenth
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-
07) (pp. 410-419).

Mannila, H., Toivonnen, H., & Verkamo, A. I.
(1997). Discovery of frequent episodes in event se-
quences. Data Mining and Knowledge Discovery,
1(3), 259–289. doi:10.1023/A:1009748302351

Onder, S. (2008). ADL++: Object-oriented
specification of complicated instruction sets and
micro-architectures. In P. Mishra and N. Dutt
(Eds.), Processor description languages, volume
1 (systems on Silicon) (pp. 247-274). Burlington,
MA: Morgan Kaufmann (Elsevier) Publishers.

Osborne, A. (1980). An introduction to microcom-
puters, vol 1: Basic concepts (2nd ed.).

Rau, B. R., & Fisher, J. A. (1993). Instruction-
level parallel processing: History, overview and
perspective. The Journal of Supercomputing,
7(1-2), 9–50. doi:10.1007/BF01205181

Shen, J. P., & Lipasti, M. H. (2005). Modern
processor design: Fundamentals of superscalar
processors. New York, NY: McGraw-Hill Com-
panies.

Zhou, P., & Onder, S. (2008). Improving single-
thread performance with fine-grain state mainte-
nance. In A. Ramirez, G. Bilardi, & M. Gschwind
N (Eds.), Proceedings of the 5th Conference on
Computing Frontiers (CF-08) (pp. 251-260). New
York, NY: ACM.

ADDITIONAL READING

Data Mining Agrawal, R., Imielinski, T., & Swami,
A. N. (1993). Mining Association Rules between
Sets of Items in Large Databases (pp. 207–216).
SIGMOD.

Fang, W., Lu, M., Xiao, X., Hel, B., & Luo, Q.
(2009). Frequent Itemset Mining on Graphics
Processors, Data Management On New Hardware,
Proceedings of the Fifth International Workshop
on Data Management on New Hardware, Session:
Exploiting parallel hardware, pages: 34 – 42.

Hand, D., Mannila, H., & Smyth, P. (2001). Prin-
ciples of Data Mining, Massachusetts Institute of
Technology, 2001, ISBN 0-262-08290-X.

Jin, R., & Agrawal, G. (2005). An Algorithm for
In-Core Frequent Itemset Mining on Streaming
Data. Fifth IEEE International Conference on
Data Mining (ICDM’05), pages:210-217.

Keogh, E., Lonardi, S., & Ratanamahatana, C. A.
(2004). Towards Parameter-Free Data Mining. In
R. Kohavi, J. Gehrke, & W. DuMouchel (Eds.)
Proceedings of the 10th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and
Data Mining (KDD-04) (pp. 205-215).

Kotsiantis, S., & Kanellopoulos, D. (2006). As-
sociation Rules Mining: A Recent Overview.
International Transactions on Computer Science
and Engineering, vol:32 pages:71-82.

Margahny, M. H. & and Mitwaly, A. A. (2007).
Fast Algorithm for Mining Association Rules.
International Journal of computer and software,
vol:2 No:1.

Nanyang, Q. Z. (2003). Sequential Pattern Mining:
A Survey. Technical Report 2003118, Nanyang
Technological University, Singapore.

Ramakrishnan, N. (2009). The pervasiveness of
data mining and machine learning. IEEE Com-
puter, 42(8), 28–29.

236

Discovering Patterns for Architecture Simulation by Using Sequence Mining

Seifert, J. W. (2004). Analyst in Information
Science and Technology Policy Resources, CRS
Report RL31798, Data Mining: An Overview.

Usama, F., Piatetsky-Shapiro, G, & Smyth,
P. (1996). From Data Mining to Knowledge
Discovery in Databases, AI Magazine, vol:17
pages:37-54.

Wang, J., & Han, J. (2004). BIDE: Efficient Mining
of Frequent Closed Sequences. ICDE, Proceed-
ings of the 20th International Conference on Data
Engineering, page:79, ISBN:0-7695-2065-0.

Wojciechowski, M., &Maciej Zakrzewicz, (2004).
Data Mining Query Scheduling for Apriori Com-
mon Counting. 6th Int’l Baltic Conf. on Databases
and Information Systems.

Yun, U., & Leggett, J. J. (2005), WFIM: Weighted
Frequent Itemset Mining with a weight range
and a minimum weight, SIAM International Data
Mining Conference.

Zaïane, O. R. (1999). CMPUT690 Principles of
Knowledge Discovery in Databases, University of
Alberta, Chapter-1. Introduction to Data Mining.

Zaki, M. J., & Ching-Jui H. (2005). CHARM:
An Efficient Algorithm for Closed Itemset Min-
ing. IEEE Transactions on Knowledge and Data
Engineering, vol:17 issue:4, pages: 462-278.

Agarwal, B. (Fall 2004). Instruction Fetch Execute
Cycle. CS 518 Montana State University.

Jimenez, D. A. (2003). Reconsidering Complex
Branch Predictors. In Proceedings of the 9th
International Symposium on High-Performance
Computer Architecture, page:43.

Johnson, J. D. (1992, December). Branch Predic-
tion Using Large Self History. Stanford University,
Technical Report No. CSL-TR-92-553.

Laplante, P. A. (2001). Dictionary of Computer
Science, Engineering and Technology. CRC Press,
2001, ISBN 0849326915.

McKee, S. A. (2004). Reflections on the memory
wall. Conference On Computing Frontiers, Special
session on memory wall, page: 162.

Murdocca, M., & Vincent Heuring, V. (2007).
Computer Architecture and Organization, An
Integrated Approach. Wiley.

Shen, J. P., & Lipasti, M. (2005). Modern processor
design: Fundamentals of Superscalar Processors.
ISBN 0-07-057064-7.

Thisted, R. A. (1998). Computer Architecture,
Encyclopedia of Biostatistics. Wiley (5th ed.).
New York: Kip Irvine, Assembly Language for
Intel-Based Computers.

Tullsen, D. M., Eggers, S. J., & Levy, H. M.
(1995). Simultaneous multithreading:maximizing
on-chip parallelism. International Symposium on
Computer Architecture, pages: 392-403.

Yeh, T., & Yale, N. Patt, Y. N. (1991). Two-level
adaptive training branch prediction. International
Symposium on Micro-architecture, pages: 51 – 61.

237

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 14

DOI: 10.4018/978-1-61350-056-9.ch014

INTRODUCTION

Finding frequent sequence pattern from large
transactional databases is one of the successful
data mining endeavors introduced by Agarwal
and Srikant (1995). It obtains frequent sequential
patterns of items satisfying the condition that the
number of their occurrences, called support, in
the item sequence, called transaction database, is
greater than or equal to a given threshold, called

minimum support. The obtained frequent patterns
could be applied to analysis and decision making
in applications like time-series stock trend, web
page traversal, customer purchasing behavior,
content signature of network applications, etc.

The task of sequence pattern mining is to dis-
cover the frequently occurring subsequences from
the large sequence database. Regardless of how
frequent these sequences occur it is also required
to exploit the relationships among the sequences.

One of the challenging problems with se-
quence generating systems is the large number

Pradeep Kumar
Indian Institute of Management Lucknow, India

Raju S. Bapi
University of Hyderabad, India

P. Radha Krishna
Infosys Labs, Infosys Limited, India

Sequence Pattern Mining
for Web Logs

ABSTRACT

Interestingness measures play an important role in finding frequently occurring patterns, regardless
of the kind of patterns being mined. In this work, we propose variation to the AprioriALL Algorithm,
which is commonly used for the sequence pattern mining. The proposed variation adds up the measure
interest during every step of candidate generation to reduce the number of candidates thus resulting in
reduced time and space cost. The proposed algorithm derives the patterns which are qualified and more
of interest to the user. The algorithm, by using the interest, measure limits the size the candidates set
whenever it is produced by giving the user more importance to get the desired patterns.

238

Sequence Pattern Mining for Web Logs

of sequences being generated. These generated
rules may be of no practical value or interest to
the analyst. To overcome the problem researchers
have started using to measure the usefulness or
interestingness of rules. Whenever a interesting-
ness measure is applied, there is clear tradeoff
between accuracy and the coverage of knowledge.

Interestingness decreases with coverage for
a fixed number of correct responses (remember
accuracy equals the number of correct responses
divided by the coverage).

In this chapter our focus is to mine sequential
patterns from sequence database. For this work
we choose web usage mining domain is used to
demonstrate our approach. The current approach
is highly applicable in any domain where data
exhibits sequentiality in nature.

In this chapter we introduce a general frame-
work of mining sequential patterns using inter-
est measure. The sequential patterns obtained
due to the modified algorithm are compared to
the original sequence pattern mining algorithm,
AprioriALL (Agarwal &Agarwal, 1995).

Our research is motivated by following two
observations:

• Limited customization, the user has no op-
tion to choose the type of pattern catering
to his need depending on his interest.

• The patterns derived are not interesting as
Support is not a good interestingness mea-
sure for either association rules or sequen-
tial patterns.

Now we formally define our research problem
addressed in this work. The problem of Sequential
Pattern Mining in general to web mining can be
stated as “Given a set of user sessions,, with each
session consisting of a list of elements and each
element consisting of a set of items and given user
specified minimum interest value, min_support,
the problem is to generate all candidates which
satisfy the minimum interest value and to find all

the sequences whose occurrence frequency in the
set of sequences is no less than min_support “

Mining sequential patterns has become an
important data mining task with broad applica-
tions in business analysis, career analysis, policy
analysis, and security. Many papers on sequential
pattern mining focus on specific algorithms and
evaluating their efficiency (Ayers et al, 2002, Pei
et al 2001, Srikant & Agarwal, 1996).

In this work, we focus on the problem of
mining sequential patterns. Sequential pattern
mining finds interesting patterns in sequence of
sets. Mining sequential patterns has become an
important data mining task with broad application
areas. For example, supermarkets often collect
customer purchase records in sequence databases
in which a sequential pattern would indicate a
customer’s buying habit.

Currently after many years of research in the
Market basket analysis through Sequence Pattern
Mining problem (Agarwal & Agarwal 1995, Pei
et al 2001, Srikant & Agarwal, 1996) the trend
is shifting to the other areas of application of
sequence pattern mining. One such area is web
mining. Lot of research has been done to make the
process of finding useful information and (Inter-
esting) knowledge from web data more efficient.

The current work is motivated by the candi-
date set and the test approach used in the basic
AprioriAll algorithm (Agarwal & Agarwal, 1995).
Similar to AprioriAll algorithm traversal of se-
quences takes place using the breadth first search
technique. All the combinations of candidate set
and frequent itemset takes place at the K-Level.
As we are concentrated on web user traversals
i.e, the user can visit back and froth a sites, the
proposed algorithm considers the combinations
of back and forth nature ((1,2) and (2,1)).Web
data exhibit sequentiality in nature. The inter-
relationship among the web-pages visit with in
a session can be used to predict the navigational
behavior of the user.

239

Sequence Pattern Mining for Web Logs

SEQUENCE PATTERN
MINING USING SUPPORT-
INTEREST FRAMEWORK

The effectiveness of a set of Web pages depends
not only on the content of individual web pages,
but also on the structure of the pages and their ease
of use. The most common data mining technique
used on click-stream-data is that of uncovering
traversal patterns. A traversal pattern is a set of
pages visited by a user in a session. The knowl-
edge gained from the frequently references of
the contiguous pages is useful to predict future
references and thus can be used for prefetching
and caching purposes. The knowledge acquired
from the backward traversals of the set of contigu-
ous pages is used to improve the quality of web
personalization by adding new links to shorten
web page traversals in future.

In context to web usage mining the sequential
pattern is defined as an ordered set of pages that
satisfies a given support and is maximal (i.e., it has
no subsequence that is also frequent). Support is
defined not as the percentage of sessions with the
pattern, but rather the percentage of the customers
who have the pattern. Since a user may have many
sessions, it is possible that a sequential pattern
should span a lot of sessions. It also needs not be
contiguously accessed pages. A k-sequence is a
sequence of length k (i.e., is it has k pages in it).

Support is the basic (monotonic) measure to be
used in the sequence pattern mining for pruning and
reducing the candidates to be generated. In order
to incorporate any new measure in the existing
sequence pattern mining framework we need to
prune and reduce the candidate generation. This
can be done at post processing phase i.e, after the
pruning phase using support measure. Thus, any
interestingness measure can be used in the existing
algorithm framework. Interest measure can be used
to prune the candidate set of un-interestingness
in nature. The measure can be incorporated in the
preprocessing phase in the algorithm. Measure is
used in the candidate generation phase to prune

the candidate set. In the modified algorithm we
have used the interest measure for pruning the
redundant patterns.

The main aim of modifying the AprioriAll
algorithm is to reduce the size of the candidate
sets at every iteration thus, reducing the time
needed for scanning the database. The reduced
time needed in scanning the database results in
improved efficiency. From the set of candidate set
generated not all the candidate set is interesting
and useful. There may be two possible reasons for
the same. Firstly, the algorithm considers only the
time order into account during a candidate genera-
tion phase and does not consider the user property
and secondly while pruning the candidate set the
algorithm generates lot of candidate sets which
are not interesting in nature hence, the time and
space requirement is high.

In the modified algorithm, in every step to gen-
erate a candidate set the candidate set elements of
the previous step which satisfies the user specified
interest value should be taken over in the next step
and the remaining set should be left out. On the
other hand, the candidate sets generated at every
step is pruned in the light of the property of Aprio-
riALL algorithm and the result is called C’k. Thus,
we can reduce the size of candidate set generated
sharply at each iteration. This, results in reduced
complexity of the time and space. The particular
change in the phase of the candidate generation
helps us to reduce the time and space require-
ment as only the required interested candidates
are generated and passed on for the candidate test
phase to qualify by support. There by giving the
user a qualified interestingness pattern as sought
or required by the user. Algorithm 1 details the
complete modified algorithm.

The algorithm starts with a database D consist-
ing of sequences. Since the current work focuses
on web usage mining here sequences refers to
web user sessions. Each user session consists of
sequence of web pages. The user specified support
value is supplied as a input to prune the candidate
set. In order to have only the useful and interest-

240

Sequence Pattern Mining for Web Logs

ing patterns the algorithm takes IT as a input to
further prune the candidate set. The algorithm
outputs the largest sequence which satisfies both
the user specified support and interest measure.
The algorithm begins with generating the can-
didate set using a procedure Apriorimodgen().
The pruning of sequential patterns is done using
following definition.

Definition 1

If a sequential pattern S1 contains another pat-
tern S2, and the interestingness value of S2 is not
significantly better than S1, then S2 is redundant
and are pruned. A sequential pattern <A1A2...
Am> contains another sequential pattern <B1B2...
Bn> if there exist integers i1 < i2 <... < in such
that B1 ⊆ Ai1, B2 ⊆ Ai2,..., Bn ⊆ Ain, where Ai
(i = 1,...,m) and Bi (i = 1,...,n) are sets of objects.

Definition 2

If a sequential pattern consists of repeated occur-
rences of the same set of objects, the pattern is
pruned. For example, pattern <AAAAA> contains
the same set of objects A and is thus pruned ac-
cording to this rule.

The algorithm proposed is naïve approach to
get the sequence of particular interest to the user.
For high min_support value the algorithm per-
forms well as the ranking of the patterns is per-
formed at each iteration. As the number of can-
didates generated is less hence time and space is
also saved.

EXPERIMENTAL RESULTS

We implemented our approach using Java and
performed experiments on a 2.4 GHz, 256 MB,
and Pentium-IV machine running on Microsoft
Windows XP 2002. We collected data from the
UCI dataset repository (http://kdd.ics.uci.edu/).

In our experimentation we evaluated the time
requirements and the quality of pattern generated
due to both the AprioriALL algorithm and the
modified algorithm. In the modified algorithm
the patterns generated by the qualification from
interest measure reduces the number of candidate
set generated. Hence the candidate set generated
due to the user specified support value is less.
Hence, incorporating interest measure in the
AprioriALL algorithm resulted in only interest-
ing rules and pruning of uninteresting rules. The
modified algorithm uses the concept of extract-
ing subsequence information. Since the support
needed in sequence generation is calculated at
the subsequence generation it results in saving
the time to generate the maximal sequence. In
our experimentation we used the minimum sup-
port of 10%. Figure 1 shows the sequence length
generated for different size of databases. As can
be observed from the figure that ApioriALL
algorithm generates the subsequences of length
5 where as the modified algorithm generates the
subsequences of lengths 3.

In the modified algorithm, the number of pat-
terns generated is more than the patterns gener-
ated in candidate generation phase. The modified
algorithm finds an edge over any level based al-
gorithm in the way that it keeps track of the
subsequences information. We also noted down
the time required by the AprioriAll algorithm and
modified algorithm. Figure 2 shows the time re-
quired by both the algorithms. In Figure 2 the
curve represented by Apriori-All shows the time
taken(in milliseconds) for deriving the sequences
by the original algorithm (Apriori-All) and the
other curve depicts the time taken by the modified
algorithm to get in the user specified interesting-
ness pattern. We use the condition for interest
satisfying join from the candidate generation phase
of length three.

As can be noted from the figure 2, initially for
both the algorithms (AprioriAll and modified
algorithm) time requirements are almost the same.
But as the number of customers increases the

241

Sequence Pattern Mining for Web Logs

Algorithm 1. The Modified Algorithm

Input:
D = {t1, t2, t3, …, tn}where t1, t2, …,tn are user sessions.
S = Minimum Support threshold value
IT= Minimum interest value (0 < IT <= 1)
Output:
Sequential Patterns qualified with interestingness measure.
Begin
L1 = large 1-Itemsets;
For (k = 2; Lk-1! = 0; k++) do
 Begin
 Ck= Apriorimodgen(Lk-1,S)
 For each transaction ti ∈ D
 do
 Ci =subset (Ck, ti);
 For all candidate c ∈ Ci do
 c.count++;
 Lk={c Ck| c.count > S)
 End
Find all maximal reference sequences from L;
End
Procedure Apriorimodgen (Lk-1, S)
Begin
Ck= null;
 For each Itemset Li to Lk-1
 For each Itemset Lj to Lk-1
 If (Interest (Li, Lj) > IT)
 Begin
 C = Li join Lj
 has Infrequent –Subset (c, Lk-1)
 End
For each Itemset Li L1 // to give identity sequences of length
 Li → Li
 Return Ck;
End
Procedure Apriorimodgen (Lk-1, S) in turn uses the procedure has Infrequent
Subset(c, Lk-1) to prune the candidate set using interest measure.
Procedure has Infrequent-Subset(c,Lk-1)
Begin
For each (k-1) subset s of c
 If s ∈ Lk-1 then
 return false;
 Else true;
End
Procedure Interest(Li, LJ)
Begin
For each (Li, Lj)

End

242

Sequence Pattern Mining for Web Logs

modified algorithm takes less time in comparison
to the AprioriALL algorithm. The patterns due to
the modified algorithm are only the ones which
are really meaningful and interesting. It was also
observed that the patterns derived form the pro-
posal is of length three but is of more interest to
user requirements.

The main motivation for adding the interest
measure in AprioriALL algorithm is due to the
patterns obtained from the AprioriAll algorithm.
In the original AprioriAll algorithm the change
in the candidate generation phase resulted in
reduced time and space since the required inter-

ested candidates are generated and passed on for
the candidate test phase to qualify the minimum
support value. Thus, the user gets only those pat-
terns which qualify the interestingness pattern.
The modified algorithm is well when the user
transactions are huge in size.

CONCLUSION

Sequence pattern mining is a heavily researched
area in the field of data mining with wide range
of application areas. One of them is to use find

Figure 1. Sequence length derivation of the original algorithm vs. variation one

Figure 2. Performance evaluation of the AprioriALL and modified algorithm

243

Sequence Pattern Mining for Web Logs

the maximal length pattern from large collection
of web log data. Discovering hidden information
from Web log data is called Web usage mining.
The aim of discovering large sequential patterns
in Web log data is to obtain information about
the navigational behavior of the users. This can
be used for advertising purposes, for creating
dynamic user profiles etc.

In this work, we modified the AprioriAll al-
gorithm to obtain the patterns of more interest.
We demonstrated that the proposed algorithm
generates the only interesting set of patterns as
compared over the original algorithm. The pro-
posed algorithm scales well over the large dataset.
We also demonstrated the time requirement of the
proposed algorithm. The proposed algorithm takes
less time as compared to the original algorithm.
The viability of our approach was shown over the
msnbc web log dataset consisting user transactions.

The Preprocessing pruning of candidates is
novel approach and can be extended in the post
processing phase to select out the largeitemset
sequences generated.

The minimum interest value specification can
also be used to get the pruning of candidates is to
be given by user who has good domain knowledge
about the dataset. This is one area which can be
looked in for future enhancement to get the au-
tomated interested values by the use of genetic
algorithms.

REFERENCES

Aggarwal, C., & Yu, P. (1998). A new framework
for itemset generation. In Proc. of the 17th Sym-
posium on Principles of Database Systems, (pp.
18-24). Seattle, WA.

Agrawal, R., & Srikant, R. (1995). Mining se-
quential patterns. In 11th Int’l Conf. of Data
Engineering, (pp. 3-14). Taipei, Taiwan.

Ayres, J., Flannick, J., Gehrke, J., & Yiu, T. (2002).
Sequential pattern mining using a bitmap repre-
sentation. In Proc. 2002 Int. Conf. Knowledge
Discovery and Data Mining.

Huang, E., Cercone, N., & Aijun, A. (2002).
Comparison of interestingness functions for
learning Web usage patterns. CIKM: Proceed-
ings of the Eleventh International Conference on
Information and Knowledge Management, (pp.
617-620). McLean, Virginia, USA. New York,
NY: ACM Press.

Klemettinen, M., Mannila, H., Ronkainen, P.,
Toivonen, T., & Verkamo, A. (1994). Finding
interesting rules from large sets of discovered
association rules. In Proc. of the 3rd Int’l Conf.
on Information and Knowledge Management
(CIKM’94), (pp. 401-407). Gaithersburg, Mary-
land.

Pei, J., Han, J., Mortazavi-Asi, B., & Pinto, H.
(2001). PrefixSpan mining sequential patterns
efficiently by prefix-projected pattern growth. In
Proc. of Int. Conf. on Data Engineering.

Sarawagi, S. (2003). Sequence data mining tech-
niques and applications. In the 19th International
Conference on Data Engineering.

Srikant, R., & Agrawal, R. (1996). Mining sequen-
tial patterns: Generalizations and performance
improvements. In Proc. 5th Int. Conf. Extending
Database Technology.

Tan, P.-N., Kumar, V., & Srivastava, J. (2002).
Selecting the right interestingness measure for
association patterns. KDD ‘02: Proceedings of the
Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, (pp.
32-41). Edmonton, Alberta, Canada. New York,
NY: ACM Press.

244

Compilation of References

Abe, N., & Warmuth, M. K. (1992). On the computa-
tional complexity of approximating distributions by
probabilistic automata. Machine Learning, 9, 205–260.
doi:10.1007/BF00992677

Agarwal, R., Imielenski, T., & Swami, A. (1993). Mining
association rules between sets of items in large databases.
In Proc. 1993 ACM-SIGMOD Int. Conf. Management of
Data (SIGMOD’93), (pp. 266-271).

Agarwal, S. (2009). On finding the most statistically sig-
nificant substring using the chi-square measure. Master’s
thesis, Indian Institute of Technology, Kanpur.

Aggarwal, C., & Yu, P. (1998). A new framework for
itemset generation. In Proc. of the 17th Symposium on
Principles of Database Systems, (pp. 18-24). Seattle, WA.

Agrawal, R., & Srikant, R. (1994). Fast algorithms for
mining association rules in large databases. In VLDB’94:
Proceedings of 20th International Conference on Very
Large Data Bases, (pp. 487–499).

Agrawal, R., & Srikant, R. (1995). Mining sequential
patterns. In 11th Int’l Conf. of Data Engineering, (pp.
3-14). Taipei, Taiwan.

Akhtar, R., & Cochrane, G. (2008). Priorities for nucleotide
trace, sequence and annotation data capture at the Ensembl
Trace Archive and the EMBL Nucleotide sequence data-
base. Nucleic Acids Research, 36, 5–12.

Akleman, L., & Ezekwa, C. U. (2009). FREQuest:
Prefetching in the light of frequent episodes. Retrieved
from http://www.cs.cmu.edu/~lakoglu/classes/arch_pa-
per.pdf

Allwein, E. L., Schapire, R. E., & Singer, Y. (2001).
Reducing multiclass to binary: A unifying approach for
margin classifiers. Journal of Machine Learning Research,
1, 113–141. doi:10.1162/15324430152733133

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., &
Lipman, D. J. (1990). Basic local alignment search tool.
Journal of Molecular Biology, 215(3), 403–410.

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J.,
Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped
BLAST and PSI-BLAST: A new generation of protein
database search programs. Nucleic Acids Research, 25,
3389–3402. doi:10.1093/nar/25.17.3389

Andersson, J. O. (2005). Lateral gene transfer in eu-
karyotes. Cellular and Molecular Life Sciences, 62(11),
1182–1197. doi:10.1007/s00018-005-4539-z

Andorf, C., Silvescu, A., Dobbs, D., & Honavar, V. (2004).
Learning classifiers for assigning protein sequences to
gene ontology functional families. In Proceedings of
the Fifth International Conference on Knowledge Based
Computer Systems, (pp. 256–265).

Ayres, J., Flannick, J., Gehrke, J., & Yiu, T. (2002). Sequen-
tial pattern mining using a bitmap representation. In Proc.
2002 Int. Conf. Knowledge Discovery and Data Mining.

Bairoch, A., & Boeckmann, B. (2003). The SWISS-
PROT protein knowledgebase and its supplement
TrEMBL in 2003. Nucleic Acids Research, 31(1), 365–370.
doi:10.1093/nar/gkg095

Bakheet, T. M., & Doig, A. J. (2009). Properties and
identification of human protein drug targets. Bioinfor-
matics (Oxford, England), 25(4), 451–457. doi:10.1093/
bioinformatics/btp002

Compilation of References

245

Bakus, J., & Kamel, M. S. (2002). Document classification
using phrases. In Proceedings of the Joint IAPR Interna-
tional Workshop on Structural, Syntactic, and Statistical
Pattern Recognition, (pp. 557–565). SpringerVerlag.

Baldi, P., Chauvin, Y., Hunkapiller, T., & McClure, M.
A. (1994). Hidden Markov models of biological primary
sequence information. Proceedings of the National Acad-
emy of Sciences of the United States of America, 91(3),
1059–1063. doi:10.1073/pnas.91.3.1059

Batista, G., Prati, M., & Monard, M. (2004). A study of
the behavior of several methods for balancing machine
learning training data. ACM SIGKDD Explorations:
Special Issue on Imbalanced Data Sets, 6(1), 20–29.

Beigi, M., & Zell, A. (2007). Synthetic protein sequence
oversampling method for classification and remote homol-
ogy detection in imbalanced protein data. In Proceedings of
1st International Conference on Bioinformatics Research
and Development, (pp. 263-277). Berlin, Germany.

Bejerano, G., Friedman, N., & Tishby, N. (2004). Efficient
exact p-value computation for small sample, sparse and
surprisingly categorical data. Journal of Computational
Biology, 11(5), 867–886.

Bejerano, G., & Yona, G. (1999). Modeling protein
families using probabilistic suffix trees. In Proceedings
of RECOMB, (pp. 15–24).

Ben-Hur, A., Horn, D., Siegelmann, H., & Vapnik, V. (2001).
Support vector clustering. Journal of Machine Learning
Research, 2, 125–137. doi:10.1162/15324430260185565

Ben-Hur, A., & Noble, W. S. (2005). Kernel methods for
predicting protein-protein interactions. Bioinformatics
(Oxford, England), 21(1), i38–i46. doi:10.1093/bioin-
formatics/bti1016

Ben-Hur, A., & Brutlag, D. (2003a). Remote homology
detection: A motif based approach. Bioinformatics (Ox-
ford, England), 19(1), 26–33. doi:10.1093/bioinformatics/
btg1002

Ben-Hur, A., & Brutlag, D. (2003b). Sequence motifs:
Highly predictive features of protein function. In Proceed-
ings of Workshop on Feature Selection, Neural Information
Processing Systems.

Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell,
J., & Wheeler, D. L. (2008). GenBank. Nucleic Acids
Research, 36, 25–30. doi:10.1093/nar/gkm929

Berendt, B. A. (2000). Analysis of navigation behaviour
in web sites integrating multiple information systems. The
VLDB Journal, 9(1), 56–75. doi:10.1007/s007780050083

Berger, A. L., Pietra, S. D., & Pietra, V. J. D. (1996). A
maximum entropy approach to natural language process-
ing. Computational Linguistics, 22(1), 39–71.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G.,
Bhat, T. N., Weissig, H., et al. (2000). The Protein Data
Bank, Nucleic Acids Research, 28, 235-242. Retrived on
January 11, 2011 from http://www.rcsb.org

Bhattacharyya, A. (1943). On a measure of divergence
between two statistical populations defined by their prob-
ability distributions. Bulletin of the Calcutta Mathematical
Society, 35, 99–109.

Boughanem, M., Chrisment, C., Mothe, J., Soulé-Dupuy,
C., & Tamine, L. (2000). Connectionist and genetic ap-
proaches to achieve IR. In Crestani, F., & Gabriella, P.
(Eds.), Soft computing in information retrieval techniques
and applications (pp. 173–198). Springer-Verlag.

Boughanem, M., & Dousset, B. (2001). Relationship
between push and optimization subscriptions in docu-
mentation centers. VSST’01, (pp. 239-252). Tome 1.

Boughorbel, S., Tarel, J. P., & Boujemaa, N. (2005). The
intermediate matching kernel for image local features.
In Proceedings of the International Joint Conference
on Neural Networks, (pp. 889–894). Montreal, Canada.

Brodley, C. E., & Friedl, M. A. (1999). Identifying mis-
labeled training data. Journal of Artificial Intelligence
Research, 11, 131–167.

Bru, C., & Servant, F. (2002). ProDom: Automated cluster-
ing of homologous domains. Briefings in Bioinformatics,
3(3), 246–251. doi:10.1093/bib/3.3.246

Buchner, A. G., & Mulvenna, M. D. (1998). Discovering
Internet marketing intelligence through online analyti-
cal web usage mining. SIGMOD Record, 27(4), 54–61.
doi:10.1145/306101.306124

Compilation of References

246

Buddhakulsomsiri, J., & Zakarian, A. (2009). Sequential
pattern mining algorithm for automotive warranty data.
Journal of Computers and Industrial Engineering, 57(1),
137–147. doi:10.1016/j.cie.2008.11.006

Buehler, E. C., & Ungar, L. H. (2001). Maximum entropy
methods for biological sequence modeling. In Proceedings
of BIOKDD, (pp. 60–64).

Burges, C. J. C. (1998). A tutorial on support vector ma-
chines for pattern recognition. Data Mining and Knowledge
Discovery, 2(2), 1–47. doi:10.1023/A:1009715923555

Büttcher, S., Clarke, C. L. A., & Cormack, G. V. (2010).
Information retrieval: Implementing and evaluating
search engines. MIT Press.

Cai, C. Z., Wang, W. L., Sun, L. Z., & Chen, Y. Z. (2003).
Protein function classification via support vector machine
approach. Mathematical Biosciences, 185(1), 111–122.
doi:10.1016/S0025-5564(03)00096-8

Campbell, W., Assaleh, K., & Broun, C. (2002). Speaker
recognition with polynomial classifiers. IEEE Transac-
tions on Speech and Audio Processing, 10(4), 205–212.
doi:10.1109/TSA.2002.1011533

Campbell, W. M., Campbell, J. P., Reynolds, D. A., Singer,
E., & Torres-Carrasquillo, P. A. (2006a). Support vector
machines for speaker and language recognition. Computer
Speech &. Language, 20(2-3), 210–229.

Campbell, W. M., Sturim, D. E., & Reynolds, D. A.
(2006b). Support vector machines using GMM super-
vectors for speaker verification. IEEE Signal Processing
Letters, 13(5), 308–311. doi:10.1109/LSP.2006.870086

Campbell, W. M., Campbell, J. P., Gleason, T. P., Reyn-
olds, D. A., & Shen, W. (2007). Speaker verification using
support vector machines and high-level features. IEEE
Transactions on Audio Speech and Language Process-
ing, 15(7), 2085–2094. doi:10.1109/TASL.2007.902874

Campbell, A. (1999). Genome signature comparisons
among prokaryote, plasmid and mitochondrial DNA.
Proceedings of the National Academy of Sciences of
the United States of America, 96(16), 9184–9189.
doi:10.1073/pnas.96.16.9184

Campbell, W. (2008). A covariance kernel for SVM
language recognition. In Proceedings of International
Conference on Acoustics, Speech and Signal Process-
ing, 2008 (ICASSP 2008), (pp. 4141–4144). Las Vegas,
Nevada, USA.

Campbell, W. M. (2002). Generalized linear discriminant
sequence kernels for speaker recognition. In IEEE Inter-
national Conference on Acoustics, Speech, and Signal
Processing, 2002, ICASSP ’02, vol. 1, (pp. 161–164).
Orlando, Florida, USA.

Campbell, W. M., Campbell, J. P., Reynolds, D. A., Jones,
D. A., & Leek, T. R. (2004a). High-level speaker verifica-
tion with support vector machines. In IEEE International
Conference on Acoustics, Speech, and Signal Processing,
vol. 1, (pp. I–73–76). Montreal, Quebec, Canada.

Campbell, W. M., Campbell, J. P., Reynolds, D. A.,
Jones, D. A., & Leek, T. R. (2004b). Phonetic speaker
recognition with support vector machines. In Advances in
neural information processing systems, (pp. 1377–1384).
Vancouver, Canada.

Campbell, W., Sturim, D. E., Reynolds, D. A., & Solo-
monoff, A. (2006c). SVM based speaker verification using
a GMM supervector kernel and NAP variability compen-
sation. In IEEE International Conference on Acoustics,
Speech and Signal Processing, 2006. ICASSP 2006, vol.
1, (pp. 97–100).

Chang, C. C., & Lin, C. J. (2001). LIBSVM – A library
for support vector machines. Retrieved from http://www.
cse.ntu.edu.tw/~cjlin/libsvm/

Chao, Y.-H., Wang, H.-M., & Chang, R.-C. (2005). GMM-
based Bhattacharyya kernel Fher discriminant analysis for
speaker recognition. In IEEE International Conference on
Acoustics, Speech and Signal Processing, 2005, ICASSP
2005, Vol. 1, (pp. 649–652). Philadelphia, PA, USA.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer,
W. P. (2004). SMOTE: Synthetic minority over-sampling
technique. Journal of Artificial Intelligence Research,
16, 324–357.

Chen, E., Cao, H., Li, Q., & Qian, T. (2008). Efficient
strategies for tough aggregate constraint-based se-
quential pattern mining. Inf. Sci., 178(6), 1498–1518.
doi:10.1016/j.ins.2007.10.014

Compilation of References

247

Chen, Y.-L., & Hu, Y.-H. (2006). Constraint-based se-
quential pattern mining: The consideration of recency
and compactness. Decision Support Systems, 42(2),
1203–1215. doi:10.1016/j.dss.2005.10.006

Chen, Y.-L., & Huang, T. C.-K. (2008). A novel knowledge
discovering model for mining fuzzy multi-level sequential
patterns in sequence databases. Data & Knowledge Engi-
neering, 66(3), 349–367. doi:10.1016/j.datak.2008.04.005

Cheng, H., Yan, X., & Han, J. (2004). IncSpan: Incremental
mining of sequential patterns in large database. KDD ‘04:
Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
(pp. 527-532).

Cieslak, D. A., Chawla, N. V., & Striegel, A. (2006).
Combating imbalance in network intrusion datasets.
In Proceedings of IEEE International Conference on
Granular Computing, (pp. 732-737). Athens, Georgia.

Cooley, R., Mobasher, B., & Srivastava, J. (1999). Data
preparation for mining World Wide Web browsing pat-
terns. Knowledge and Information Systems, 1(1), 5–32.

Cortes, C., & Vapnik, V. (1995). Support-Vector Net-
works. Machine Learning, 20, 273–297. doi:10.1007/
BF00994018

Cristianini, N., & Shawe-Taylor, J. (2000). An introduc-
tion to support vector machines and other kernel-based
learning methods. The Edinburgh building. Cambridge,
UK: Cambridge University Press.

Cristianini, N., & Shawe-Taylor, J. (2000). Support vec-
tor machines and other kernel-based learning methods.
Cambridge University Press.

Croft, B., Metzler, D., & Strohman, T. (2011). Search en-
gines: Information retrieval in practice. Addison-Wesley.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gra-
dients for human detection. Proceedings of International
Conference on Computer Vision & Pattern Recognition
(CVPR ‘05), 1, 886—893.

Darling, A. C. E., Mau, B., Blattner, F. R., & Perna, N. T.
(2004). Mauve: Multiple alignment of conserved genomic
sequence with rearrangements. Genome Research, 14(7),
1394–1403. doi:10.1101/gr.2289704

Darroch, J. N., & Ratcliff, D. (1972). Generalized iterative
scaling for log-linear models. Annals of Mathematical
Statistics, 43, 1470–1480. doi:10.1214/aoms/1177692379

Dehak, N., & Chollet, G. (2006). Support vector GMMs
for speaker verification. In IEEE Odyssey 2006: The
Speaker and Language Recognition Workshop, (pp. 1–4).

Dehak, R., Dehak, N., Kenny, P., & Dumouchel, P.
(2007). Linear and non linear kernel GMM supervec-
tor machines for speaker verification. In Proceedings
of INTERSPEECH, (pp. 302–305). Antwerp, Belgium.

Delcher, A. L., Phillippy, A., Carlton, J., & Salzberg, S.
L. (2002). Fast algorithms for large-scale genome align-
ment and comparison. Nucleic Acids Research, 30(11),
2478–2483. doi:10.1093/nar/30.11.2478

Denise, A., Regnier, M., & Vandenbogaert, M. (2001).
Accessing the statistical significance of overrepresented
oligonucleotides. In Workshop on Algorithms in Bioin-
formatics (WABI), pages 85-97.

Devitt, A., Duffin, J., & Moloney, R. (2005). Topographi-
cal proximity for mining network alarm data. MineNet
‘05: Proceedings of the 2005 ACM SIGCOMM workshop
on Mining network data (pp. 179-184). Philadelphia,
PA: ACM.

Dileep, A. D., & Sekhar, C. C. (2011). Speaker recognition
using intermediate matching kernel based support vec-
tor machines pairwise classification and support vector
machines. In Neustein, A., & Patil, H. (Eds.), Speaker
forensics: New developments in voice technology to
combat crime and detect threats to homeland security.

Ding, C. H. Q., & Dubchak, I. (2001). Multi-class protein
fold recognition using support vector machines and neu-
ral networks. Bioinformatics (Oxford, England), 17(4),
349–358. doi:10.1093/bioinformatics/17.4.349

Ding, B., Lo, D., Han, J., & Khoo, S.-C. (2009). Efficient
mining of closed repetitive gapped subsequences from a
sequence database. ICDE 09.

Dkaki, T., Dousset, B., Egret, D., & Mothe, J. (2000).
Information discovery from semi-structured sources –
Application to astronomical literature. Computer Phys-
ics Communications, 127(2-3), 198–206. doi:10.1016/
S0010-4655(99)00509-3

Compilation of References

248

Dkaki, T., Dousset, B., & Mothe, J. (1997). Mining infor-
mation in order to extract hidden and strategical informa-
tion. 5th International Conference RIAO, (pp. 32-51).

Dobrindt, U., Hochhut, B., Hentschel, U., & Hacker, J.
(2004). Genomic islands in pathogenic and environmental
microorganisms. Nature Reviews Microbiology, 2(5),
414–424. doi:10.1038/nrmicro884

Domingos, P., & Pazzani, M. J. (1997). On the op-
timality of the simple Bayesian classifier under
zero-one loss. Machine Learning, 29(2-3), 103–130.
doi:10.1023/A:1007413511361

Domingos, P., & Pazzani, M. J. (1996). Beyond indepen-
dence: Conditions for the optimality of the simple Bayes-
ian classifier. In Proceedings of ICML, (pp. 105–112).

Dousset, B. (2003). Integration of interactive knowledge
discovery for strategic scanning. Habilitation. Toulouse:
Paul Sabatier University. in French

Dousset, B. (2009). Extracting implicit information by text
analysis from websites in unicode. Nancy: VSST. in French

Duda, R. O., Hart, P. E., & Stork, D. G. (2002). Pattern
classification. New York, NY: John Wiley and Sons.

Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998).
Biological sequence analysis: Probabilistic models of
proteins and nucleic acids. Cambridge University Press.
doi:10.1017/CBO9780511790492

Dutta, S., & Bhattacharya, A. (2010). Most significant
substring mining based on chi-square measure. In Proc.
of 14th Pacific-Asia Conference on Knowledge Discovery
and Data Mining, (pp. 319-327).

Eddy, S. R. (1998). HMMER: Profile hidden Markov
modelling. Bioinformatics (Oxford, England), 14(9),
755–763. doi:10.1093/bioinformatics/14.9.755

Eichinger, F., Nauck, D. D., & Klawonn, F. (n.d.). Se-
quence mining for customer behaviour predictions in
telecommunications.

El haddadi, A., Dousset, B., Berrada, I., & Loubier, E.
(2010). The multi-sources in the context of competitive
intelligence. Paper presented at the Francophone Con-
ference on Mining and Knowledge Management, (pp.
A1-125-A1-136). Hamammat, Tunisia.

Eskin, E., Noble, W. S., & Singer, Y. (2003). Protein
family classification using sparse Markov transducers.
Journal of Computational Biology, 10(2), 187–214.
doi:10.1089/106652703321825964

Estabrooks, A., Jo, T., & Japkowicz, N. (2004). A mul-
tiple resampling method for learning from imbalanced
data sets. Computational Intelligence, 20(1), 18–36.
doi:10.1111/j.0824-7935.2004.t01-1-00228.x

Exarchos, T. P., Papaloukas, C., Lampros, C., & Fotiadis,
D. I. (2008). Mining sequential patterns for protein fold
recognition. Journal of Biomedical Informatics, 41(1),
165–179. doi:10.1016/j.jbi.2007.05.004

Exarchos, T. P., Tsipouras, M. G., Papaloukas, C., &
Fotiadis, D. I. (2008). A two-stage methodology for se-
quence classification based on sequential pattern mining
and optimization. Data & Knowledge Engineering, 66(3),
467–487. doi:10.1016/j.datak.2008.05.007

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., &
Uthurusamy, R. (Eds.). (1996). Advances in knowledge
discovery and data mining. AAAI/MIT Press.

Ferreira, P. G., & Azevedo, P. J. (2005a). Protein sequence
classification through relevant sequence mining and Bayes
classifiers. In Proceedings of EPIA, (pp. 236–247).

Ferreira, P. G., & Azevedo, P. J. (2005b). Protein sequence
pattern mining with constraints. In Proceedings of PKDD,
(pp. 96–107).

Ferreira, P. G., & Azevedo, P. J. (2006). Query driven
sequence pattern mining. In Proceedings of SBBD, (pp.
1–15).

Finn, R. D., & Bateman, A. (2008). The Pfam protein
families database. Nucleic Acids Research, 281–288.

Gao, F., & Zhang, C. T. (2006). GC-Profile: A Web-based
tool for visualizing and analyzing the variation of GC
content in genomic sequences. Nucleic Acids Research,
34, W686–W691. doi:10.1093/nar/gkl040

Garboni, C., Masseglia, F., & Trousse, B. (2005). Sequen-
tial pattern mining for structure-based XML document
classification. Workshop of the INitiative for the Evalu-
ation of XML Retrieval.

Compilation of References

249

Garcia-Vallve, S., Guzman, E., Montero, M. A., & Romeu,
A. (2003). HGT-DB: A database of putative horizon-
tally transferred genes in prokaryotic complete genomes.
Nucleic Acids Research, 31(1), 187–189. doi:10.1093/
nar/gkg004

Garcia-Vallve, S., Romeu, A., & Palau, J. (2000). Hori-
zontal gene transfer in bacterial and archaeal complete
genomes. Genome Research, 10, 1719–1725. doi:10.1101/
gr.130000

Garofalakis, M., Rastogi, R., & Shim, K. (2002). Mining
sequential patterns with regular expression constraints.
IEEE Transactions on Knowledge and Data Engineer-
ing, 14(3), 530–552. doi:10.1109/TKDE.2002.1000341

Gibbens, R. J., & Saacti, Y. (2006). Road traffic analysis
using MIDAS data: Journey time prediction. (Technical
Report, UCAM-CL-TR-676). Computer Laboratory.
England: University of Cambridge.

Girolami, M. (2002). Mercer kernel-based clustering in
feature space. IEEE Transactions on Neural Networks,
13(3), 780–784. doi:10.1109/TNN.2002.1000150

Gogarten, J. P., & Townsend. (2005). Horizontal gene
transfer, genome innovation and evolution. Nature Reviews
Microbiology, 3, 679–687. doi:10.1038/nrmicro1204

Goldberg, R. R. (1978). Methods of real analysis (1st ed.).
New Delhi, India: Oxford & IBH Publishing Company.

Gouda, K., & Zaki, M. J. (2005). Genmax: An efficient
algorithm for mining maximal frequent itemsets. Data
Mining and Knowledge Discovery, 11(3), 223–242.
doi:10.1007/s10618-005-0002-x

Grauman, K., & Darrell, T. (2007). The pyramid match
kernel: Efficient learning with sets of features. Journal
of Machine Learning Research, 8, 725–760.

Grauman, K., & Darrell, T. (2005). The pyramid match
kernel: Discriminative classification with sets of image
features. In Tenth IEEE International Conference on Com-
puter Vision, 2005. ICCV 2005, vol. 2, (pp. 1458–1465).

Gribskov, M., Luthy, R., & Eisenberg, D. (1990). Pro-
file analysis. Methods in Enzymology, 183, 146–159.
doi:10.1016/0076-6879(90)83011-W

Guan, J. W., Liu, D., & Bell, D. A. (2004). Discovering
motifs in DNA sequences. Fundam. Inform., 59(2-3),
119–134.

Guan, J. W., Bell, D. A., & Liu, D. (2004). Discovering
maximal frequent patterns in sequence groups. In Pro-
ceedings of Rough Sets and Current Trends in Computing,
(pp. 602–609).

Guenec, N. (2009). Chinese scientific information: An
essential information source to any business intelligence
competitive watch. Nancy: VSST. in French

Gutierrez, G., Marquez, L., & Marin, A. (1996). Preference
for guanosine at first codon position in highly expressed
Escherichia coli genes. A relationship with translational
efficiency. Nucleic Acids Research, 24(13), 2525–2527.
doi:10.1093/nar/24.13.2525

Hajduk, P. J., Huth, J. R., & Tse, C. (2005). Predicting pro-
tein druggability. Drug Discovery Today, 10, 1675–1682.
doi:10.1016/S1359-6446(05)03624-X

Hamerly, G., Perelman, E., Lau, J., Calder, B., &
Sherwood, T. (2006). Using machine learning to guide
architecture simulation. Journal of Machine Learning
Research, 7, 343–378.

Han, J., & Kamber, M. (1996). Data mining – Concepts
and techniques. Elesevier Inc.

Han, J., & Kamber, M. (2001). Data mining: Concepts
and techniques. Morgan Kaufmann.

Han, L. Y., Zheng, C. J., Xie, B., Jia, J., Ma, X. H., &
Zhu, F. (2007). Support vector approach for predicting
druggable proteins: recent progress in its exploration and
investigation of its usefulness. Drug Discovery Today, 12,
304–313. doi:10.1016/j.drudis.2007.02.015

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent pat-
terns without candidate generations. In Proc. Of ACM
SIGMOD Intl. Conf. of Management of Data (SIGMOD
00), (pp. 1-12).

Han, J., Pei, J., Asl, B. M., Chen, Q., Dayal, U., & Hsu,
M. C. (2000). FreeSpan: Frequent pattern-projected
sequential pattern mining. KDD ‘00: Proceedings of
the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (pp. 355-359).
Boston, MA: ACM.

Compilation of References

250

Hanjalic, A., Lienhart, R., Ma, W.-Y., & Smith, J. R. (2008).
The holy grail of multimedia information retrieval: So
close or yet so far away? Proceedings of the IEEE, 96(4),
541–547. doi:10.1109/JPROC.2008.916338

Haussler, D. (1999). Convolution kernels on discrete
structures (Tech. Rep. No.UCSC-CRL-99-10). University
of California at Santa Cruz: Department of Computer
Science.

Haykin, S. (1999). Neural networks: A comprehensive
foundation (2nd ed.). Upper Saddle River, NJ: Prentice-
Hall.

Hennessy, J. L., & Patterson, D. A. (2007). Computer
architecture: A quantitative approach (4th ed.). Amster-
dam, Holland: Elsevier.

Hernandez, N., Mothe, J., Chrisment, C., & Egret, D.
(2007). Modeling context through domain ontologies.
Information Retrieval, 10(2), 143–172. doi:10.1007/
s10791-006-9018-0

Hillisch, A., Pineda, L. F., & Hilgenfeld, R. (2004).
Utility of homology models in drug discovery process.
Drug Discovery Today, 9, 659–669. doi:10.1016/S1359-
6446(04)03196-4

Hitchcock, F. L. (1941). The distribution of a product
from several sources to numerous localities. Journal of
Mathematics and Physics, 20, 224–230.

Hopkins, A. L., & Groom, C. R. (2002). The druggable
genome. Nature Reviews. Drug Discovery, 1, 727–730.
doi:10.1038/nrd892

Horn, F., Bettler, E., Oliveira, L., Campagne, F., Cohen,
F. E., & Vriend, G. (2003). GPCRDB information system
for G protein-coupled receptors. Nucleic Acids Research,
31(1), 294–297. doi:10.1093/nar/gkg103

Hotelling, H. (1947). Multivariate quality control. Tech-
niques of Statistical Analysis, 54, 111–184.

Hsiao, W., Wan, I., Jones, S. J., & Brinkman, F. S. L.
(2003). IslandPath: Aiding detection of genomic islands
in prokaryotes. Bioinformatics (Oxford, England), 19(3),
418–420. doi:10.1093/bioinformatics/btg004

Hu, H., Xu, M.-X., & Wu, W. (2007). GMM supervector
based SVM with spectral features for speech emotion rec-
ognition. In IEEE International Conference on Acoustics,
Speech and Signal Processing, 2007, ICASSP 2007, vol.
4, (pp. 413–416). Honolulu, Hawaii, USA.

Hua, S., & Sun, Z. (2001). A novel method of protein
secondary structure prediction with high segment over-
lap measure: Support vector machine approach. Journal
of Molecular Biology, 308, 397–407. doi:10.1006/
jmbi.2001.4580

Huang, J. Y., & Brutlag, D. L. (2001). The EMOTIF
database. Nucleic Acids Research, 29(1), 202–204.
doi:10.1093/nar/29.1.202

Huang, E., Cercone, N., & Aijun, A. (2002). Comparison
of interestingness functions for learning Web usage pat-
terns. CIKM: Proceedings of the Eleventh International
Conference on Information and Knowledge Management,
(pp. 617-620). McLean, Virginia, USA. New York, NY:
ACM Press.

Huiyu, Z., Mabu, S., Shimada, K., & Hirasawa, K. (2009).
Generalized time related sequential association rule min-
ing and traffic prediction. International Conference on
Evolutionary Computation, (pp. 2654-2661).

Huiyu, Z., Mabu, S., Xianneng, L., Shimada, K., &
Hirasawa, K. (2010). Generalized rule extraction and
traffic prediction in the optimal route search. International
Conference on Evolutionary Computation, (pp. 1-8).

Icev, A. (2003). Distance-enhanced association rules
for gene expression. BIOKDD’03, in conjunction with
ACM SIGKDD.

Irwin, J. J., & Shoichet, B. K. (2005). ZINC - A Free Da-
tabase of Commercially Available Compounds for Virtual
Screening. J.Chem.Inf.Model., 45(1), 177-82. Retrieved
on January 11, 2011 from http://www.zinc.docking.org

Ishio, T., Date, H., Miyake, T., & Inoue, K. (2008).
Mining coding patterns to detect crosscutting concerns
in Java programs. WCRE ‘08: Proceedings of the 2008
15th Working Conference on Reverse Engineering (pp.
123-132). Washington, DC: IEEE Computer Society.

Compilation of References

251

Jaakkola, T., Diekhans, M., & Haussler, D. (2000). A
discriminative framework for detecting remote protein
homologies. Journal of Computational Biology, 7(1-2),
95–114. doi:10.1089/10665270050081405

Jaakkola, T., Diekhans, M., & Haussler, D. (1999). Using
the Fisher kernel method to detect remote protein homolo-
gies. In Seventh International Conference on Intelligent
Systems for Molecular Biology, (pp. 149–158). Menlo
Park, CA.

Jaillet, S., Laurent, A., & Teisseire, M. (2006). Sequential
patterns for text categorization. Intelligent Data Analysis,
10(3), 199–214.

Jain, A. K., Murty, M. N., & Flynn, P. P. (1999). Data
clustering: A review. ACM Computing Review.

Jain, R., Ramineni, S., & Parekh, N. (2008). Integrated ge-
nome island prediction tool (IGIPT). In IEEE Proceedings
of International Conference on Information Technology
(ICIT2008), (pp. 131-132). DOI: 10.1109/ICIT.2008.42

Janney, P., & Geers, G. (2009). Framework for illumination
invariant vehicular traffic density estimation. Proceedings
of Pacific Rim Symposium on Image and Video Technol-
ogy (PSIVT 2009), Japan.

Japkowicz, N., Hanson, S. J., & Gluck, M. A.
(2000). Nonlinear autoassociation is not equiva-
lent to PCA. Neural Computation, 12(3), 531–545.
doi:10.1162/089976600300015691

Jayaraman, A. (2008). Modular approach to online hand-
written character recognition of Telugu script. Master’s
thesis, Department of CSE, IIT Madras, Chennai-36.

Jenks, P. J. (1998). Microbial genome sequencing beyond
the double helix. BMJ (Clinical Research Ed.), 317(7172),
1568–1571.

Jerbi, M., Senouci, S.-M., Rasheed, T., & Ghamri-Dou-
dane, Y. (2007). An infrastructure-free traffic Information
System for vehicular networks. Proceedings of Vehicular
Technology Conference (VTC-2007).

Jing, F., Li, M., Zhang, H.-J., & Zhang, B. (2003). Sup-
port vector machines for region-based image retrieval.
In Proceedings of the 2003 International Conference on
Multimedia and Expo, (pp. 21–24). Washington DC, USA.

Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y.,
McGinnis, S., & Madden, T. L. (2008). Nucleic Acids Res.
36 (Web Server issue), W5–W9. Retrieved on January 11,
2011 from http://blast.ncbi.nlm.nih.gov

Jolliffe, I. T. (2002). Principal component analysis (2nd
ed.). Springer.

Juhas, M., van der Meer, J. R., Gaillard, M., Harding,
R. M., Hood, D. W., & Crook, D. W. (2009). Genomic
islands: Tools of bacterial horizontal gene transfer and
evolution. FEMS Microbiology Reviews, 33(2), 376–393.
doi:10.1111/j.1574-6976.2008.00136.x

Jurka, J., Kapitonov, V. V., Pavlicek, A., Klonowski,
P., Kohany, O., & Walichiewicz, J. (2005). Repbase
update, a database of eukaryotic repetitive elements.
Cytogenetic and Genome Research, 110(1-4), 462–467.
doi:10.1159/000084979

Kailath, T. (1967). The divergence and Bhattacharyya dis-
tance measures in signal selection. IEEE Transactions on
Communication Technology, 15(1), 52–60. doi:10.1109/
TCOM.1967.1089532

Kang, D., Silvescu, A., & Honavar, V. (2006). RNBL-MN:
A recursive naive Bayes learner for sequence classifica-
tion. In Proceedings of PAKDD, (pp. 45–54).

Kang, D., Zhang, J., Silvescu, A., & Honavar, V. (2005).
Multinomial event model based abstraction for sequence
and text classification. In Proceedings of SARA, (pp.
134–148).

Karacah, B., & Krim, H. (2002). Fast minimization of
structural risk by nearest neighbor rule. IEEE Transac-
tions on Neural Networks, 14(1), 127–137. doi:10.1109/
TNN.2002.804315

Karlin, S. (1998). Global dinucleotide signatures and
analysis of genomic heterogeneity. Current Opinion
in Microbiology, 1(5), 598–610. doi:10.1016/S1369-
5274(98)80095-7

Karlin, S. (2001). Detecting anomalous gene clusters
and pathogenicity islands in diverse bacterial genomes.
Trends in Microbiology, 9(7), 335–343. doi:10.1016/
S0966-842X(01)02079-0

Compilation of References

252

Karlin, S., & Ladunga, I. (1994). Comparisons of eu-
karyotic genomic sequences. Proceedings of the National
Academy of Sciences of the United States of America,
91(26), 12832–12836. doi:10.1073/pnas.91.26.12832

Karlin, S., & Mrazek, J. (1997). Compositional differ-
ences within and between eukaryotic genomes. Proceed-
ings of the National Academy of Sciences of the United
States of America, 94(19), 10227–10232. doi:10.1073/
pnas.94.19.10227

Karlin, S., Mrazek, J., & Campbell, A. M. (1998). Codon
usages in different gene classes of the E. coli genome.
Molecular Microbiology, 29(6), 1341–1355. doi:10.1046/
j.1365-2958.1998.01008.x

Kaufman, L. (1999). Solving the quadratic program-
ming problem arising in support vector classification. In
Scholkopf, B., Burges, C., & Smola, A. (Eds.), Advances
in kernel methods: Support vector learning (pp. 147–167).
Cambridge, MA: MIT Press.

Kay, J., Maisonneuve, N., Yacef, K., & Zaïane, O. (2006).
Mining patterns of events in students’ teamwork data. In
Educational Data Mining Workshop, held in conjunction
with Intelligent Tutoring Systems (ITS), (pp. 45-52).

KDDCup99. (1999). Data. Retrieved from http://kdd.ics.
uci.edu/databases/kddcup99/kddcup99.html

Keogh, E., Lonardi, S., & Chiu, B. (2002). Finding sur-
prising patterns in a time series database in linear time
and space. In Proc. of 8th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, (pp. 550-556).

Kim, Y. S., Stree, W. N., & Menczer, F. (2003). Feature
selection in data mining. In Wang, J. (Ed.), Data mining:
Opportunities and challenges (pp. 80–105). Hershey, PA:
IGI Global. doi:10.4018/9781591400516.ch004

Kleinberg, J. M. (1999). Authoritative sources in a hyper-
linked environment. Journal of the ACM, 46(5), 604–632.
doi:10.1145/324133.324140

Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen,
T., & Verkamo, A. (1994). Finding interesting rules from
large sets of discovered association rules. In Proc. of the
3rd Int’l Conf. on Information and Knowledge Manage-
ment (CIKM’94), (pp. 401-407). Gaithersburg, Maryland.

Kondor, R., & Jebara, T. (2003). A kernel between sets of
vectors. In Proceedings of International Conference on
Machine Learning, (ICML 2003). Washington DC, USA.

Koonin, E. V., Makarova, K. S., & Aravind, L. (2001).
Horizontal gene transfer in prokaryotes: Quantification
and classification. Annual Review of Microbiology, 55,
709–742. doi:10.1146/annurev.micro.55.1.709

Kotsiantis, S. B., & Pintelas, P. E. (2004). Increasing the
classification accuracy of simple Bayesian classifier. In
Proceedings of AIMSA, (pp. 198–207).

Kressel, U. H.-G. (1999). Pairwise classification and
support vector machines. In Scholkopf, B., Burges, C.,
& Smola, A. (Eds.), Advances in kernel methods: Sup-
port vector learning (pp. 255–268). Cambridge, MA:
MIT Press.

Krogh, A., Brown, M., Mian, I. S., Sjolander, K., &
Haussler, D. (1994). Hidden Markov models in computa-
tional biology: Applications to protein modeling. Journal
of Molecular Biology, 235, 1501–1531. doi:10.1006/
jmbi.1994.1104

Krogh, A., Brown, M., Mian, I. S., Sojlander, K., &
Haussler, D. (1994). Hidden Markov models in computa-
tional biology: Applications to protein modeling. Journal
of Molecular Biology, 235, 1501–1531. doi:10.1006/
jmbi.1994.1104

Kruengkrai, C., Srichaivattana, P., Sornlertlamvanich,
V., & Isahara, H. (2005). Language identification based
on string kernels. In IEEE International Symposium on
Communications and Information Technology, 2005.
ISCIT 2005., vol. 2, (pp. 926–929).

Kuang, R., Ie, E., Wang, K., Wang, K., Siddiqi, M.,
Freund, Y., & Leslie, C. (2004). Profile-based string ker-
nels for remote homology detection and motif extraction.
Journal of Bioinformatics and Computational Systems,
3(3), 152–160.

Kubat, M., & Matwin, S. (1997). Addressing the curse
of imbalanced training sets: one sided selection. Pro-
ceedings of the Fourteenth International Conference
on Machine Learning, (pp. 179-186), Nashville, TN:
Morgan Kaufmann.

Compilation of References

253

Kullback, S., & Leibler, R. A. (1951). On information
and sufficiency. Annals of Mathematical Statistics, 22(1),
79–86. doi:10.1214/aoms/1177729694

Kum, H.-C., Chang, J. H., & Wang, W. (2006). Sequential
Pattern Mining in Multi-Databases via Multiple Align-
ment. Data Mining and Knowledge Discovery, 12(2-3),
151–180. doi:10.1007/s10618-005-0017-3

Kum, H.-C., Chang, J. H., & Wang, W. (2006). Sequential
pattern mining in multi-databases via multiple alignment.
Data Mining and Knowledge Discovery, 12(2-3), 151–180.
doi:10.1007/s10618-005-0017-3

Kum, H.-C., Chang, J. H., & Wang, W. (2007). Bench-
marking the effectiveness of sequential pattern mining
methods. Data & Knowledge Engineering, 60(1), 30–50.
doi:10.1016/j.datak.2006.01.004

Kuo, R. J., Chao, C. M., & Liu, C. Y. (2009). Integration
of K-means algorithm and AprioriSome algorithm for
fuzzy sequential pattern mining. Applied Soft Computing,
9(1), 85–93. doi:10.1016/j.asoc.2008.03.010

Kuo, R. J., Chao, C. M., & Liu, C. Y. (2009). Integration
of K-means algorithm and AprioriSome algorithm for
fuzzy sequential pattern mining. Applied Soft Computing,
9(1), 85–93. doi:10.1016/j.asoc.2008.03.010

Kyte, J., & Doolittle, R. F. (1982). A simple method for
displaying hydropathic character of a protein. Journal
of Molecular Biology, 157, 105–132. doi:10.1016/0022-
2836(82)90515-0

Langille, M. G. I., Hsiao, W. W. L., & Brinkman, F. S. L.
(2008). Evaluation of genomic island predictors using a
comparative genomics approach. BMC Bioinformatics,
9, 329–338. doi:10.1186/1471-2105-9-329

Langille, M. G. I., Hsiao, W. W. L., & Brinkman, F. S. L.
(2010). Detecting genomic islands using bioinformatics
approaches. Nature Reviews Microbiology, 8(5), 373–382.
doi:10.1038/nrmicro2350

Lau, A., Ong, S. S., Mahidadia, A., Hoffmann, A.,
Westbrook, J., & Zrimec, T. (2003). Mining patterns of
dyspepsia symptoms across time points using constraint
association rules. PAKDD’03: Proceedings of the 7th
Pacific-Asia conference on Advances in knowledge
discovery and data mining (pp. 124-135). Seoul, Korea:
Springer-Verlag.

Laur, P.-A., Symphor, J.-E., Nock, R., & Poncelet, P.
(2007). Statistical supports for mining sequential patterns
and improving the incremental update process on data
streams. Intelligent Data Analysis, 11(1), 29–47.

Lawrence, J. G. (1999). Selfish operons: The evolutionary
impact of gene clustering in prokaryotes and eukaryotes.
Current Opinion in Genetics & Development, 9(6),
642–648. doi:10.1016/S0959-437X(99)00025-8

Lawrence, J. G., & Ochman, H. (1997). Amelioration of
bacterial genomes: Rates of change and exchange. Journal
of Molecular Evolution, 44(4), 383–397. doi:10.1007/
PL00006158

Lawrence, J. G., & Ochman, H. (2002). Reconciling the
many faces of lateral gene transfer. Trends in Microbiol-
ogy, 10(1), 1–4. doi:10.1016/S0966-842X(01)02282-X

Laxman, S., Sastry, P. S., & Unnikrishnan, K. P. (2007).
A fast algorithm for finding frequent episodes in event
streams. In P. Berkhin, R. Caruana, & X. Wu (Eds.), Pro-
ceedings of the Thirteenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD-07) (pp. 410-419).

Lee, K.-A., You, C. H., Li, H., & Kinnunen, T. (2007).
A GMM-based probabilistic sequence kernel for speaker
verification. In Proceedings of INTERSPEECH, (pp.
294–297). Antwerp, Belgium.

Lent, B., Agrawal, R., & Srikant, R. (1997). Discovering
trends in text databases. Proc. 3rd Int. Conf. Knowledge
Discovery and Data Mining, KDD (pp. 227-230). AAAI
Press.

Lesh, N., Zaki, M. J., & Ogihara, M. (2000). Scalable
feature mining for sequential data. IEEE Intelligent Sys-
tems, 15(2), 48–56. doi:10.1109/5254.850827

Lesh, N., Zaki, M. J., & Ogihara, M. (1999). Mining fea-
tures for sequence classification. In KDD’99: Proceedings
of the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, (pp. 342–346).

Leslie, C., Eskin, E., Cohen, A., Weston, J., & Noble,
W. S. (2004). Mismatch string kernels for discriminative
protein classification. Bioinformatics (Oxford, England),
20, 467–476. doi:10.1093/bioinformatics/btg431

Compilation of References

254

Leslie, C., & Kuang, R. (2003). Fast kernels for inexact
string matching. In B. Scholkopf & M. Warmth (Ed.), 16th
Annual Conference on Learning Theory and 7th Annual
Workshop on Kernel Machines, vol. 2777, (pp. 114–128).
Heidelberg, Germany: Springer Verlag

Leslie, C., Eskin, E., & Noble, W. S. (2002). The spectrum
kernel: A string kernel for SVM protein classification. In
The Pacific Symposium on Biocomputing, (pp. 564–575).
River Edge, NJ.

Leslie, C., Eskin, E., & Noble, W. (2002). Mismatch string
kernels for SVM protein classification. In Proceedings of
Neural Information Processing Systems, (pp. 1417–1424).

Li, J., Liu, H., & Wong, L. (2003). Mean-entropy
discretized features are effective for classifying high-
dimensional bio-medical data. In Proceedings of BIOKDD,
(pp. 17–24).

Li, Z., Tan, T., Chen, J., & Wassantachat, T. (2008). On
traffic density estimation with a boosted SVM classifier.
Proceeding of 2008 Digital Image Computing - Techniques
and Applications (DICTA2008), Australia.

Li, Z., Zhang, A., Li, D., & Wang, L. (2007). Discovering
novel multistage attack strategies. ADMA ‘07: Proceedings
of the 3rd international conference on Advanced Data
Mining and Applications (pp. 45-56). Harbin, China:
Springer-Verlag.

Liao, L., & Noble, W. S. (2003). Combining pairwise
sequence similarity and support vector machines for
detecting remote protein evolutionary and structural
relationships. Journal of Computational Biology, 10(6),
857–868. doi:10.1089/106652703322756113

Liao, L., & Noble, W. S. (2002). Combining pairwise se-
quence similarity and support vector machines for remote
protein homology detection. In Sixth Annual International
Conference on Computational Molecular Biology, (pp.
225–232). Washington, DC, USA.

Lin, N. P., Chen, H.-J., Hao, W.-H., Chueh, H.-E., &
Chang, C.-I. (2008). Mining strong positive and negative
sequential patterns. W. Trans. on Comp., 7(3), 119–124.

Ling, C., & Li, C. (1998). Data mining for direct market-
ing problems and solutions. In Proceedings of the Fourth
International Conference on Knowledge Discovery and
Data Mining, (pp. 73-79). New York, NY: AAAI Press.

Lio, P., & Vannucci, M. (2000). Finding pathogenicity
islands and gene transfer events in genome data. Bioinfor-
matics (Oxford, England), 16(10), 932–940. doi:10.1093/
bioinformatics/16.10.932

Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney,
P. J. (1997). Experimental and computational approaches
to estimate solubility and permeability in drug discovery
and development settings. Advanced Drug Delivery Re-
views, 23, 3–25. doi:10.1016/S0169-409X(96)00423-1

Lodhi, H., Saunders, C., Shawe-Taylor, J., Christianini,
N., & Watkins, C. (2002). Text classification using string
kernels. Journal of Machine Learning Research, 2,
419–444. doi:10.1162/153244302760200687

Logan, B., Moreno, P., Suzek, B., Weng, Z., & Kasif, S.
(2001). A study of remote homology detection (Tech. Rep.
No.CRL 2001/05). Cambridge, MA: Compaq Computer
Corporation, Cambridge Research Laboratory.

Loubier, E. (2009). Analysis and visualization of relational
data by graph morphing taking temporal dimension into
account. PhD Thesis, in French. Toulouse, France: Paul
Sabatier University.

Loubier, E., & Dousset, B. (2007). Visualisation and
analysis of relational data by considering temporal dimen-
sion. International Conference on Enterprise Information
Systems, (pp. 550-553). INSTICC Press.

Lowe, T. M., & Eddy, S. R. (1997). tRNAscan-SE: A
program for improved detection of transfer RNA genes
in genomic sequence. Nucleic Acids Research, 25(5),
955–964. doi:10.1093/nar/25.5.955

Lozano, A., Manfredi, G., & Nieddu, L. (2009). An
algorithm for the recognition of levels of congestion
in road traffic problems. Mathematics and Computers
in Simulation, 79(6), 1926–1934. doi:10.1016/j.mat-
com.2007.06.008

Maniez, J., & Grolier, E. (1991). A decade of research
in classification.

Mannila, H., Toivonen, H., & Verkamo, I. (1997). Dis-
covery of frequent episodes in event sequences. Data
Mining and Knowledge Discovery, 1(3), 259–289.
doi:10.1023/A:1009748302351

Compilation of References

255

Mannila, H., Toivonnen, H., & Verkamo, A. I. (1997).
Discovery of frequent episodes in event sequences.
Data Mining and Knowledge Discovery, 1(3), 259–289.
doi:10.1023/A:1009748302351

Manning, G., Whyte, D. B., Martinez, R., Hunter, T., &
Sudarsanam, S. (2002). The protein kinase complement
of the human genome. Science, 298(5600), 1912–1934.
doi:10.1126/science.1075762

Manning, G., Whyte, D. B., Martinez, R., Hunter, T.,
& Sudarsanam, S. (2002). The protein kinase comple-
ment of the human genome. Science, 298, 1912–1934.
doi:10.1126/science.1075762

Manning, G. (2005). Genomic overview of the kinases. In
I. Greenwald (Ed.), WormBook, The C. elegans Research
Community (pp.1-19).

Mantri, Y., & Williams, K. P. (2004). Islander: A database
of integrative islands in prokaryotic genomes, the associ-
ated integrases and their DNA site specificities. Nucleic
Acids Research, 32, D55–D58. doi:10.1093/nar/gkh059

Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multi-
variate analysis. Academic Press.

Marsolo, K., & Parthasarathy, S. (2006a). On the use of
structure and sequence-based features for protein clas-
sification and retrieval. In Proceedings of ICDM, (pp.
394-403).

Marsolo, K., & Parthasarathy, S. (2006b). Protein clas-
sification using summaries of profile-based frequency
matrices. In Proceedings of BIOKDD06: 6th Workshop
on Data Mining in Bioinformatics (with SIGKDD Confer-
ence), (pp. 51–58).

Masseglia, F., Poncelet, P., & Teisseire, M. (2003).
Incremental mining of sequential patterns in large data-
bases. Data & Knowledge Engineering, 46(1), 97–121.
doi:10.1016/S0169-023X(02)00209-4

Masseglia, F., Poncelet, P., & Teisseire, M. (2003).
Incremental mining of sequential patterns in large data-
bases. Data & Knowledge Engineering, 46(1), 97–121.
doi:10.1016/S0169-023X(02)00209-4

Masseglia, F., Poncelet, P., & Teisseire, M. (2009). Ef-
ficient mining of sequential patterns with time constraints:
Reducing the combinations. Expert Systems with Applica-
tions, 36(3), 2677–2690. doi:10.1016/j.eswa.2008.01.021

McCallum, A., & Nigam, K. (1998). A comparison of
event models for naive Bayes text classification. In
Proceedings of AAAI-98 Workshop on Learning for Text
Categorization, (pp. 41–48).

McNeil, L. K., Reich, C., Aziz, R. K., Bartels, D., Cohoon,
M., & Disz, T. (2007). The National microbial pathogen
database resource (NMPDR): A genomics platform based
on subsystem annotation. Nucleic Acids Research, 35,
D347–D353. doi:10.1093/nar/gkl947

Melvin, I., Ie, E., Weston, J., Noble, W. S., & Leslie, C.
(2007). Multi-class protein classification using adap-
tive codes. Journal of Machine Learning Research, 8,
1557–1581.

Mendes, L. F., Ding, B., & Han, J. (2008). Stream se-
quential pattern mining with precise error bounds. Proc.
2008 Int. Conf. on Data Mining (ICDM’08), Pisa, Italy,
Dec. 2008.

Mitchell, T. M. (1997). Machine Learning. New York:
McGraw-Hill Series in CompSci.

Mobasher, B., Dai, H., Luo, T., & Nakagawa, M. (2002).
Using sequential and non-sequential patterns in predictive
Web usage mining tasks. ICDM ‘02: Proceedings of the
2002 IEEE International Conference on Data Mining
(pp. 669-672). Washington, DC: IEEE Computer Society.

Moreno, P. J., Ho, P. P., & Vasconcelos, N. (2004). A
Kullback-Leibler divergence based kernel for SVM clas-
sification in multimedia applications. In Thrun, S., Saul,
L., & Schölkopf, B. (Eds.), Advances in Neural Informa-
tion Processing Systems 16. Cambridge, MA: MIT Press.

Muhlenbach, F., Lallich, S., & Zighed, D. A. (2004).
Identifying and handling mislabelled instances. Jour-
nal of Intelligent Information Systems, 22(1), 89–109.
doi:10.1023/A:1025832930864

Nadeem, T., Dashtinezhad, S., Liao, C., & Iftode, L.
(2004). TrafficView: A scalable traffic monitoring system.
Proceedings of IEEE International Conference on Mobile
Data Management (MDM’04).

Nag, S., Chatterjee, R., Chaudhuri, K., & Chaudhuri,
P. (2006). Unsupervised statistical identification of ge-
nomic islands using oligonucleotide distributions with
application to vibrio genomes. Sadhana, 31(2), 105–115.
doi:10.1007/BF02719776

Compilation of References

256

Needleman, S. B., & Wunsch, C. D. (1970). A general
method applicable to the search for similarities in the amino
acid sequences of two proteins. Journal of Molecular Bi-
ology, 48, 443–453. doi:10.1016/0022-2836(70)90057-4

Nicolas, J. A., Herengt, G., & Albuisson, E. (2004).
Sequential pattern mining and classification of patient
path. MEDINFO 2004: Proceedings Of The 11th World
Congress On Medical Informatics.

Nigam, K., Lafferty, J., & McCallum, A. (1999). Using
maximum entropy for text classification. In Proceedings
of IJCAI-99 Workshop on Machine Learning for Informa-
tion Filtering, (pp. 61–67).

Nikolskaya, A. N., & Wu, C. H. (2004). PIRSF: Family
classification system at the protein information resource.
Nucleic Acids Research, 32, 112–114. doi:10.1093/nar/
gkh097

Ochman, H., Lawrence, J. G., & Groisman, E. A. (2000).
Lateral gene transfer and the nature of bacterial innova-
tion. Nature, 405(6784), 299–304. doi:10.1038/35012500

Onder, S. (2008). ADL++: Object-oriented specification
of complicated instruction sets and micro-architectures.
In P. Mishra and N. Dutt (Eds.), Processor description
languages, volume 1 (systems on Silicon) (pp. 247-274).
Burlington, MA: Morgan Kaufmann (Elsevier) Publishers.

Osborne, A. (1980). An introduction to microcomputers,
vol 1: Basic concepts (2nd ed.).

Ou, H. Y., He, X., Harrison, E. M., Kulasekara, B. R.,
Thani, A. B., & Kadioglu, A. (2007). MobilomeFINDER:
Web-based tools for in silico and experimental discovery
of bacterial genomic islands. Nucleic Acids Research, 35,
W97–W104. doi:10.1093/nar/gkm380

Ozkurt, C., & Camci, F. (2009). Automatic traffic density
estimation and vehicle classification for traffic surveillance
systems using neural networks. [MCA]. Mathematical and
Computational Applications An International Journal,
14(3), 187–196.

Park, K.-J., & Kanehisa, M. (2003). Prediction of protein
sub-cellular locations by support vector machines us-
ing compositions of amino acids and amino acid pairs.
Bioinformatics (Oxford, England), 19(13), 1656–1663.
doi:10.1093/bioinformatics/btg222

Parthasarathy, S., Zaki, M., Ogihara, M., & Dwarkadas, S.
(1999). Incremental and interactive sequence mining. In
Proc. of the 8th Int. Conf. on Information and Knowledge
Management (CIKM’99).

Parthasarathy, S., Zaki, M., Ogihara, M., & Dwarkadas, S.
(1999). Incremental and interactive sequence mining. In
Proc. of the 8th Int. Conf. on Information and Knowledge
Management (CIKM’99).

Pavlov, D. (2003). Sequence modeling with mixtures of
conditional maximum entropy distributions. In Proceed-
ings of ICDM, (pp. 251–258).

Pearson, W. R., & Lipman, D. J. (1988). Improved tools
for biological sequence comparison. Proceedings of the
National Academy of Sciences of the United States of
America, 85(8), 2444–2448. doi:10.1073/pnas.85.8.2444

Pei, J., Han, J., & Wang, W. (2007). Constraint-based
sequential pattern mining: The pattern-growth meth-
ods. Journal of Intelligent Information Systems, 28(2),
133–160. doi:10.1007/s10844-006-0006-z

Pei, J., Han, J., Asl, M. B., Pinto, H., Chen, Q., Dayal,
U., et al. (2001). PrefixSpan mining sequential patterns
efficiently by prefix projected pattern growth. Proc.17th
Int’l Conf. on Data Eng., (pp. 215-226).

Pei, J., Han, J., Mortazavi-Asi, B., & Pinto, H. (2001).
PrefixSpan mining sequential patterns efficiently by
prefix-projected pattern growth. In Proc. of Int. Conf.
on Data Engineering.

Perera, D., Kay, J., Yacef, K., & Koprinska, I. (2007).
Mining learners’ traces from an online collaboration tool.
Proceedings of Educational Data Mining workshop (pp.
60–69). CA, USA: Marina del Rey.

Piatetsky-Shapiro, G., & Frawley, W. J. (1991). Knowledge
discovery in databases. AAAI/MIT, 1991.

Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., & Dayal,
U. (2001). Multi-dimensional sequential pattern mining.
CIKM ‘01: Proceedings of the Tenth International Confer-
ence on Information and Knowledge Management (pp.
81-88). New York, NY: ACM.

Compilation of References

257

Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., & Dayal,
U. (2001). Multi-dimensional sequential pattern mining.
CIKM ‘01: Proceedings of the Tenth International Confer-
ence on Information and Knowledge Management (pp.
81-88). New York, NY: ACM.

Ponte, J. M., & Croft, B. (1998). A language modeling
approach to information retrieval. Proceedings of the
21st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
(pp. 275–281).

Potter, C., Klooster, S., Torregrosa, A., Tan, P.-N., Stein-
bach, M., & Kumar, V. (n.d.). Finding spatio-temporal
patterns in earth science data.

Pradeep, K. M., Venkateswara, R., Radha, K. P., Bapi,
R. S., & Laha, A. (2005). Intrusion detection system us-
ing sequence and set preserving metric. In Proceedings
of Intelligence and Security Informatics, (pp. 498-504).
Atlanta, USA.

Priya Lakshmanan. 2010. Establishing signature for kinase
inhibitors. Unpublished M.Tech dissertation, University
of Hyderabad, India.

Pundhir, S., Vijayvargiya, H., & Kumar, A. (2008). Pre-
dictBias: A server for the identification of genomic and
pathogenicity islands in prokaryotes. In Silico Biology,
8(3-4), 223–234.

Qingda, Z., Qingshan, J., Sheng, L., Xiaobiao, X., &
Lida, L. (2010a). An efficient for protein pattern min-
ing. International Conference on Computer Science and
Education, (pp. 1876-1881).

Rabiner, L., & Juang, B.-H. (1993). Fundamentals of
speech recognition. United States: Prentice Hall.

Ragan, M. A., Harlow, T. J., & Beiko, R. G. (2006). Do
different surrogate methods detect lateral genetic transfer
events of different relative ages? Trends in Microbiology,
14(1), 4–8. doi:10.1016/j.tim.2005.11.004

Rahmann, S. (2003). Dynamic programming algorithms
for two statistical problems in computational biology. In
D. Tsur (Ed.), Workshop on Algorithms in Bioinformatics
(WABI), LNCS 2812 (pp. 151-164).

Raja, G., Sobha Rani, T., & Durga Bhavani, S. (2004).
Global feature extraction techniques for identification of
secondary structures of a protein sequence. In International
Conference on Information Technology (pp.101-108).
India: Universities Press.

Rajan, I., Aravamuthan, S., & Mande, S. S. (2007).
Identification of compositionally distinct regions in
genomes using the centroid method. Bioinformatics
(Oxford, England), 23(20), 2672–2677. doi:10.1093/
bioinformatics/btm405

Ramakrishnan, R., Schauer, J. J., Chen, L., Huang, Z.,
Shafer, M. M., & Gross, D. S. (2005). The EDAM project:
Mining atmospheric aerosol datasets: Research articles.
International Journal of Intelligent Systems, 20(7),
759–787. doi:10.1002/int.20094

Rani, P., & Pudi, V. (2008a). Repeat based naïve Bayes
classifier for biological sequences. In ICDM (pp. 989–
994). RBNBC.

Rani, P., & Pudi, V. (2008b). RBNBC: Repeat based na-
ïve Bayes classifier for biological sequences. (Technical
report, IIIT/TR/2008/126). India: IIIT Hyderabad.

Rani, P., & Pudi, V. (2008c). Repeat based maximum
entropy classifier for biological sequences. In COMAD
(pp. 71–82). REBMEC.

Rani, P. (2008). Novel Bayesian sequence classifiers
applied on biological sequences. Masters thesis. IIIT
Hyderabad, India.

Rani, T. S., & Bapi, R. S. (2008). Cascaded multi-level
promoter recognition of E. coli using dinucleotide features.
In International Conference on Information Technology
(pp. 83–88). Bhubaneswar.

Raskutti, B., & Kowalczyk, A. (2004). Extreme re-
balancing for SVMs: A case study. SIGKDD Explorations
Newsletter, 6(1), 60–69. doi:10.1145/1007730.1007739

Ratnaparkhi, A. (1997). A simple introduction to maximum
entropy models for natural language processing. (Techni-
cal report, IRCS Report 97-98), Institute for Research in
Cognitive Science, University of Pennsylvania.

Ratnaparkhi, A. (1998). Maximum entropy models for
natural language ambiguity resolution. PhD thesis,
University of Pennsylvania.

Compilation of References

258

Rau, B. R., & Fisher, J. A. (1993). Instruction-level par-
allel processing: History, overview and perspective. The
Journal of Supercomputing, 7(1-2), 9–50. doi:10.1007/
BF01205181

Ravindra Babu, T., Murty, M. N., & Agrawal, V. K.
(2007). Classification of run-length encoded binary
data. Pattern Recognition, 40, 321–323. doi:10.1016/j.
patcog.2006.05.002

Ravindra Babu, T., & Narasimha Murty, M. (2001).
Comparison of genetic algorithm based prototype se-
lection schemes. Pattern Recognition, 34(2), 523–525.
doi:10.1016/S0031-3203(00)00094-7

Ravindra Babu, T., Murty, M. N., & Subrahmanya, S. V.
(2009). Multiagent systems for large data clustering. In
Cao, L. (Ed.), Data mining and multi-agent interaction,
part 3 (pp. 219–238). doi:10.1007/978-1-4419-0522-2_15

Ravindra Babu, T., Murty, M. N., & Subrahmanya, S. V.
(2010). Multiagent based large data clustering scheme
for data mining applications. Intl. Conf. on Active Media
Technology, (pp. 116-127).

Ravindra Babu, T., Narasimha Murty, M., & Agrawal,
V. K. (2004). Hybrid learning scheme for data mining
applications. In the Proc. Fourth International Confer-
ence on Hybrid Intelligent Systems, (pp. 266-271). Los
Alamitos, CA: IEEE Computer Society.

Ravindra Babu, T., Narasimha Murty, M., & Agrawal,
V. K. (2005). On simultaneous selection of prototypes
and features on large data. In the Proceedings of PReMI,
(pp. 595-600).

Read, T., & Cressie, N. (1988). Goodness-of-fit statistics
for discrete multivariate data. Springer.

Read, T., & Cressie, N. (1989). Pearson’s X2 and the likeli-
hood ratio statistic G2: A comparative review. International
Statistical Review, 57(1), 19–43. doi:10.2307/1403582

Reddy, A. S., Amarnath, H. S. D., Bapi, R. S., Sastry, G.
M., & Sastry, G. N. (2008). Protein ligand interaction
database (PLID). Comp. Biol. and Chem., 32, 387-390.
Retrieved on January 11, 2011 from http://203.199.182.73/
gnsmmg/databases/plid/

Regnier, M., & Vandenbogaert, M. (2006). Comparison of
statistical significance criteria. Journal of Bioinformatics
and Computational Biology, 4(2), 537–551. doi:10.1142/
S0219720006002028

Reynolds, D. A., Quatieri, T. F., & Dunn, R. B. (2000).
Speaker verification using adapted Gaussian mixture
models. Digital Signal Processing, 10(1-3), 19–41.
doi:10.1006/dspr.1999.0361

Roberto, J., & Bayardo, J. (1998). Efficiently mining long
patterns from databases. In SIGMOD ’98: Proceedings
of the 1998 ACM SIGMOD International Conference on
Management of Data, (pp. 85–93).

Romero, C., Ventura, S., Delgado, J. A., & Bra, P. D.
(2007). Personalized links recommendation based on
data mining un adaptive educational hypermedia systems.
Creating New Learning Experiences on a Global Scale.
Second European Conference on Technology Enhanced
Learning, EC-TEL 2007 (pp. 293-305). Crete, Greece:
Springer.

Rubner, Y., Tomasi, C., & Guibas, L. J. (2000). The
earth mover’s distance as a metric for image retrieval.
International Journal of Computer Vision, 40(2), 99–121.
doi:10.1023/A:1026543900054

Ruping, S. (2001). SVM kernels for time series analy-
sis. In Klinkenberg, R., Ruping, S., Fick, A., Henze, N.,
Horzog, C., Molitor, R., & Schroder, O. (Eds.), LLWA
01-Tagungsband der G1-Workshop-Woche Lemen-Lehren
Wissen-Adaptivitet (pp. 43–50).

Russ, A. P., & Lampel, S. (2005). The druggable
genome:an update. Drug Discovery Today, 10, 1607–1610.
doi:10.1016/S1359-6446(05)03666-4

Saigo, H., Vert, J.-P., Ueda, N., & Akutsu, T. (2004). Pro-
tein homology detection using string alignment kernels.
Bioinformatics (Oxford, England), 20(11), 1682–1689.
doi:10.1093/bioinformatics/bth141

Salomon, D. (2000). Data compression – The complete
reference. CA: Springer-Verlag.

Salton, G., Wong, A., & Yang, C. (1975). A vector space
model for automatic indexing. Communications of the
ACM, 18(11), 613–620. doi:10.1145/361219.361220

Salton, G., & Mcgill, M. (1984). Introduction to modern
information retrieval. McGrawHill Int. Book Co.

Compilation of References

259

Sanjay, R., Gulati, V. P., & Pujari, A. K. (2004). Frequency-
and ordering-based similarity measure for host-based intru-
sion detection. Information Management & Computer Se-
curity, 12(5), 411–421. doi:10.1108/09685220410563397

Sarawagi, S. (2003). Sequence data mining techniques
and applications. In the 19th International Conference
on Data Engineering.

Satish, D. S. (2005). Kernel based clustering and vector
quantization for pattern classification. Master of Science
thesis, Indian Institute of Technology Madras, Chennai.

Sauvagnat, K. (2005). Flexible model for information
retrieval in the corpus of semi-structured documents.
Unpublished thesis. Toulouse, France: Paul Sabatier
University.

Scholkopf, B., Mika, S., Burges, C., Knirsch, P., Muller,
K.-R., Ratsch, G., & Smola, A. (1999). Input space
versus feature space in kernel-based methods. IEEE
Transactions on Neural Networks, 10(5), 1000–1017.
doi:10.1109/72.788641

Sekhar, C. C., Takeda, K., & Itakura, F. (2003). Recog-
nition of subword units of speech using support vector
machines. In Recent research developments in electronics
and communication (pp. 101–136). Trivandrum, Kerala,
India: Transworld Research Network.

Seno, M., & Karypis, G. (2002). SLPMiner: An algorithm
for finding frequent sequential patterns using length-
decreasing support constraint. In Proceedings of the 2nd
IEEE International Conference on Data Mining (ICDM),
(pp. 418-425).

Seno, M., & Karypis, G. (2002). SLPMiner: An algorithm
for finding frequent sequential patterns using length-
decreasing support constraint. In Proceedings of the 2nd
IEEE International Conference on Data Mining (ICDM),
(pp. 418-425).

Shang, B., & Si-Xue, B. (2009). The maximal frequent
pattern mining of DNA sequence. IEEE International
Conference on Granular Computing (pp. 23-26).

Sharma, S., Kumar, V., & Sobha Rani, T. Durga Bhavani, &
S., Bapi Raju, S. (2004). Application of neural networks for
protein sequence classification. In Intelligent Sensing and
Information Processing (pp.325-328). India: IEEE Press.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods
for pattern analysis. Cambridge, UK: Cambridge Univer-
sity Press. doi:10.1017/CBO9780511809682

Shen, J. P., & Lipasti, M. H. (2005). Modern processor
design: Fundamentals of superscalar processors. New
York, NY: McGraw-Hill Companies.

Sigrist, C. J. A., & Hulo, N. (2004). Recent improvements
to the PROSITE database. Nucleic Acids Research, 32,
134–137. doi:10.1093/nar/gkh044

Sikic, M., Tomic, S., & Vlahovicek, K. (2009). Prediction
of protein–protein interaction sites in sequences and 3D
structures by random forests. PLoS Computational Biol-
ogy, 5(1), e1000278. doi:10.1371/journal.pcbi.1000278

Smith, T. F., & Waterman, M. S. (1981). Identifica-
tion of common molecular subsequences. Journal of
Molecular Biology, 147, 195–197. doi:10.1016/0022-
2836(81)90087-5

Smith, N., & Gales, M. (2002). Speech recognition us-
ing SVMs. In Proceedings of the 2002 Conference on
Advances in Neural Information Processing Systems, (pp.
1197–1204). Cambridge, MA: MIT Press.

Smith, N., & Gales, M. (2002). Speech recognition us-
ing SVMs. In Proceedings of the 2002 Conference on
Advances in Neural Information Processing Systems, (pp.
1197–1204). Cambridge, MA: MIT Press.

Soujanya, V., Satyanarayana, R. V., & Kamalakar, K.
(2006). A simple yet effective data clustering algorithm.
In Sixth International Conference on Data Mining, (pp.
1108-1112).

Sparck Jones, K., Walker, S., & Robertson, S. E. (2000). A
probabilistic model of information retrieval: Development
and comparative experiments. Information Processing
& Management, 36(6), 779–840. doi:10.1016/S0306-
4573(00)00015-7

Spath, H. (1980). Cluster analysis – Algorithms for data
reduction and classification of objects. West Sussex, UK:
Ellis Horwood Limited.

Srikant, R., & Agrawal, R. (1996). Advances in database
technology EDBT ‘96., (pp. 3-17).

Compilation of References

260

Srikant, R., & Agrawal, R. (1996). Mining sequential
patterns: Generalizations and performance improvements.
In Proc. 5th Int. Conf. Extending Database Technology.

Stefano, L. D., Milani, I., & Viarani, E. (2000). Evaluation
of inductive-loop emulation algorithms for UTC systems.
Proceedings of the Sixth International Conference on
Control, Automation, Robotics and Computer Vision
(ICARCV 2000), Singapore.

Stoicke, A., Kajarekar, S., & Ferrer, L. (2008). Nonpara-
metric feature normalization for SVM-based speaker veri-
fication. In IEEE International Conference on Acoustics,
Speech, and Signal Processing 2008, ICASSP 2008, (pp.
1577–1580). Las Vegas, NV.

Sugawara, H., Ogasawara, O., Okubo, K., Gojobori, T.,
& Tateno, Y. (2008). DDBJ with new system and face.
Nucleic Acids Research, 36, 22–24. doi:10.1093/nar/
gkm889

Sun, Y., Castellano, C. G., Mark, R., Adams, R., Alistair,
G. R., & Neil, D. (2009). Using pre and post-processing
methods to improve binding site predictions. Pattern
Recognition, 42(9), 1949–1958. doi:10.1016/j.pat-
cog.2009.01.027

Susheela Devi, V. (2010). Optimal prototype selection for
efficient pattern classification. VDM Verlag.

Taft, L. M., Evans, R. S., Shyu, C. R., Egger, M. J., &
Chawla, N., V., Joyce, A. M., … Michael, W. V. (2009).
Countering imbalanced datasets to improve adverse drug
event predictive models in labor and delivery. [JBI].
Journal of Biomedical Informatics, 42(2), 356–364.
doi:10.1016/j.jbi.2008.09.001

Tan, P.-N., Kumar, V., & Srivastava, J. (2002). Selecting
the right interestingness measure for association patterns.
KDD ‘02: Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, (pp. 32-41). Edmonton, Alberta, Canada.
New York, NY: ACM Press.

Tatti, N. (2007). Maximum entropy based significance
of itemsets. In Proceedings of ICDM, (pp. 312–321).

Tax, D. (2001). One-class classification. PhD thesis, Delft
University of Technology.

Terai, G., & Takagi, T. (2004). Predicting rules on orga-
nization of cis-regulatory elements, taking the order of
elements into account. Bioinformatics (Oxford, England),
20(7), 1119–1128. doi:10.1093/bioinformatics/bth049

Thonangi, R., & Pudi, V. (2005). ACME: An associa-
tive classifier based on maximum entropy principle. In
Proceedings of ALT, (pp. 122–134).

Tiwari, G., Fazio, J., & Baurav, S. (2007). Traffic plan-
ning for non-homogeneous traffic. Sadhna (Special Issue
on Transportation Research - Safety and Sustainability),
32(4), 309-328.

Tsuboi, Y. (2002). Authorship identification for hetero-
geneous documents.

Tsuda, K., Kin, T., & Asai, K. (2002). Mariginalized
kernels for biological sequences. Bioinformatics (Oxford,
England), 18, S268–S275. doi:10.1093/bioinformatics/18.
suppl_1.S268

Tsuda, K. (1998). Support vector classifier with asymmet-
ric kernel functions. In European Symposium on Artificial
Neural Networks, (pp. 183–188). Bruges, Belgium.

Tu, Q., & Ding, D. (2003). Detecting pathogenicity islands
and anomalous gene clusters by iterative discriminant
analysis. FEMS Microbiology Letters, 221(2), 269–275.
doi:10.1016/S0378-1097(03)00204-0

UCI. (n.d.). Machine learning repository. Retrieved from
http://archive.ics.uci.edu/ml/

Uniprot: http://www.uniprot.org

Vapnik, V. (1999). Statistical learning theory (2nd ed.).
New York, NY: John Wiley & Sons.

Vapnik, V. (1998). Statistical learning theory. New York,
NY: Wiley-Interscience.

Vert, J.-P., Saigo, H., & Akutsu, T. (2004). Local alignment
kernels for biological sequences. In Scholkopf, B., Tsuda,
K., & Platt, J. (Eds.), Kernel methods in computational
biology (pp. 131–154). Cambridge, MA: MIT Press.

Vieth, M., Higgs, R. E., & Roberston, D. H. (2004).
Kinomics- structural biology and chemogenomics of
kinase inhibitors and targets. Biochimica et Biophysica
Acta, 1697(1-2), 243–257.

Compilation of References

261

Vilalta, R., Apte, C. V., Hellerstein, J. L., Ma, S., & Weiss,
S. M. (2002). Predictive algorithms in the management of
computer systems. IBM Systems Journal, 41(3), 461–474.
doi:10.1147/sj.413.0461

Visa, S., & Ralescu, A. (2005). Issues in mining imbal-
anced data sets - A review paper. In Proceedings of the
Sixteen Midwest Artificial Intelligence and Cognitive
Science Conference, (pp. 67-73).

Vishwanathan, S. V. N., & Smola, A. J. (2003). Fast kernels
for string and tree matching. In Becker, S., Thrun, S., &
Obermayer, K. (Eds.), Advances in neural information
processing (pp. 569–576). Cambridge, MA: MIT Press.

Vrotsou, K., Ellegård, K., & Cooper, M. (n.d.). Explor-
ing time diaries using semi-automated activity pattern
extraction.

Vu, T. H., Ryu, K. H., & Park, N. (2009). A method for
predicting future location of mobile user for location-based
services system. Computers & Industrial Engineering,
57(1), 91–105. doi:10.1016/j.cie.2008.07.009

Vulpetti, A., & Bosotti, R. (2004). Sequence and structural
analysis of kinase ATP pocket residues. IL Farmaco, 59,
759–765. doi:10.1016/j.farmac.2004.05.010

Waack, S., Keller, O., Asper, R., Brodag, T., Damm,
C., & Fricke, W. F. (2006). Score-based prediction of
genomic islands in prokaryotic genomes using hidden
Markov models. BMC Bioinformatics, 7, 142–153.
doi:10.1186/1471-2105-7-142

Walicki, M., & Ferreira, D. R. (2010). Mining sequences
for patterns with non-repeating symbols. International
Conference on Evolutionary Computation (pp. 1-8).

Wan, V., & Renals, S. (2002). Evaluation of kernel methods
for speaker verification and identification. In Proceed-
ings of IEEE International Conference on Acoustics,
Speech and Signal Processing, (pp. 669-672). Orlando,
Florida, US.

Wang, Y., Lim, E.-P., & Hwang, S.-Y. (2006). Efficient
mining of group patterns from user movement data. Data
& Knowledge Engineering, 57(3), 240–282. doi:10.1016/j.
datak.2005.04.006

Wang, M., Yang, J., Liu, G.-P., Xu, Z.-J., & Chou, K.-C.
(2004). Weighted-support vector machines for predicting
membrane protein types based on pseudo-amino acid
composition. Protein Engineering, Design & Selection,
17(6), 509–516. doi:10.1093/protein/gzh061

Wang, J. T. L., Zaki, M. J., Toivonen, H., & Shasha, D.
(Eds.). (2005). Data mining in bioinformatics. Springer.

Wang, J. L., Chirn, G., Marr, T., Shapiro, B., Shasha, D.,
& Zhang, K. (1994). Combinatorial pattern discovery
for scientific data: Some preliminary results. Proc. ACM
SIGMOD Int’l Conf. Management of Data, (pp. 115-125).

Wang, J. L., Chirn, G., Marr, T., Shapiro, B., Shasha, D.,
& Zhang, K. (1994). Combinatorial pattern discovery
for scientific data: Some preliminary results. Proc. ACM
SIGMOD Int’l Conf. Management of Data, (pp. 115-125).

Wang, K., Xu, Y., & Yu, J. X. (2004). Scalable sequen-
tial pattern mining for biological sequences. CIKM ‘04:
Proceedings of the Thirteenth ACM International Confer-
ence on Information and Knowledge Management (pp.
178-187). Washington, DC: ACM.

Wang, M., Shang, X.-Q., & Li, Z.-H. (2008). Sequential
pattern mining for protein function prediction. ADMA
‘08: Proceedings of 4th International Conference on Adv
Data Mining and Applications (pp. 652-658). Chengdu,
China: Springer-Verlag.

Watkins, C. (1999). Dynamic alignment kernels (Tech.
Rep. No.CSD-TR-98-11). Royal Holloway, London, UK:
University of London, Department of Computer Science.

Weka. http://www.cs.waikato.ac.nz/~ml/

Wen, Y.-H., Lee, T.-T., & Cho, H.-J. (2005). Missing data
treatment and data fusion toward travel time estimation
for ATIS. Journal of the Eastern Asia Society for Trans-
portation Studies, 6, 2546–2560.

Westbrook, J. D., & Berman, H. M. (2000). The protein
data bank. Nucleic Acids Research, 28(1), 235–242.
doi:10.1093/nar/28.1.235

Weston, J., Leslie, C., Ie, E., Zhou, D., Elisseeff, A., &
Noble, W. S. (2005). Semisupervised protein classification
using cluster kernels. Bioinformatics (Oxford, England),
21(15), 3241–3247. doi:10.1093/bioinformatics/bti497

Compilation of References

262

Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shriv-
astava, S., Tzur, D., et al. (2008). DrugBank: a knowl-
edgebase for drugs, drug actions and drug targets. Nucleic
Acids Res., 36 (Database issue), D901-6. Retrieved on
January 11, 2011 from http://www.drugbank.ca

Witten, I., & Frank, E. (2000). Data mining: Practical
machine learning tools and techniques with Java imple-
mentations. Morgan Kaufmann Publishers.

Wong, P. C., Cowley, W., Foote, H., Jurrus, E., & Thomas,
J. (2000). Visualizing sequential patterns for text mining.
Proc. IEEE Information Visualization, 2000 (pp. 105-
114). Society Press.

Wu, M., & Eisen, J. A. (2008). A simple, fast, and accurate
method of phylogenomic inference. Genome Biology,
9(10), R151. doi:10.1186/gb-2008-9-10-r151

Wuu, L.-C., Hung, C.-H., & Chen, S.-F. (2007). Building
intrusion pattern miner for Snort network intrusion detec-
tion system. Journal of Systems and Software, 80(10),
1699–1715. doi:10.1016/j.jss.2006.12.546

Xia, X., Maliski, E. G., Gallant, P., & Rogers, D. (2004).
Classification of kinase inhibitors using bayesian
model. Journal of Medicinal Chemistry, 47, 4463–4470.
doi:10.1021/jm0303195

Xing, Z., Pei, J., & Keogh, E. (2010). A brief survey on
sequence classification. SIGKDD Explorations Newslet-
ter, 12(1), 40–48. doi:10.1145/1882471.1882478

Yan, X., Han, J., & Afshar, R. (2003). CloSpan: Mining
closed sequential patterns in large datasets. Proceedings
of SDM, (pp. 166-177).

Ye, N., & Chen, Q. (2001). An anomaly detection technique
based on chi-square statistics for detecting intrusions into
information systems. Quality and Reliability Engineer-
ing International, 17(2), 105–112. doi:10.1002/qre.392

Yoon, S. H., Hur, C. G., Kang, H. Y., Kim, Y. H., Oh, T.
K., & Kim, J. F. (2005). A computational approach for
identifying pathogenicity islands in prokaryotic genomes.
BMC Bioinformatics, 6, 184–194. doi:10.1186/1471-
2105-6-184

Yoon, S. H., Park, Y. K., Lee, S., Choi, D., Oh, T. K., Hur,
C. G., & Kim, J. F. (2007). Towards pathogenomics: A
Web-based resource for pathogenicity islands. Nucleic
Acids Research, 35, D395–D400. doi:10.1093/nar/gkl790

You, C. H., Lee, K. A., & Li, H. (2009b). An SVM ker-
nel with GMM-supervector based on the Bhattacharyya
distance for speaker recognition. IEEE Signal Processing
Letters, 16(1), 49–52. doi:10.1109/LSP.2008.2006711

You, C. H., Lee, K. A., & Li, H. (2009a). A GMM su-
pervector kernel with the Bhattacharyya distance for
SVM based speaker recognition. In Proceedings of IEEE
International Conference on Acoustics, Speech and Signal
Processing, (pp. 4221–4224). Taipei, Taiwan.

Yu, C. Y., Chou, L. C., & Darby, C. (2010). Predicting
protein-protein interactions in unbalanced data using the
primary structure of proteins. BMC Bioinformatics, 11(1),
167..doi:10.1186/1471-2105-11-167

Yun, C. H., & Chen, M. S. (2007). Mining mobile sequen-
tial patterns in a mobile commerce environment. IEEE
Transactions on Systems, Man, and Cybernetics, 278–295.

Yun, U. (2008). A new framework for detecting weighted
sequential patterns in large sequence databases. Knowl-
edge-Based Systems, 21(2), 110–122. doi:10.1016/j.
knosys.2007.04.002

Yun, U. (2008). A new framework for detecting weighted
sequential patterns in large sequence databases. Knowl-
edge-Based Systems, 21(2), 110–122. doi:10.1016/j.
knosys.2007.04.002

Yun, L., Yunhao, Y., Yan, S., Xin, G., & Ling, C. (2008).
Mining self-adaptive sequence patterns based on the
sequence fuzzy concept lattice. Second International
Symposium on Intelligent Information Technology Ap-
plication (pp. 167-171).

Zaki, M. J. (2001). SPADE: An efficient algorithm for
mining frequent sequences. Machine Learning, 42(1-2),
31–60. doi:10.1023/A:1007652502315

Zaki, M. J., Lesh, N., & Mitsunori, O. (1999). Plan-
Mine: Predicting plan failures using sequence min-
ing. Artificial Intelligence Review, 14(6), 421–446.
doi:10.1023/A:1006612804250

Zaki, M. J. (2001). SPADE: An efficient algorithm for
mining frequent sequences. Machine Learning, 42(1-2),
31–60. doi:10.1023/A:1007652502315

Compilation of References

263

Zaki, M. J. (2000). Sequence mining in categorical do-
mains: Incorporating constraints. CIKM ‘00: Proceedings
of the Ninth International Conference on Information
and Knowledge Management (pp. 422-429). New York,
NY: ACM.

Zaki, M. J., Parthasarathy, S., Ogihara, M., & Li, W.
(1997). New algorithms for fast discovery of association
rules. In Proceedings of KDD, (pp. 283–286).

Zhang, S.-W., Pan, Q., Zhang, H.-C., Zhang, Y.-L., &
Wang, H.-Y. (2003). Classification of protein quaternary
structure with support vector machine. Bioinformatics
(Oxford, England), 19(18), 2390–2396. doi:10.1093/
bioinformatics/btg331

Zhang, C. T., Gao, F., & Zhang, R. (2005). Segmentation
algorithm for DNA sequences. Physical Review E: Sta-
tistical, Nonlinear, and Soft Matter Physics, 72, 041917.
doi:10.1103/PhysRevE.72.041917

Zhang, H. (2004). The optimality of naive Bayes. In
Proceedings of FLAIRS Conference.

Zhang, M., Kao, B., Cheung, D., & Yip, C. (2002). Ef-
ficient algorithms for incremental updates of frequent
sequences., In Proc. of the 6th Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD’02).

Zhao, X. M., Li, X., Chen, L., & Aihara, K. (2008). Protein
classification with imbalanced data. Proteins: Struc-
ture, Function, and Bioinformatics, 70(4), 1125–1132.
doi:10.1002/prot.21870

Zhou, P., & Onder, S. (2008). Improving single-thread
performance with fine-grain state maintenance. In A.
Ramirez, G. Bilardi, & M. Gschwind N (Eds.), Proceedings
of the 5th Conference on Computing Frontiers (CF-08)
(pp. 251-260). New York, NY: ACM.

264

About the Contributors

Pradeep Kumar obtained his PhD from the Department of Computer and Information Sciences,
University of Hyderabad, India. He also holds an MTech in Computer Science and BSc (Engg) in Com-
puter Science and Engg. Currently, he is working as an Assistant Professor with Indian Institute of
Management, Lucknow, India. His research interest includes data mining, soft computing and network
security.

S. Bapi Raju obtained BTech (EE) from Osmania University, India, and his MS and PhD from
University of Texas at Arlington, USA. He has over 12 years of teaching and research experience in
neural networks, machine learning, and artificial intelligence and their applications. Currently he is a
Professor in the Department of Computer and Information Sciences, as well as Associate Coordinator,
Centre for Neural and Cognitive Sciences at University of Hyderabad. He has over 50 publications
(journal / conference) in these areas. His main research interests include biological and artificial neural
networks, neural and cognitive modelling, machine learning, pattern recognition, neuroimaging, and
bioinformatics. He is a member of ACM, Society for Neuroscience, Cognitive Science Society, and a
Senior Member of IEEE.

P. Radha Krishna is a Principal Research Scientist at Software Engineering and Technology Labs,
Infosys Technologies Limited, Hyderabad, India. Prior to joining Infosys, Dr. Krishna was a Faculty
Member at the Institute for Development and Research in Banking Technology (IDRBT) and a scientist
at National Informatics Centre, India. His research interests include data warehousing, data mining, and
electronic contracts and services. He authored five books and has more than eighty publications.

* * *

Ilham Berrada currently serves as the Professor of Data Mining and the pedagogic director at Na-
tional Graduate School of Computer Science and System Analysis in Rabat, Morocco. She is member
of scientific committee of the Conference of Strategic Information Scanning System, Technological and
Scientific Watching. She has established himself as one of the leading academic experts on data mining
in both the public and private sector in Morocco.

Arnab Bhattacharya is currently an Assistant Professor at the Department of Computer Science
and Engineering at the Indian Institute of Technology, Kanpur, India. He received his undergraduate
degree, Bachelor of Computer Science and Engineering (BCSE), from Jadavpur University, India in
2001. He then worked in Texas Instruments (India) Pvt. Ltd. as Software Design Engineer for one year

About the Contributors

in Bengalooru, India. He received his Master of Science (MS) and Doctor of Philosophy (PhD) degrees
in Computer Science from the University of California, Santa Barbara, USA in 2007. Since then, he
has been working at the Indian Institute of Technology, Kanpur. His current research interests are in
databases, data mining, and bioinformatics.

S. Durga Bhavani obtained her PhD in Mathematics from University of Hyderabad, Hyderabad,
India. She has over 10 years of teaching and research experience. Her areas of interest are fractals and
chaos theory, computational modeling of biological systems, and analysis of algorithms. She has over
20 publications in major journals and conferences. She is a member of IEEE and Computational Intel-
ligence Society.

C. Chandra Sekhar received his B.Tech. degree in Electronics and Communication Engineering
from Sri Venkateswara University, Tirupati, India, in 1984. He received his M.Tech. degree in Electrical
Engineering and Ph.D. degree in Computer Science and Engineering from Indian Institute of Technol-
ogy (IIT) Madras in 1986 and 1997, respectively. He was a Lecturer from 1989 to 1997, an Assistant
Professor from 1997 to 2002, an Associate Professor from 2004 to 2010, and a Professor since 2010 in
the Department of Computer Science and Engineering at IIT Madras, India. He was a Japanese Society
for Promotion of Science (JSPS) Post-Doctoral Fellow at Center for Integrated Acoustic Information
Research, Nagoya University, Nagoya, Japan, from May 2000 to May 2002. His current research interests
are in speech processing, handwritten character recognition, artificial neural networks, kernel methods,
Bayesian methods, and content-based information retrieval of multimedia data. He has published 11
papers in refereed journals and edited volumes, and 84 papers in the proceedings of international and
national conferences. He has supervised 2 Ph.D. and 12 M.S. theses. He is currently supervising 4 Ph.D.
and 2 M.S. students. His main research contributions are related to acoustic modeling of subword units
of speech in Indian languages using a constraint satisfaction neural network, acoustic modeling and
handwritten character recognition using support vector machines, and hybrid Gaussian mixture model
and support vector machine model based classifiers for speech emotion recognition. He has reviewed
papers for the IEEE Transactions on Speech and Audio Processing, Neurocomputing Journal, Pattern
Recognition Letters, and Electronic Letters. He has organized the First and Second International Confer-
ence on Intelligent Sensing and Information Processing at Chennai, India in 2004 and 2005, respectively.
He also organized the Indian National Academy of Engineers (INAE) Workshop on Image and Speech
Processing in 2006 and the Winter School on Speech and Audio Processing in 2008 at Chennai. He is
a member of IEEE.

Dileep A.D. received his B.E. degree in Computer Science and Engineering from Gulbarga University,
Karnataka, India, in 2000. He received his M.Tech. degree in Computer Science and Engineering from
Indian Institute of Technology Madras, Chennai, India, in 2006. Since 2006, he is pursuing the Doctoral
degree at Indian Institute of Technology Madras, Chennai, India. He was a Lecturer in the Department
of Computer Science and Engineering at Nitte Mahalinga Adyantaya Memorial Institute of Technology,
Nitte, Karnataka, India from 2001 to 2004. He published 8 papers in the proceedings of international and
national conferences. His current research interests include kernel methods and support vector machines,
artificial neural networks, pattern recognition, speech technology, and image processing.

 265

About the Contributors

Bernard Dousset currently serves as the Professor of Data Mining at Paul Sabatier University in
Toulouse, French. He is the Founding Editor of the Conference of Strategic Information Scanning System,
Technological and Scientific Watching, and the chairman of scientific committee. He has established
himself as one of the leading academic experts on competitive intelligence system in both the public
and private sector. He has been an active consultant, a qualified expert witness, and an invited speaker
on the competitive intelligence to both trade and academic audiences.

Sourav Dutta is currently working as a Software Engineer at IBM Research Lab, New Delhi, India.
He obtained his undergraduate degree, Bachelor of Engineering (BE) in Information Technology, from
Jadavpur University, India in 2008. In 2010, he received his Master of Technology (M.Tech.) degree in
Computer Science and Engineering from the Indian Institute of Technology, Kanpur, India. His current
research interests span algorithms, data structures, databases, data mining, and cloud computing.

Manish Gupta, http://www.cs.illinois.edu/homes/gupta58/, is currently a Ph.D. candidate under Dr.
Jiawei Han in the Department of Computer Science in the University of Illinois at Urbana-Champaign.
Previously, he worked at Yahoo!, Bangalore, India. His research interests lie in data mining and informa-
tion retrieval. Recently, he has been working on a variety of topics in data mining related to evolution
in graphs.

Anass El Haddadi is currently a PhD student of Data Mining at Paul Sabatier University in Toulouse,
French, co-supervised with National Graduate School of Computer Science and System Analysis in
Rabat, Morocco. He is member of program committee and organizing committee of the Conference of
Strategic Information Scanning System, Technological and Scientific Watching. He is Member of the
French Research Group in Competitive Intelligence.

Jiawei Han is a Professor of Computer Science at the University of Illinois. He has served on program
committees of the major international conferences in the fields of data mining and database systems,
and also served or is serving on the editorial boards for Data Mining and Knowledge Discovery, IEEE
Transactions on Knowledge and Data Engineering, Journal of Computer Science and Technology, and
Journal of Intelligent Information Systems. He is the founding Editor-in-Chief of ACM Transactions
on Knowledge Discovery from Data (TKDD). Jiawei has received IBM Faculty Awards, HP Innovation
Awards, ACM SIGKDD Innovation Award (2004), IEEE Computer Society Technical Achievement
Award (2005), and IEEE W. Wallace McDowell Award (2009). He is a Fellow of ACM and IEEE. He is
currently the Director of Information Network Academic Research Center (INARC) supported by the
Network Science-Collaborative Technology Alliance (NS-CTA) program of U.S. Army Research Lab.
His book “Data Mining: Concepts and Techniques” (Morgan Kaufmann) has been used worldwide as
a textbook.

Rudra Narayan Hota is a Ph.D. Scholar at Frankfurt Institute for Advanced Studies, Frankfurt. Prior
to joining this, he has few years of industrial research experience after completing MTech in Computer
Science from Indian Statistical Institute, Kolkata, India, in 2005. He worked in Software Engineering
and Technology Labs, Infosys Technologies Limited, Hyderabad, as a Research Associate and Honeywell
Technology Solutions Lab, Bangalore for couple of years. During his academic and industrial research,
he published few papers in international conferences and journals, and also holds couple of patents on

266

About the Contributors

his name. His research interests include computer vision, pattern recognition, machine learning, and
neuroscience.

Kishore Jonna is a Senior Software Engineer at Software Engineering and Technology Labs(SETLabs),
Infosys Technologies Limited, Hyderabad, India. He completed Bachelor of Engineering in Electronics
and Communication Engineering from Anna University, Chennai, India. His research interests include
computer vision and image analytics.

Engin Maden received his BS degree from Hacettepe University and MS degree from METU Com-
puter Engineering Department. He studied on the use of sequence mining on architectural simulation for
his MS thesis. Currently he is working in the IT department at Turkish Central Bank.

Hui Meen Nyew is a PhD candidate at Michigan Technological University’s Computer Science
Department. He received his BS degree from MTU, MS degree from MTU Computer Science on the
use of machine learning techniques for the Foreign Exchange Market. His research interests include
artificial intelligence, machine learning, and computer architecture.

M. Narasimha Murty is a Professor at Department of Computer Science and Automation, Indian
Institute of Science, Bangalore, India. He obtained B.E., M.E., and Ph.D. from Indian Institute of Sci-
ence, Bangalore. He guided more than 21 Ph.D. students, 18 of whom awarded Ph.D., and guided 60
M.Sc.(Engg) or ME theses. He has 71 journal papers and 60 conference papers to his credit. His survey
paper on “Pattern Clustering: A Survey” in ACM Computing Surveys is cited more than 5000 times as
reported by Google (www.google-scholar.com). The paper was reported to be most frequently downloaded
article in 2004, 2005, and 2006 from ACM publications. He received “Alumni Award for Excellence in
Research for Engineering” from the Indian Institute of Science, Bangalore, India in March 2007. He was
elected as a Fellow of the Indian National Academy of Engineering (FNAE), awarded in 2009. He is
consultant to many Industry sponsored projects and undertook projects sponsored by Ministry of HRD,
Govt. of India, DST (Indo-US project), and AOARD (Tokyo).

Nilufer Onder is an Associate Professor of Computer Science at Michigan Technological University
(MTU). She received her BS and MS degrees from METU Computer Engineering Department and her
PhD degree from the Computer Science Department at the University of Pittsburgh. Her research inter-
ests include planning under uncertainty, contingency planning, applications of planning in construction
project management, and machine learning.

Soner Onder is an Associate Professor of Computer Science at Michigan Technological University
(MTU). He received his BS degree from METU Chemical Engineering Department, MS degree from
METU Computer Engineering Department, and PhD degree from the Computer Science Department at
the University of Pittsburgh. His research interests include computer architecture, micro-architecture,
optimizing compilers and domain specific languages. He is a recipient of NSF CAREER award in 2004.

T. Maruthi Padmaja received M.Tech degree from Tezpur University, India in 2004. She is cur-
rently pursuing the PhD degree with University of Hyderabad. Her research interests include machine
learning and data mining.

 267

About the Contributors

Nita Parekh is a currently Assistant Professor at the Center for Computational Natural Sciences and
Bioinformatics, International Institute of Information Technology, Hyderabad. She obtained her PhD
from School of Physical Sciences, Jawaharlal Nehru University, New Delhi in 1995 involving study of
phase ordering dynamics of binary systems in presence of disorders and external fields. Her post-doctoral
work at NCL Pune (1994-1997), and CCMB, Hyderabad (1997-1999) focused on synchronization and
control of spatiotemporal chaos and patterns with applications to chemical and biological systems.
While at NIST, Maryland, USA (2000-2001) she worked on the computational analysis of mechanical
properties of spatially segregated polymer systems. She worked in the industry as a domain specialist
at iLabs Ltd., Hyderabad (2001 – 2003). Her role at iLabs was to identify important areas and develop
algorithms for software products in the area of sequence analysis, pattern recognition, and structure-
based comparison methods. She has been at IIIT from 2003 onwards and her current research interests
are pattern recognition in biological sequences, applications of graph theoretic approaches to the analysis
of biological systems, and complex systems theory.

S. Prasanthi completed M.Tech Bioinformatics from School of Life Sciences in 2010 from Univer-
sity of Hyderabad.

Vikram Pudi graduated from J.N.T.U, Hyderabad in Computer Science and Engineering, in 1997.
He immediately pursued his PhD at the Indian Institute of Science, Bangalore and completed it in 2003.
His PhD topic of research was on the efficient discovery of concise association rules from large data-
bases, and his advisor was Prof. Jayant Haritsa. After completing PhD, he worked for a short duration (8
months) in Yahoo! Inc., Bangalore as a senior software engineer. He then decided to take up an academic
career and joined IIIT, Hyderabad in December 2003 as an Assistant Professor. At IIIT Hyderabad, he
has taught courses on Data Mining, AI, and Computing Tools. His research interests primarily include
data mining, artificial intelligence and database systems. He has published in top quality international
conferences (e.g. ICDE) and journals (e.g. Information Systems). He is currently working on applying
association rule mining for classification and on privacy issues in data mining. More information regard-
ing Vikram Pudi and his research may be obtained from http://www.iiit.ac.in/~vikram.

Pratibha Rani graduated from M.A.C.E.T., Patna in Computer Science and Engineering, in 2004.
She joined MS (by Research) program at International Institute of Information Technology, Hyderabad
in 2006 under the guidance of Dr. Vikram Pudi and completed it in March 2009. Her MS thesis topic was
classification of biological sequences. She worked on the problem of predicting the family of a newly
discovered biological sequence, using the collection of available sequences. This problem comes in the
category of classification problems, which is one of the widely studied problems in the data mining and
machine learning fields. In her thesis she presented two data mining based effective solutions for this
problem. Currently she is pursuing PhD at International Institute of Information Technology, Hyder-
abad under the guidance of Dr. Vikram Pudi. She has published in top quality international conferences
ICDM 2008 and COMAD 2008 and recently one paper is to appear in DASFAA 2011. She is currently
working on extracting knowledge from medical journals and finding unusual pattern behaviour from
language specific annotated texts.

268

About the Contributors

T. Sobha Rani obtained her M.Tech from Jawaharlal Nehru Technological University and PhD in
Computer Science from University of Hyderabad, Hyderabad. Her PhD thesis dealt with the problem
of promoter recognition for both prokaryotes and eukaryotes, and this work is published as a chapter
in Wiley book series. She has over 15 journal and conference publications. She has been involved in
teaching and research for the last 10 years, primarily in the area of bioinformatics. She is a member of
IEEE and Computational Intelligence Society.

T. Ravindra Babu has been working as Principal Researcher, E-Comm. Research Laboratories,
Education and Research Group, Infosys for the last 2 years. He leads a team of researchers working in
the areas of image processing, and pattern recognition. He had earlier served ISRO for over 24 years
as a Scientist. He obtained his Ph.D. and M.Sc.(Engg) from Department of Computer Science and
Automation, Indian Institute of Science, Bangalore under the guidance of Prof. M. Narasimha Murty.
Dr. T. Ravindra Babu was awarded Seshgiri Kaikini medal for best M.Sc.(Engg) thesis in the Division
of Electrical Sciences, Indian Institute of Science. The areas of his interest include image processing,
biometrics, pattern recognition, data mining, evolutionary algorithms, large data clustering and classifica-
tion, and spacecraft orbital dynamics. He has a number of international journal/conference publications
and book chapters to his credit in the above areas.

Pinar Senkul is an Assistant Professor in the Computer Engineering Department of Middle East
Technical University (METU). She received her BS, MS, and PhD degrees from METU Computer En-
gineering Department. She conducted part of her thesis research as a visiting researcher at SUNY Stony
Brook. Her research interests include web service discovery and composition, workflow modeling and
analysis, data mining, and Web mining.

S.V. Subrahmanya is working at Infosys Technologies Limited as Vice-President, Research Fellow,
and Head of E-Commerce Research Lab, Education and Research Group. He obtained his M. Tech from
IIT Kharagpur. S.V. Subrahmanya has authored more than 20 papers that are published in journals, in-
ternational conferences, and book chapters. He co-authored 3 books, titled, “Web Services,” published
by Tata McGraw-Hill (2004), “J2EE Architecture,” published by Tata McGraw-Hill (2005), and “Enter-
prise Architecture,” published by Wiley (2006). He has one granted patent from US PTO. His areas of
interest include software architecture, mathematical modeling, and data and information management.

Veena T. received her B.E. degree in Bio-medical Engineering from Mangalore University, Karnataka,
India, in 1998. She received her M.S. degree in Medical Software from Manipal Academy of Higher
Education, Manipal, India, in 2000. Since 2006, she is pursuing the Doctoral degree at Indian Institute of
Technology Madras, Chennai, India. She was an Assistant Professor at Manipal Center for Information
Sciences, Manipal, Karnataka, India from 2000 to 2003. She was a Senior Lecturer in the Department
of Computer Science and Engineering at Sri Siva Subramania Nadar College of Engineering, Chennai,
Tamilnadu, India form 2003 to 2006. She published 5 papers in the proceedings of international and
national conferences. Her current research interests include kernel methods and support vector machines,
artificial neural networks, pattern recognition, speech technology, and image processing.

 269

270

Index

A
aerosol time-of-flight mass spectrometer (ATOFMS)

18
AGP 14
Alignment-Based Methods 168, 173
All-Pair Refined Local Maxima Search (ARLM)

79-81
Amino acid (AA) 54, 60, 65, 67, 70, 78, 112-114,

118, 141, 156, 158, 160-163, 167-168, 170-
171, 176-177

Amino Acid Bias 171
AMPHORA 174
Anti-monotonicity 142-143
APPEND 146-147
Approximate Greedy Maximum Maxima Search

(AGMM) 79-81
ApproxMAP 150
Apriori 2, 11-12, 14, 17, 123, 137-140, 142, 236
AprioriALL 19, 237-240, 242-243
Apriori with Subgroup and Constraint (ASC) 2

B
bioinformatics 1, 9, 19, 22-24, 51, 68-71, 82, 91,

93, 111, 114, 132-135, 153, 157, 162, 164, 166,
177-181

Biosequence 9
Block 54, 77-79, 96-97, 101-102, 104, 107, 189,

199, 207
blocking algorithm 77-78, 80
Boolean method 3
branch prediction 216-217, 225, 236

C
cache 116, 216-218, 221, 224-226, 234
candidate set 220, 238-241
centroid 170, 181

Chi-square 73, 75-77, 81-82
CI 8, 31, 80, 195-196, 208, 241
CloSpan 144-145, 152
clustering 15, 24-26, 32-36, 45-47, 49-52, 66, 92,

94-95, 98, 103, 106-110, 116, 132, 180, 213,
225-226, 228

Clustering-Based Approach 168, 174
Codon Usage Bias 170
command-line mode 230
Comparative Genomics 168, 173, 175-176, 178,

180-181
ComputeProb 127-131
conditional branch instructions 216
Contiguous sequential patterns (CSPs) 6
control speculation 216
Correspondence Analysis (CA) 195-196, 198, 207
CROSS-FMSM 150
CSP model 6-7
cumulative density function (cdf) 74
Cycle-accurate simulators 218
cycles per instruction (CPI) 214-215

D
Data Mining 1, 3, 5, 7, 9, 14-15, 17-25, 48, 81-82,

84, 92-95, 100, 107-112, 133-135, 137, 142,
151-153, 184, 195-196, 198, 204, 208, 210,
213, 217-219, 223, 225-226, 228-229, 233-239,
242-243

Data pre-processor 229
Decision Making 190, 196, 205, 210-211, 237
digital library (DL) 206
Dissimilarity Threshold 96
Diversified 197
dNTP 167
Druggability 155-156, 159-161, 163-165
Drug-Target 165

 271

Index

E
Earth mover’s distance (EMD) 37, 43, 46-47, 50
Episode miner 213, 226, 229-230, 233
Episode Mining Tool (EMT) 212-214, 219-220,

229-231, 233-234
evolutionary analysis 198
Evolutionary Graph 195-196
execution/effective address stage (EX) 10, 16-17,

137, 145-146, 149, 208, 210, 213-218, 223,
225, 231, 233

Exploratory Data Analysis and Management
(EDAM) 18, 22

F
Flexible Architecture Simulation Toolkit (FAST)

218
Flexible Gap Patterns 13
FreeSpan 140-142, 151
frequent episode 220, 222
functional simulator 218
fuzzy multiple- level mining algorithm (FMSM)

150

G
Gaussian 25, 30-31, 33-35, 38-39, 41, 49
GC content anomalies 169
GC Content at Codon Positions 171
GC-Profile 175, 179
Generalized linear discriminant sequence (GLDS)

37-38, 45-48
generalized suffix tree (GST) 10, 143
Genomic Islands (GI) 166-170, 172-173, 175-181
Genomic signature 168-169, 176
GIS 111-112, 116, 127-131, 167-168, 170, 172-178,

181
GMM supervector (GMMS) 25, 37-41, 45-50
GSP 5, 8, 15, 18, 138-139, 142
GSP algorithm 8, 15, 138, 142
GUI mode 230-232
GUMI 42

H
healthcare 1, 19
hidden Markov models (HMM) 25, 54, 62, 66-70,

87, 112, 116-117, 133, 174-175, 181
homologs 168, 174
Horizontal Gene Transfer DataBase (HGT-DB) 177,

179

Horizontal Gene Transfer (HGT) 166-168, 172-175,
177-181

hyperplane 25-31, 97-98

I
ILP processor 225
IncSpan 146-147, 151
Inhibitor 155-158, 163, 165
Innovation 179, 181, 195, 201, 209, 211
INSERT 146-147
instruction decode/register fetch stage (ID) 7, 113-

114, 139, 215, 228
instruction fetch stage (IF) 3, 17, 215
Instruction Level Parallel 215
instruction program counter value (inst-PC) 218
instruction set architecture (ISA) 214
Instructions Per Cycle (IPC) 213, 217, 227, 229-

230, 232-234
Integrated Genomic Island Prediction Tool (IGIPT)

172-173, 176, 179
intelligent transport system (ITS) 20, 183, 186-187
intermediate matching kernel (IMK) 25, 37, 43-48
intrusion detection 1, 15, 19, 22, 73-74, 81, 84, 92,

96, 99, 105, 107
IPC 213, 217, 227, 229-230, 232-234
Islander 177, 180
IslandPath 177, 179
IslandPick 173, 176

K
Kinase 134, 155-160, 162-165
k-mer Distribution 169-170
Knowledge-Based Decision Tree (KBTree) 98
k Reverse Nearest Neighbors (kRNNs) 83-84, 86,

88, 90-91
Kullback-Leibler (KL) 37, 39, 45, 49

L
Lagrangian 27-29, 35
Laterally Transferred Genes 181
Leader clustering algorithm 98, 103, 106
Ligand 156-158, 163, 165
Local Maxima 73, 78-81
Loop Detector (LD) 27, 183, 186

M
Machine Learning 9, 23, 47, 49, 70, 91-93, 95, 131-

132, 134, 153, 155, 160, 164-165, 184-185,
213, 234-235

272

Index

main-thread 218, 224
matrix 25, 32-34, 36, 38-41, 44, 60, 62, 64-65, 76,

89, 98-99, 105, 197-202, 207
maximum likelihood (ML) 38, 80, 89-90, 92, 162,

165, 174
maxwins 32
medical data source (PMSI) 2
memory access/branch completion stage (MEM)

215
Minimal occurrence based algorithms (MINEPI)

219, 222, 231, 233
minimum support 2, 8, 10-11, 96-97, 101, 123, 138,

143, 146-147, 229, 237, 240-242
MINT 6
Mismatch kernel 56-57, 60, 66, 68
mis-prediction 216-217, 224-225
MobilomeFINDER 176, 181
Monotonicity 142
Mono-Valued 197
Multiple Correspondence Analysis (MCA) 194-196
Multiple instruction execution 214
Multi-term Method 195-196
Multi-Valued 197

N
National Microbial Pathogen Database Resource

(NMPDR) 177, 180
Nearest-Neighbor (NN) 85, 102, 185-186
N-grams 9, 207
non-overlapping episodes 222

O
one-day internationals (ODI) 80
Online handwritten character recognition (OHCR)

66, 68-69

P
PAI-IDA 175
pair hidden Markov model (pHMM) 62-63, 68
Pairwise comparison kernel 53-54, 59, 66-68
parallel episode 220-222
Parametric Methods 168, 172-173, 178
Pathogenicity Island Database (PAIDB) 177
Pathogenicity Islands (PAIs) 175-177, 181
Pattern Generation Pruning 10
pattern-growth (PG) 144, 152
Pattern Matching Pruning 10
phylogenetic 168, 173-175, 177-178

Pipelining 214-215, 217
PlanMine 16-17, 23
PredictBias 176, 181
PrefixSpan 3, 9-10, 140-142, 145, 147-148, 152,

243
PrefixSpan algorithm 3
Probabilistic sequence kernel (PSK) 37-39, 45-47,

49
probability density function (pdf) 40, 74, 234
Protein Data Bank (PDB) 13, 114, 135, 157-158,

164
pruning 2, 10, 15, 94-96, 101-102, 122, 125, 139,

142-143, 145-146, 239-240, 243
P-value 73-76, 81

R
recovery-thread 218, 224
Region of Interest (ROI) 184, 186-191
Repeat Based Maximum Entropy Classifier (REB-

MEC) 111-112, 119, 121-122, 126-128, 131,
134

Repeat Based Naive Bayes Classifier (RBNBC)
111-112, 119, 121-122, 126-127, 131, 134

Rigid Gap Patterns 13
run-ahead mode 218, 224, 226

S
SCOP 13
SequenceCount 118-119, 121-125
sequence pattern mining 133, 237-239, 242
sequential data mining 1, 17, 19, 24, 137
serial episode 220-222
SIGI-HMM 175
Signal-Based Methods 168, 170, 172, 178
Simple Naive Bayes (Simple NB) 121-122, 131
Social Network 205-206, 210
SPADE 16, 23, 139, 147, 153
Spectrum kernel 55-60, 66, 68, 70
speculative execution 216
SPIRIT 143
Statistical Significance 73, 75-76, 82
String Mining 73
superscalar processors 215, 218, 235-236
Support vector clustering 26, 32, 35, 47
Support Vector Machine (SVM) 25-26, 29-32, 35,

46-50, 68-71, 97, 112, 117-118, 133, 155, 160,
182-186, 190, 194

SVN 3-4
SWORDS 175-176

 273

Index

Synthetic Minority Oversampling Technique
(SMOTE) 83-85, 87-92

T
telecommunications 1, 13, 19-20, 233
temporal placement algorithm 202-203
ternary search trees (TSTs) 68
TETRALOGIE 196-197, 199
text mining 1, 7, 19, 22, 196
Topographical Proximity (TP) 17, 20, 89
TRAC system (TRAC) 3-4
transaction ID 7
TRIPS 16-17
tRNA 167-168, 172, 176-178

U
UBM 38-42, 44
UCI dataset repository 240
Uniform Sequential (UniSeq) 148, 217
universal background model (UBM) 38-42, 44

V
Value of Block 96
Virtual Loop Detector (VLD) 183
Visual analyzer 212-213, 230

W
Weak Signals 195-196, 198-199, 201, 207-208, 210
web usage miner (WUM) 5-6
Web usage mining 1, 4-5, 18-21, 238-239, 243
Wiki 3-4
Window episode mining algorithms (WINEPI) 219-

226, 228, 231, 233
Word Taxonomy Learner (WTL) 116
write-back stage (WB) 215

X
XML documents 8-9
XML tree 8
Xplor 196

	Title
	Copyright Page
	Editorial Advisory Board
	Table of Contents
	Preface
	Section 1
	Applications of Pattern Discovery Using Sequential Data Mining
	A Review of Kernel Methods Based Approaches to Classification and Clustering of Sequential Patterns, Part I
	A Review of Kernel Methods Based Approaches to Classification and Clustering of Sequential Patterns, Part II
	Section 2
	Mining Statistically Significant Substrings Based on the Chi-Square Measure
	Unbalanced Sequential Data Classification using Extreme Outlier Elimination and Sampling Techniques
	Quantization based Sequence Generation and Subsequence Pruning for Data Mining Applications
	Classification of Biological Sequences
	Section 3
	Approaches for Pattern Discovery Using Sequential Data Mining
	Analysis of Kinase Inhibitors and Druggability of Kinase-Targets Using Machine Learning Techniques
	Identification of Genomic Islands by Pattern Discovery
	Video Stream Mining for On-Road Traffic Density Analytics
	Discovering Patterns in Order to Detect Weak Signals and Define New Strategies
	Discovering Patterns for Architecture Simulation by Using Sequence Mining
	Sequence Pattern Mining for Web Logs
	Compilation of References
	About the Contributors
	Index

